首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

It is increasingly evident that CD8+ T cells are involved in atherosclerosis but the specific subtypes have yet to be defined. CD8+CD25+ T cells exert suppressive effects on immune signaling and modulate experimental autoimmune disorders but their role in atherosclerosis remains to be determined. The phenotype and functional role of CD8+CD25+ T cells in experimental atherosclerosis were investigated in this study.

Methods and results

CD8+CD25+ T cells were observed in atherosclerotic plaques of apoE(−/−) mice fed hypercholesterolemic diet. Characterization by flow cytometric analysis and functional evaluation using a CFSE-based proliferation assays revealed a suppressive phenotype and function of splenic CD8+CD25+ T cells from apoE(−/−) mice. Depletion of CD8+CD25+ from total CD8+ T cells rendered higher cytolytic activity of the remaining CD8+CD25 T cells. Adoptive transfer of CD8+CD25+ T cells into apoE(−/−) mice suppressed the proliferation of splenic CD4+ T cells and significantly reduced atherosclerosis in recipient mice.

Conclusions

Our study has identified an athero-protective role for CD8+CD25+ T cells in experimental atherosclerosis.  相似文献   

2.

Background

The NKG2D receptor confers important activating signals to NK cells via ligands expressed during cellular stress and viral infection. This receptor has generated great interest because not only is it expressed on NK cells, but it is also seen in virtually all CD8+ cytotoxic T cells and is classically considered absent in CD4+ T cells. However, recent studies have identified a distinctive population of CD4+ T cells that do express NKG2D, which could represent a particular cytotoxic effector population involved in viral infections and chronic diseases. On the other hand, increased incidence of human papillomavirus-associated lesions in CD4+ T cell-immunocompromised individuals suggests that CD4+ T cells play a key role in controlling the viral infection. Therefore, this study was focused on identifying the frequency of NKG2D-expressing CD4+ T cells in patients with cervical intraepithelial neoplasia (CIN) 1. Additionally, factors influencing CD4+NKG2D+ T cell expansion were also measured.

Results

Close to 50% of patients with CIN 1 contained at least one of the 37 HPV types detected by our genotyping system. A tendency for increased CD4+ T cells and CD8+ T cells and decreased NK cells was found in CIN 1 patients. The percentage of circulating CD4+ T cells co-expressing the NKG2D receptor significantly increased in women with CIN 1 versus control group. Interestingly, the increase of CD4+NKG2D+ T cells was seen in patients with CIN 1, despite the overall levels of CD4+ T cells did not significantly increase. We also found a significant increase of soluble MICB in CIN 1 patients; however, no correlation with the presence of CD4+NKG2D+ T cells was seen. While TGF-beta was significantly decreased in the group of CIN 1 patients, both TNF-alpha and IL-15 showed a tendency to increase in this group.

Conclusions

Taken together, our results suggest that the significant increase within the CD4+NKG2D+ T cell population in CIN 1 patients might be the result of a chronic exposure to viral and/or pro-inflammatory factors, and concomitantly might also influence the clearance of CIN 1-type lesion.  相似文献   

3.

Background

Regulatory T cells have been implicated in the pathogenesis of COPD by the increased expression of CD25 on helper T cells along with enhanced intracellular expression of FoxP3 and low/absent CD127 expression on the cell surface.

Method

Regulatory T cells were investigated in BALF from nine COPD subjects and compared to fourteen smokers with normal lung function and nine never-smokers.

Results

In smokers with normal lung function, the expression of CD25+CD4+ was increased, whereas the proportions of FoxP3+ and CD127+ were unchanged compared to never-smokers. Among CD4+ cells expressing high levels of CD25, the proportion of FoxP3+ cells was decreased and the percentage of CD127+ was increased in smokers with normal lung function. CD4+CD25+ cells with low/absent CD127 expression were increased in smokers with normal lung function, but not in COPD, when compared to never smokers.

Conclusion

The reduction of FoxP3 expression in BALF from smokers with normal lung function indicates that the increase in CD25 expression is not associated with the expansion of regulatory T cells. Instead, the high CD127 and low FoxP3 expressions implicate a predominantly non-regulatory CD25+ helper T-cell population in smokers and stable COPD. Therefore, we suggest a smoking-induced expansion of predominantly activated airway helper T cells that seem to persist after COPD development.  相似文献   

4.

Background

Cigarette smoke is a major risk factor for chronic obstructive pulmonary disease (COPD), an inflammatory lung disorder. COPD is characterized by an increase in CD8+ T cells within the central and peripheral airways. We hypothesized that the CD8+ T cells in COPD patients have increased Toll-like receptor (TLR) expression compared to control subjects due to the exposure of cigarette smoke in the airways.

Methods

Endobronchial biopsies and peripheral blood were obtained from COPD patients and control subjects. TLR4 and TLR9 expression was assessed by immunostaining of lung tissue and flow cytometry of the peripheral blood. CD8+ T cells isolated from peripheral blood were treated with or without cigarette smoke condensate (CSC) as well as TLR4 and TLR9 inhibitors. PCR and western blotting were used to determine TLR4 and TLR9 expression, while cytokine secretion from these cells was detected using electrochemiluminescence technology.

Results

No difference was observed in the overall expression of TLR4 and TLR9 in the lung tissue and peripheral blood of COPD patients compared to control subjects. However, COPD patients had increased TLR4 and TLR9 expression on lung CD8+ T cells. Exposure of CD8+ T cells to CSC resulted in an increase of TLR4 and TLR9 protein expression. CSC exposure also caused the activation of CD8+ T cells, resulting in the production of IL-1β, IL-6, IL-10, IL-12p70, TNFα and IFNγ. Furthermore, inhibition of TLR4 or TLR9 significantly attenuated the production of TNFα and IL-10.

Conclusions

Our results demonstrate increased expression of TLR4 and TLR9 on lung CD8+ T cells in COPD. CD8+ T cells exposed to CSC increased TLR4 and TLR9 levels and increased cytokine production. These results provide a new perspective on the role of CD8+ T cells in COPD.  相似文献   

5.

Aims

To examine the effects of route of administration and activation status on the ability of dendritic cells (DC) to accumulate in secondary lymphoid organs, and induce expansion of CD8+ T cells and anti-tumor activity.

Methods

DC from bone marrow (BM) cultures were labeled with fluorochromes and injected s.c. or i.v. into naïve mice to monitor their survival and accumulation in vivo. Percentages of specific CD8+ T cells in blood and delayed tumor growth were used as readouts of the immune response induced by DC immunization.

Results

The route of DC administration was critical in determining the site of DC accumulation and time of DC persistence in vivo. DC injected s.c. accumulated in the draining lymph node, and DC injected i.v. in the spleen. DC appeared in the lymph node by 24 h after s.c. injection, their numbers peaked at 48 h and declined at 96 h. DC that had spontaneously matured in vitro were better able to migrate compared to immature DC. DC were found in the spleen at 3 h and 24 h after i.v. injection, but their numbers were low and declined by 48 h. Depending on the tumor cell line used, DC injected s.c. were as effective or more effective than DC injected i.v. at inducing anti-tumor responses. Pre-treatment with LPS increased DC accumulation in lymph nodes, but had no detectable effect on accumulation in the spleen. Pre-treatment with LPS also improved the ability of DC to induce CD8+ T cell expansion and anti-tumor responses, regardless of the route of DC administration.

Conclusions

Injection route and activation by LPS independently determine the ability of DC to activate tumor-specific CD8+ T cells in vivo.
  相似文献   

6.

Background

Respiratory syncytial virus (RSV) is the leading cause of respiratory infections in children, elderly, and immunocompromised individuals. Severe infection is associated with short- and long-term morbidity including pneumonia, recurrent wheezing, and abnormal pulmonary function, and several lines of evidence indicate that impaired adaptive immune responses during infection are critical in the pathophysiology of RSV-mediated disease. Myeloid Dendritic cells (mDCs) play a pivotal role in shaping antiviral immune responses in the respiratory tract; however, few studies have examined the interactions between RSV and individual mDC subsets. In this study, we examined the effect of RSV on the functional response of primary mDC subsets (BDCA-1+ and BDCA-3+) isolated from peripheral blood.

Methods

BDCA-1+ and BDCA-3+ mDCs were isolated from the peripheral blood of healthy adults using FACS sorting. Donor-matched BDCA-1+ and BDCA-3+ mDCs were infected with RSV at a multiplicity of infection (MOI) of 5 for 40 hours. After infection, cells were analyzed for the expression of costimulatory molecules (CD86, CD80, and PD-L1), cytokine production, and the ability to stimulate allogenic CD4+ T cell proliferation.

Results

Both BDCA-1+ and BDCA-3+ mDCs were susceptible to infection with RSV and demonstrated enhanced expression of CD86, and the inhibitory costimulatory molecules CD80 and PD-L1. Compared to BDCA-3+ mDCs, RSV-infected BDCA-1+ mDC produced a profile of cytokines and chemokines predominantly associated with pro-inflammatory responses (IL-1β, IL-6, IL-12, MIP-1α, and TNF-α), and both BDCA-1+ and BDCA-3+ mDCs were found to produce IL-10. Compared to uninfected mDCs, RSV-infected BDCA-1+ and BDCA-3+ mDCs demonstrated a reduced capacity to stimulate T cell proliferation.

Conclusions

RSV infection induces a distinct pattern of costimulatory molecule expression and cytokine production by BDCA-1+ and BDCA-3+ mDCs, and impairs their ability to stimulate T cell proliferation.The differential expression of CD86 and pro-inflammatory cytokines by highly purified mDC subsets in response to RSV provides further evidence that BDCA-1+ and BDCA-3+ mDCs have distinct roles in coordinating the host immune response during RSV infection. Findings of differential expression of PD-L1 and IL-10 by infected mDCs, suggests possible mechanisms by which RSV is able to impair adaptive immune responses.  相似文献   

7.

Background

While many of the contributing cell types and mediators of allergic asthma are known, less well understood are the factors that induce allergy in the first place. Amongst the mediators speculated to affect initial allergen sensitization and the development of pathogenic allergic responses to innocuous inhaled antigens and allergens are exogenously or endogenously generated reactive oxygen species (ROS) and reactive nitrogen species (RNS).

Scope of review

The interactions between ROS/RNS, dendritic cells (DCs), and CD4+ T cells, as well as their modulation by lung epithelium, are of critical importance for the genesis of allergies that later manifest in allergic asthma. Therefore, this review will primarily focus on the initiation of pulmonary allergies and the role that ROS/RNS may play in the steps therein, using examples from our own work on the roles of NO2 exposure and airway epithelial NF-κB activation.

Major conclusions

Endogenously generated ROS/RNS and those encountered from environmental sources interact with epithelium, DCs, and CD4+ T cells to orchestrate allergic sensitization through modulation of the activities of each of these cell types, which quantitiatively and qualitatively dictate the degree and type of the allergic asthma phenotype.

General significance

Knowledge of the effects of ROS/RNS at the molecular and cellular levels has the potential to provide powerful insight into the balance between inhalational tolerance (the typical immunologic response to an innocuous inhaled antigen) and allergy, as well as to potentially provide mechanistic targets for the prevention and treatment of asthma.  相似文献   

8.

Background aims

The immunomodulatory property of mesenchymal stromal cell (MSC) exosomes is well documented. On the basis of our previous report that MSC exosomes increased regulatory T-cell (Treg) production in mice with allogenic skin graft but not in ungrafted mice, we hypothesize that an activated immune system is key to exosome-mediated Treg production.

Methods

To test our hypothesis, MSC exosomes were incubated with mouse spleen CD4+ T cells that were activated with either anti-CD3/CD28 mAbs or allogenic antigen-presenting cell (APC)-enriched spleen CD11c+ cells to determine whether production of mouse CD4+CD25+ T cells or CD4+CD25+Foxp3+ Tregs could be induced. MSC exosomes were also administered to the lethal chimeric human-SCID mouse model of graft-versus-host disease (GVHD) in which human peripheral blood mononuclear cells were infused into irradiated NSG mice to induce GVHD.

Results

We report here that MSC exosome–induced production of CD4+CD25+ T cells or CD4+CD25+Foxp3+ Tregs from CD4+ T cells activated by allogeneic APC-enriched CD11C+ cells but not those activated by anti-CD3/CD28 mAbs. This induction was exosome- and APC dose–dependent. In the mouse GVHD model in which GVHD was induced by transplanted human APC-stimulated human anti-mouse CD4+ T cell effectors, MSC exosome alleviated GVHD symptoms and increased survival. Surviving exosome-treated mice had a significantly higher level of human CD4+CD25+CD127low/– Tregs than surviving mice treated with Etanercept, a tumor necrosis factor inhibitor.

Conclusions

MSC exosome enhanced Treg production in vitro and in vivo through an APC-mediated pathway.  相似文献   

9.

Background

The use of CD19 chimeric antigen receptor (CAR) T cells to treat B-cell malignancies has proven beneficial. Several groups use serum to produce CD19 CAR T cells. Today, ready-to-use serum-free media that require no addition of serum are commercially available. Therefore, it becomes important to evaluate the production of CD19 CAR T cells with and without the addition of serum.

Methods

T cells from buffy coats were cultured in AIM-V and TexMACS (TM) supplemented with 5% human serum (A5% and TM5%, respectively), and in TM without serum. Cells were activated with OKT3 and expanded in interleukin (IL)-2. Viral transduction was performed in RetroNectin-coated plates using the spinoculation method. CD19 CAR T cells were tested for their viability, expansion, transduction efficacy, phenotype and cytotoxicity.

Results

CD19 CAR T cells expanded in A5% and TM5% showed significantly better viability and higher fold expansion than cells expanded in TM. TM promoted the expansion of CD8+ T cells and effector phenotype of CD19 CAR T cells. The transduction efficacy and the cytotoxic function were comparable between the different media. Higher CD107a+ cells were detected in TM and TM5%, whereas higher IL-2+ and IL-17+ cells were detected in A5%. CD19 CAR exhibited co-expression of inhibitory receptors such as TIM-3+LAG-3+ and/or TIM-3+PD-1+.

Conclusion

Our results indicate that serum supplementation promotes better CD19 CAR T-cell expansion and viability in vitro. CD19 CAR T cells produced in TM medium showed lower CD4/CD8 ratio, which warrants further evaluation in clinical settings. Overall, the choice of culture medium impacts CD19 CAR T-cell end product.  相似文献   

10.

Background

The proven immunomodulatory and immune system activating properties of Ecklonia cava (E. cava) have been attributed to its plentiful polysaccharide content. Therefore, we investigated whether the sulfated polysaccharide (SP) of E. cava specifically activates the protein kinases (MAPKs) and nuclear factor-κB (NFκB) to incite immune responses.

Methods

To assess immune responsiveness, lymphocytes were isolated from spleens of ICR mice and cultured with SP and its inhibitors. Assays included 3H-thymidine incorporation, flow cytometry, real time polymerase chain reaction (rtPCR), enzyme linked immunosorbent assay (ELISA), intracellular cytokine assay, Western blot, and electrophoretic mobility shift assay (EMSA).

Results

SP dose-dependently increased the proliferation of lymphocytes without cytotoxicity. In particular, SP markedly enhanced the proliferation and differentiation of CD3+ mature T cells and CD45R/B220+ pan B cells. Additionally, SP increased the expression and/or production of IL-2, IgG1a, and IgG2b compared to that in untreated cells. The subsequent application of JNK (SP600125), NFκB (PDTC), and serine protease (TPCK) inhibitors significantly inhibited the proliferation and IL-2 production of SP-treated lymphocytes as well as the phosphorylation of JNK and IκB, the activation of nuclear NFκB p65, and binding of NFκB p65 DNA. Moreover, co-application of both JNK and NFκB inhibitors completely blocked the proliferation of lymphocytes even in the presence of SP.

Conclusion

These results suggest that SP induced T and B cell responses via both JNK and NFκB pathways.

General significance

The effect of SP on splenic lymphocyte activation was assayed here for the first time and indicated the underlying functional mechanism.  相似文献   

11.

Background

The extracellular ATP-gated cation channel, P2X7 receptor, has an emerging role in neoplasia, however progress in the field is limited by a lack of malignant cell lines expressing this receptor.

Methods

Immunofluorescence labelling and a fixed-time ATP-induced ethidium+ uptake assay were used to screen a panel of human malignant cell lines for the presence of functional P2X7. The presence of P2X7 was confirmed by RT-PCR, immunoblotting and pharmacological approaches. ATP-induced cell death was measured by colourimetric tetrazolium-based and cytofluorometric assays. ATP-induced CD23 shedding was measured by immunofluorescence labelling and ELISA.

Results

RPMI 8226 multiple myeloma cells expressed P2X7 mRNA and protein, as well as P2X1, P2X4 and P2X5 mRNA. ATP induced ethidium+ uptake into these cells with an EC50 of ~ 116 μM, and this uptake was reduced in the presence of extracellular Ca2+ and Mg2+. The P2X7 agonist 2'- and 3'-0(4-benzoylbenzoyl) ATP, but not UTP, induced ethidium+ uptake. ATP-induced ethidium+ uptake was impaired by the P2X7 antagonists, KN-62 and A-438079. ATP induced death and CD23 shedding in RPMI 8226 cells, and both processes were impaired by P2X7 antagonists. The metalloprotease antagonists, BB-94 and GM6001, impaired ATP-induced CD23 shedding but not ethidium+ uptake.

Conclusions

P2X7 receptor activation induces cell death and CD23 shedding in RPMI 8226 cells.

General significance

RPMI 8226 cells may be useful to study the role of P2X7 in multiple myeloma and B-lymphocytes.  相似文献   

12.

Aims

Atopic dermatitis (AD) is a chronic and relapsing inflammatory dermatitis characterized by pruritic and eczematous skin lesions. Here, we investigated the therapeutic effect of the fruit flavonoid naringenin on DNFB induced atopic dermatitis mice model.

Main methods

AD-like skin lesion was induced by repetitive skin contact with DNFB in NC/Nga mice and the effects of the fruit flavonoid naringenin were evaluated on the basis of histopathological findings of skin, ear swelling and cytokine production of CD4+T cells.

Key findings

Intraperitoneal injection of naringenin for one week after DNFB challenge significantly lowered ear swelling and improved back skin lesions. In addition, naringenin significantly suppressed production of interferon-gamma (IFN-γ) by activated CD4+ T cells and serum IgE level. Furthermore, naringenin reduced DNFB-induced infiltration of eosinophils, mast cells, CD4+ T cells, and CD8+ T cells in skin lesions.

Significance

Naringenin may suppress the development of AD-like skin lesions in DNFB-treated NC/Nga mice by reducing IFN-γ production of activated CD4+ T cells, serum IgE levels and infiltration of immune cells to skin lesion.  相似文献   

13.

Purpose

CD4+CD25+ regulatory T (Treg) cells are present in increased numbers in patients with advanced cancer and CD25+ T cell depletion potentiates tumour immunity in animal models. The aim of this study was to assess the feasibility and safety of adoptive transfer of CD25+ depleted autologous T cells in patients with advanced renal cell carcinoma and to examine resulting changes in lymphocyte subsets.

Patients and methods

Six patients with advanced renal cell carcinoma underwent leukapheresis followed by conditioning chemotherapy with cyclophosphamide and fludarabine. The autologous leukapheresis product was depleted of CD25+ cells using CliniMACS® System then re-infused into the patient.

Results

Efficient CD25+ depletion from all leukapheresis products was achieved and 0.55–5.87 × 107/kg CD3+ cells were re-infused. Chemotherapy related haematological toxicity was observed, but blood counts recovered in all patients allowing discharge after a mean inpatient stay of 21 days. One patient subsequently developed a rapidly progressive neurological syndrome. A transient reduction in CD25+ subset was noted in the peripheral blood of 5 out of 6 patients with evidence of increased T cell responses to PHA in 4 out of 6 patients. One patient showed increased specific proliferative responses to the tumour associated antigen h5T4 coinciding with the nadir of Treg cells.

Conclusions

Given the transient nature of the reduction in CD25+ subset and the observed toxicity there is a need to explore further strategies to improve the safety and efficacy of this approach. Nevertheless, the results provide proof of concept in potentiation of tumour antigen T cell responses when Treg cell levels are depleted.
  相似文献   

14.
15.
Allogeneic bone marrow transplantation (BMT) has become a therapy of choice for the treatment of certain malignancies and hematopoietic disorders. However, immunodeficiencies following BMT continue to cause significant morbidity and mortality. We have compared the T cell receptor (TCR) repertoire of BMT patients and healthy control individuals by staining peripheral blood mononuclear cells with fluorochrome-labeled TCR-specific antibodies. Several patients exhibited a biased pattern of TCR expression atypical of the healthy controls, yet no particular TCR bias characterized all patients. For example, we found that 2%–8% of T cell from healthy individuals expressed the V19 TCR. One BMT patient exhibited V19 expression on more than 60% of peripheral T cells, while additional patients expressed V19 on less than 1% of T cells. The patients with the most extreme skewing of TCR types suffered from graft-versus-host disease. The causes of skewed TCR V expression patterns in BMT patients are not fully understood, yet some researchers have suggested that an oligoclonal expansion of CD8+ T cell populations may be largely responsible. To test this hypothesis, we examined the TCR V repertoire of CD4+ and CD8+ T cell populations. We found that biased V expression characterized both CD4+ and CD8+ T cell populations, sometimes within a single individual. Thus, therapies directed toward CD8+ T cells alone may not fully correct repertoire abnormalities following BMT.  相似文献   

16.

Background

In vivo phosphorylation of sphingosine analogs with their ensuing binding and activation of their cell-surface sphingosine-1-phosphate receptors is regarded as the main immunomodulatory mechanism of this new class of drugs. Prophylactic treatment with sphingosine analogs interferes with experimental asthma by impeding the migration of dendritic cells to draining lymph nodes. However, whether these drugs can also alleviate allergic airway inflammation after its onset remains to be determined. Herein, we investigated to which extent and by which mechanisms the sphingosine analog AAL-R interferes with key features of asthma in a murine model during ongoing allergic inflammation induced by Dermatophagoides pteronyssinus.

Methods

BALB/c mice were exposed to either D. pteronyssinus or saline, intranasally, once-daily for 10 consecutive days. Mice were treated intratracheally with either AAL-R, its pre-phosphorylated form AFD-R, or the vehicle before every allergen challenge over the last four days, i.e. after the onset of allergic airway inflammation. On day 11, airway responsiveness to methacholine was measured; inflammatory cells and cytokines were quantified in the airways; and the numbers and/or viability of T cells, B cells and dendritic cells were assessed in the lungs and draining lymph nodes.

Results

AAL-R decreased airway hyperresponsiveness induced by D. pteronyssinus by nearly 70%. This was associated with a strong reduction of IL-5 and IL-13 levels in the airways and with a decreased eosinophilic response. Notably, the lung CD4+ T cells were almost entirely eliminated by AAL-R, which concurred with enhanced apoptosis/necrosis in that cell population. This inhibition occurred in the absence of dendritic cell number modulation in draining lymph nodes. On the other hand, the pre-phosphorylated form AFD-R, which preferentially acts on cell-surface sphingosine-1-phosphate receptors, was relatively impotent at enhancing cell death, which led to a less efficient control of T cell and eosinophil responses in the lungs.

Conclusion

Airway delivery of the non-phosphorylated sphingosine analog, but not its pre-phosphorylated counterpart, is highly efficient at controlling the local T cell response after the onset of allergic airway inflammation. The mechanism appears to involve local induction of lymphocyte apoptosis/necrosis, while mildly affecting dendritic cell and T cell accumulation in draining lymph nodes.  相似文献   

17.

Background

The effect of indomethacin (INDO) on Ca2 + mobilization, cytotoxicity, apoptosis and caspase activation and the potential protective effect of quercetin (QUE), resveratrol (RES) and rutin (RUT) were determined in Caco-2 cells.

Methods

Caco-2 cells were incubated with INDO in the presence or absence of QUE, RES or RUT. The concentrations of Ca2 + in the cytosol (Fluo-3 AM) and mitochondria (Rhod-2 AM) were determined as well as the cytotoxicity (MTT reduction and LDH leakage), apoptosis (TUNEL) and caspase-3 and 9 activities.

Results

INDO promoted Ca2 + efflux from the endoplasmic reticulum (ER), resulting in an early, but transient, increment of cytosolic Ca2 + at 3.5 min, followed by a subsequent increment of intra-mitochondrial Ca2 + at 24 min. INDO also induced cytotoxicity, apoptosis, and increased caspase activities and cytochrome c release. All these alterations were prevented by the inhibitors of the IP3R and RyR receptors, 2-Aminoethoxydiphenyl borate (2-APB) and dantrolene. QUE was the most efficient polyphenol in preventing Ca2 + mobilization induced by INDO and all of its consequences including cytotoxicity and apoptosis.

Conclusions

In Caco-2 cells, INDO stimulates ER Ca2 + mobilization, probably through the activation of IP3R and RyR receptors, and the subsequent entry of Ca2 + into the mitochondria. Polyphenols protected the cells against the Ca2 + mobilization induced by INDO and its consequences on cytotoxicity and apoptosis.

General significance

These results confirm the possibility of using polyphenols and particularly QUE for the protection of the gastroduodenal mucosa in subjects consuming NSAIDs.  相似文献   

18.
19.
20.

Background

Tolerogenic dendritic cells (tDCs) play important roles in immune tolerance, autoimmune disease, tissue transplantation, and the tumor micro-environment. Factors that induce tDCs have been reported, however the intracellular mechanisms involved are rarely discussed.

Methods

Circulating CD14+CD16+ of breast cancer patients and induced CD14+CD16+ DCs were identified as tDCs by treating CD14+ monocytes with galectin-1 and cancer cell-derived medium combined with IL-4 and GM-CSF. In addition, the 4T1 breast cancer syngeneic xenograft model was used to investigate the effect of galectin-1 in vivo.

Results

The CD14+CD16+ tDC population in the breast cancer patients was comparatively higher than that in the healthy donors, and both the MDA-MB-231 conditioned medium and galectin-1 could induce tDC differentiation. In a BALB/c animal model, the 4T1 breast cancer cell line enhanced IL-10 expression in CD11c+ DCs which was down-regulated after knocking down the galectin-1 expression of 4T1 cells. Analysis of galectin-1 interacting proteins showed that myosin IIa was a major target of galectin-1 after internalization through a caveolin-dependent endocytosis. Myosin IIa specific inhibitor could diminish the effects of galectin-1 on monocyte-derived tDCs and also block the 4T1 cell induced CD11c+/Ly6G+/IL-10+ in the BALB/c mice.

Conclusions

Galectin-1 can induce tDCs after internalizing into CD14+ monocytes through the caveolae-dependent pathway and activating myosin IIa. For the breast cancer patients with a high galectin-1 expression, blebbistatin and genistein show potential in immune modulation and cancer immunotherapy.

General significance

Myosin IIa activation and galectin-1 endocytosis are important in tumor associated tDC development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号