首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 30 毫秒
1.
Reduced genetic diversity due to founder effects often is expected for invasive populations. The present study examined two nuclear gene regions and one mitochondrial gene to evaluate the origins and genetic diversity of Gemma gemma, a ‘stow-away’ that was introduced to California more than 100 years ago with the importation of the Eastern oyster, Crassostrea virginica, from the United States’ Atlantic coast. A previous investigation involving mitochondrial DNA cytochrome-c-oxidase subunit I sequences reported no significant difference in haplotype diversity between the native and introduced populations; however, estimates of allelic (or haplotypic) variability are insensitive to losses of rare alleles that may accompany founder events and population bottlenecks. Estimates of allele richness and the distribution of rare alleles provide more sensitive indicators of such events. The present investigation of introduced and potential source populations identified lower allele richness and number of singleton alleles in California samples. Atlantic coast Gemma exhibit a sharp phylogeographic transition between northeastern (New York through New England) and mid-Atlantic (southern New Jersey through Virginia) subpopulations, which appear latitudinally inverted for the California Gemma populations. These genetic results, and information from the transportation history of the Eastern oyster, help to clarify processes involved in the introduction of this invasive species.  相似文献   

2.
Introduction of individuals from multiple sources could create opportunities for hybridization between previously isolated lineages, which may impact on the invasion process. Identifying the phylogeographic origin of introduced populations is therefore an important task to further test the causes and consequences of human-mediated translocations. The common wall lizard (Podarcis muralis) shows a strong phylogeographic structure as a result of past isolation in glacial refugia, but it has also been commonly introduced outside of its native range. Here we analysed 655 base pairs (bp) of the cytochrome b sequence from 507 individuals from 23 introduced populations of P. muralis in England. We identified 12 unique haplotypes in the introduced populations that were nested into five native geographically distinct clades with genetic divergences ranging from 2.1 to 5.7 %. Multiple clade origin was common within populations, with a maximum of three different haplotype clades being represented within a single population. The genetic data are consistent with a scenario whereby initial establishment was a result of translocation of animals from their native range, whereas more recent establishment (i.e. since the mid-1980s) is the result of translocations of animals from previously established non-native populations. However, this requires further study. Overall, our results show that human introductions have created substantial opportunities for hybridization between genetically and phenotypically distinct lineages, which may have important consequences for the establishment success and long-term viability of introduced wall lizard populations.  相似文献   

3.
In a survey of ecotypes for longidorids, primarily from the rhizosphere hardwood trees growing in sandy soil along stream banks, 828 soil samples were collected from 37 Arkansas counties in 1999-2001. Eight populations of Longidorus breviannulatus were identified from the Arkansas survey samples. A total of 19 populations from California, Illinois, Iowa, Kansas, Michigan, Nebraska, New Jersey, New York, and Wisconsin were identified from the collection of the second author. A few males were found in New York and Nebraska populations and are described herein. Seven populations of L. fragilis were identified in the Arkansas survey samples, and one population was found from Indiana. Four juvenile stages of L. fragilis are present, and data are given for them herein.  相似文献   

4.
The biological invasion of the lizard Anolis sagrei provides an opportunity to study evolutionary mechanisms that produce morphological differentiation among non-native populations. Because the A. sagrei invasion represents multiple native-range source populations, differential admixture as well as random genetic drift and natural selection, could shape morphological evolution during the invasion. Mitochondrial DNA (mtDNA) analyses reveal seven distinct native-range source populations for 10 introduced A. sagrei populations from Florida, Louisiana and Texas (USA), and Grand Cayman, with 2-5 native-range sources contributing to each non-native population. These introduced populations differ significantly in frequencies of haplotypes from different native-range sources and in body size, toepad-lamella number, and body shape. Variation among introduced populations for both lamella number and body shape is explained by differential admixture of various source populations; mean morphological values of introduced populations are correlated with the relative genetic contributions from different native-range source populations. The number of source populations contributing to an introduced population correlates with body size, which appears independent of the relative contributions of particular source populations. Thus, differential admixture of various native-range source populations explains morphological differences among introduced A. sagrei populations. Morphological differentiation among populations is compatible with the hypothesis of selective neutrality, although we are unable to test the hypothesis of interdemic selection among introductions from different native-range source populations.  相似文献   

5.
Investigating the origins of invasive populations provides insight into the evolutionary and anthropogenic factors underlying invasions, and can inform management decisions. Invasive species introduced for horticultural purposes often have complex origins typified by multiple introductions of species, cultivars, and genotypes, and interspecific and intraspecific hybridizations in introduced ranges. Such complex introduction histories may result in complex genetic signatures in the invaded range, making inferences about origins difficult, particularly when all putative sources cannot be sampled. In this study, we inferred the origins of the invasive French broom complex in California using 12 nuclear microsatellite markers. We characterized the genetic diversity and population structure of invasive and horticultural brooms in their invaded range in California and of Genista monspessulana in its native Mediterranean range. Overall, no significant differences in allelic richness, observed heterozygosity, inbreeding, or genetic structure were observed between the invaded and native ranges, but differences existed among populations within ranges. Bayesian STRUCTURE analysis revealed three genetic clusters in the French broom complex. Nearly all native G. monspessulana assigned highly to a single cluster. Many invasives assigned to a second cluster that contained Genista canariensis, Genista stenopetala, and ornamental sweet broom, and the remaining invasives assigned to a third cluster that also contained some G. monspessulana individuals from Sardinia and Corsica. Admixture between the second and third clusters was detected. Approximate Bayesian Computation analysis of six alternative scenarios supported the hypothesis that some invasive French broom is derived from an unsampled population branching from ornamental sweet broom. A combination of factors, including multiple introductions, escapes from cultivation, and inter-taxon hybridization, likely contribute to the invasive success of French broom in California and may have important implications for management, in particular biological control.  相似文献   

6.
Aim Historical information about source populations of invasive species is often limited; therefore, genetic analyses are used. We compared inference about source populations from historical and genetic data for the oyster‐associated clam, Gemma gemma that invaded California from the USA Atlantic coast. Location Mid‐Atlantic (North Carolina, Maryland), Northeastern (New Jersey, New York, Massachusetts) and the California coasts (Elkhorn Slough, San Francisco Bay, Bolinas Lagoon, Tomales Bay, Bodega Harbor). Methods The documented history of transplantation of Eastern oysters to California was reviewed. Cytochrome c oxidase subunit I (COI) sequences from recent and archived clams were examined in a haplotype network. We used AMOVA to detect geographic genetic structure and a permutation test for significant reductions in diversity. Results Chesapeake Bay oysters were transplanted to New York prior to shipment to San Francisco Bay and from there to peripheral bays. Gemma in the Northeastern and Mid‐Atlantic regions were genetically differentiated. In California, populations in Bodega Harbor and Tomales Bay were genetically similar to those in the Mid‐Atlantic area while clams in San Francisco Bay, Elkhorn Slough and Bolinas Lagoon resembled populations in the Northeastern region. In California, genetic variation was not highest in San Francisco Bay despite greater magnitude of oyster plantings. Haplotypes varied over time in native and introduced populations. Main Conclusions Historical records and inferences from genetics agree that both Northeastern and Mid‐Atlantic regions were sources for Gemma in California. Only complex genetic hypotheses reconcile the strong segregation of haplotypes in California to the historical evidence of mixing in their proximate source (New York). These hypotheses include sorting of mixtures of haplotypes or selection in non‐native areas. Haplotype turnover in San Francisco and Massachusetts samples over time suggests that the sorting hypothesis is plausible. We suggest, however, that Gemma was introduced independently and recently to Tomales Bay and Bodega Harbor.  相似文献   

7.
Whether intentionally or accidentally introduced, exotic species have the capacity to dramatically disrupt native communities. In central California, tiger salamanders (Ambystoma tigrinum) have been introduced as a by-product of the sport fishing bait industry. Some of these introductions are relatively well known and have resulted in the formation of hybrids with the imperiled native California tiger salamander (A. californiense). Other populations of A. tigrinum, particularly in the northern and eastern parts of the state, remain poorly characterized and are present in regions where relictual amphibian populations of other species have persisted, suggesting that these might be relictual, native A. tigrinum. We used genetic sequence data to determine the provenance of all known extralimital A. tigrinum populations in California and adjacent Oregon and Nevada through comparison with reference samples from the native range of A. tigrinum. Our results suggest that A. tigrinum have been introduced in Northern California, Southern California and the Sierra Nevada, originating from multiple sources across the Great Plains of the US. Furthermore, two populations near the California-Oregon border are most closely related to A. tigrinum populations from Washington and Oregon and may represent native tiger salamander lineages.  相似文献   

8.
Jacobaea vulgaris (Asteraceae) is a species of Eurasian origin that has become a serious non-indigenous weed in Australia, New Zealand, and North America. We used neutral molecular markers to (1) test for genetic bottlenecks in invasive populations and (2) to investigate the invasion pathways. It is for the first time that molecular markers were used to unravel the process of introduction in this species.The genetic variation of 15 native populations from Europe and 16 invasive populations from Australia, New Zealand and North America were compared using the amplified fragment length polymorphisms (AFLP's). An analysis of molecular variance showed that a significant part (10%) of the total genetic variations between all individuals could be explained by native or invasive origin.Significant among-population differentiation was detected only in the native range, whereas populations from the invasive areas did not significantly differ from each other; nor did the Australian, New Zealand and North American regions differ within the invasive range. The result that native populations differed significantly from each other and that the amount of genetic variation, measured as the number of polymorphic bands, did not differ between the native and invasive area, strongly suggests that introductions from multiple source populations have occurred. The lack of differentiation between invasive regions suggests that either introductions may have occurred from the same native sources in all invasive regions or subsequent introductions took place from one into another invasive region and the same mix of genotypes was subsequently introduced into all invasive regions.An assignment test showed that European populations from Ireland, the Netherlands and the United Kingdom most resembled the invasive populations.  相似文献   

9.
Dengue fever is among the most widespread vector-borne infectious diseases. The primary vector of dengue is the Aedes aegypti mosquito. Ae. aegypti is prevalent in the tropics and sub-tropics and is closely associated with human habitats outside its native range of Africa. While long established in the southeastern United States of America where dengue is re-emerging, breeding populations have never been reported from California until the summer of 2013. Using 12 highly variable microsatellite loci and a database of reference populations, we have determined that the likely source of the California introduction is the southeastern United States, ruling out introductions from abroad, from the geographically closer Arizona or northern Mexico populations, or an accidental release from a research laboratory. The power to identify the origin of new introductions of invasive vectors of human disease relies heavily on the availability of a panel of reference populations. Our work demonstrates the importance of generating extensive reference databases of genetically fingerprinted human-disease vector populations to aid public health efforts to prevent the introduction and spread of vector-borne diseases.  相似文献   

10.
Genetic variation can be used to determine routes of introduction of non-native species and whether introduced populations lost variation during establishment. The present study sought to determine whether multiple, geographically isolated non-native populations of the green mussel, Perna viridis, were the product of a stepping stone expansion of a single introduction or from multiple independent introductions from the native range. Measurements of genetic variation were compared among five introduced populations and three populations from within the native range. We sequenced 650 bp of the mitochondrial gene cytochrome oxidase I from 280 samples from five introduced populations and another 190 samples from three native populations. Haplotype frequencies of all introduced populations were not significantly different from each other, but virtually all populations differed from samples taken from the native range. Measurements of genetic variation tended to suggest that introduced populations had less variation than most native populations and there was no evidence for admixture in any of the introduced populations. The genetic data and Monte Carlo simulations both provide compelling evidence of a stepping-stone pattern of introduction of P. viridis from the native range to Trinidad, and from Trinidad to other locations in the Caribbean and United States. The lack of genetic variation in introduced populations suggests that the initial introduction was relatively small and the lack of admixture suggests a single original source population.  相似文献   

11.
Senecio pterophorus (Compositae) is a perennial shrub native to eastern South Africa that was introduced into the Western Cape in South Africa and Australia approximately 100 years ago and into Europe (Italy and Spain) more than 25–30 years ago. In this study, the aims were to unravel the putative sources of the introduced populations and identify the changes in genetic diversity after invasion using molecular markers and phylogeographic and population genetic analyses. We sampled the entire area of distribution for S. pterophorus extensively. Based on the results, three lineages were established along a latitudinal and climatic gradient in the native range (south, central, central/north) with high levels of admixture. Multiple, independent introductions occurred in the four invaded ranges. The central/northern lineage (humid climate) was the primary source for all of the invaded regions (with drier climates), although a secondary role was revealed for the southern lineage in the Western Cape and the central/northern lineage in Australia and Spain. The genetic diversity was slightly lower in the Spanish and Australian populations than that in the native populations. A variety of demographic and genetic processes affected the amount and structure of genetic diversity in the invaded areas, including multiple introductions and admixture (Western Cape, Australia and Spain) as well as pre-invasive hybridization (Italy). The patterns of dispersion support a hypothesis of rapid evolution of S. pterophorus after invasion in response to novel climatic conditions.  相似文献   

12.
Downie DA 《Molecular ecology》2002,11(10):2013-2026
Range expansions through human introductions have increased with global commerce and have led to the extinction of native species, alterations in community structure and pest status of the invasive species. Inferring the evolutionary history of invasive species can help to build a firmer footing for management tactics. This study used mitochondrial DNA (mtDNA) sequence comparisons of samples collected from the native and introduced ranges of a pest herbivore of cultivated grapes, grape phylloxera (Daktulosphaira vitifoliae Fitch, Phylloxeridae) to infer the sources and pattern of introductions into worldwide viticulture. Introductions into viticulture from its native North American range first occurred in the mid-19th century. The pattern of spread has suggested a focus of introduction into France, but independent introductions may have occurred elsewhere. The results show that the introduced population represents a limited subsample of the native genetic diversity. The data suggest that most grape phylloxera in viticulture, including all European, have originated in the northeastern USA where the grape species Vitis riparia dominates. There was evidence for independent introductions into South Africa and California. Most California haplotypes were most closely related to native grape phylloxera from the Atlantic Coast on V. vulpina. It is likely that subsequent spread from California into Australia, New Zealand and Peru has occurred.  相似文献   

13.
Non-indigenous species (NIS) are species living outside their historic or native range. Invasive NIS often cause severe environmental impacts, and may have large economical and social consequences. Elodea (Hydrocharitaceae) is a New World genus with at least five submerged aquatic angiosperm species living in fresh water environments. Our aim was to survey the geographical distribution of cpDNA haplotypes within the native and introduced ranges of invasive aquatic weeds Elodea canadensis and E. nuttallii and to reconstruct the spreading histories of these invasive species. In order to reveal informative chloroplast (cp) genome regions for phylogeographic analyses, we compared the plastid sequences of native and introduced individuals of E. canadensis. In total, we found 235 variable sites (186 SNPs, 47 indels and two inversions) between the two plastid sequences consisting of 112,193 bp and developed primers flanking the most variable genomic areas. These 29 primer pairs were used to compare the level and pattern of intraspecific variation within E. canadensis to interspecific variation between E. canadensis and E. nuttallii. Nine potentially informative primer pairs were used to analyze the phylogeographic structure of both Elodea species, based on 70 E. canadensis and 25 E. nuttallii individuals covering native and introduced distributions. On the whole, the level of variation between the two Elodea species was 53% higher than that within E. canadensis. In our phylogeographic analysis, only a single haplotype was found in the introduced range in both species. These haplotypes H1 (E. canadensis) and A (E. nuttallii) were also widespread in the native range, covering the majority of native populations analyzed. Therefore, we were not able to identify either the geographic origin of the introduced populations or test the hypothesis of single versus multiple introductions. The divergence between E. canadensis haplotypes was surprisingly high, and future research may clarify mechanisms that structure native E. canadensis populations.  相似文献   

14.
Establishing the introduction pathways of alien species is a fundamental task in invasion biology. The common wall lizard, Podarcis muralis, has been widely introduced outside of its native range in both Europe and North America, primarily through escaped pets or deliberate release of animals from captive or wild populations. Here, we use Bayesian clustering, approximate Bayesian computation (ABC) methods and network analyses to reconstruct the origin and colonization history of 23 non‐native populations of wall lizards in England. Our analyses show that established populations in southern England originate from at least nine separate sources of animals from native populations in France and Italy. Secondary introductions from previously established non‐native populations were supported for eleven (47%) populations. In contrast to the primary introductions, secondary introductions were highly restricted geographically and appear to have occurred within a limited time frame rather than being increasingly common. Together, these data suggest that extant wall lizard populations in England are the result of isolated accidental and deliberate releases of imported animals since the 1970s, with only local translocation of animals from established non‐native populations. Given that populations introduced as recently as 25 years ago show evidence of having adapted to cool climate, discouraging further translocations may be important to prevent more extensive establishment on the south coast of England.  相似文献   

15.

Background

The early stages of biological invasions are rarely observed, but can provide significant insight into the invasion process as well as the influence vectors have on invasion success or failure.

Methodology/Principal Findings

We characterized three newly discovered populations of an introduced gastropod, Littorina littorea (Linné, 1758), in California, USA, comparing them to potential source populations in native Europe and the North American East Coast, where the snail is also introduced. Demographic surveys were used to assess spatial distribution and sizes of the snail in San Francisco and Anaheim Bays, California. Mitochondrial DNA was sequenced and compared among these nascent populations, and various populations from the North American East Coast and Europe, to characterize the California populations and ascertain their likely source. Demographic and genetic data were considered together to deduce likely vectors for the California populations. We found that the three large California L. littorea populations contained only adult snails and had unexpectedly high genetic diversity rather than showing an extreme bottleneck as typically expected in recent introductions. Haplotype diversity in Californian populations was significantly reduced compared to European populations, but not compared to East Coast populations. Genetic analyses clearly suggested the East Coast as the source region for the California introductions.

Conclusions and Significance

The California L. littorea populations were at an early, non-established phase of invasion with no evidence of recruitment. The live seafood trade is the most likely invasion vector for these populations, as it preferentially transports large numbers of adult L. littorea, matching the demographic structure of the introduced California L. littorea populations. Our results highlight continued operation of live seafood trade vectors and the influence of vectors on the demographic and genetic structure of the resulting populations, especially early stages of the invasion process.  相似文献   

16.
The northern raccoon (Procyon lotor) is an invasive species in Europe and poses a serious threat to indigenous biodiversity and human health. Raccoons can also cause important economic losses. Despite the risks, no comprehensive report on the raccoon status in Europe is available. In this article, I estimate the raccoon invaded range and population trends and evaluate the impacts on native ecosystems and wildlife to (1) determine the raccoon status and discuss the invasion process on a continental scale, (2) identify the threats, and (3) propose guidelines for designing management strategies for raccoon populations. Raccoons have been introduced in Europe since the late 1920s but raccoon population growth and range expansion rates have been increasing since 1970s after a lag period. In addition, recent introductions through the pet trade have resulted in the establishment of new feral raccoon populations. Therefore, the raccoon spatial distribution is a result of multiple introductions and range expansion from the primary raccoon populations in central and eastern Europe over the last 40 years. First individuals escaped from fur farms or were released for hunting. Nowadays, the pet trade is the major introduction pathway. Raccoons have adapted to different environments, even urban and residential areas. In central Europe, the raccoon population has increased by over 300% and grows at exponential rates since the 1990s. The raccoon is out of control in Europe because of increasing population trends, range expansion and no efficient management strategy. However, no impacts have still been reported through an evidence-based approach. There is a pressing need for a long-term management strategy of raccoon populations in Europe.  相似文献   

17.
Global change is predicted to alter environmental conditions for populations in numerous ways; for example, invasive species often experience substantial shifts in climatic conditions during introduction from their native to non-native ranges. Whether these shifts elicit a phenotypic response, and how adaptation and phenotypic plasticity contribute to phenotypic change, are key issues for understanding biological invasions and how populations may respond to local climate change. We combined modeling, field data, and a laboratory experiment to test for changing thermal tolerances during the introduction of the tropical lizard Anolis cristatellus from Puerto Rico to Miami, Florida. Species distribution models and bioclimatic data analyses showed lower minimum temperatures, and greater seasonal and annual variation in temperature for Miami compared to Puerto Rico. Two separate introductions of A. cristatellus occurred in Miami about 12 km apart, one in South Miami and the other on Key Biscayne, an offshore island. As predicted from the shift in the thermal climate and the thermal tolerances of other Anolis species in Miami, laboratory acclimation and field acclimatization showed that the introduced South Miami population of A. cristatellus has diverged from its native-range source population by acquiring low-temperature acclimation ability. By contrast, the introduced Key Biscayne population showed little change compared to its source. Our analyses predicted an adaptive response for introduced populations, but our comparisons to native-range sources provided evidence for thermal plasticity in one introduced population but not the other. The rapid acquisition of thermal plasticity by A. cristatellus in South Miami may be advantageous for its long-term persistence there and expansion of its non-native range. Our results also suggest that the common assumption of no trait variation when modeling non-native species distributions is invalid.  相似文献   

18.
Okada M  Ahmad R  Jasieniuk M 《Molecular ecology》2007,16(23):4956-4971
International trade in horticultural plants is a major pathway of introduction of invasive species. Pampas grass (Cortaderia selloana) is an invasive species of horticultural origin that is native to South America but cultivated as an ornamental in regions with Mediterranean climates worldwide. To gain insight into the introduction history of invasive populations in California, we analysed microsatellite marker variation in cultivated and invasive C. selloana. We sampled 275 cultivated plants from diverse sources and 698 invasive plants from 33 populations in four geographical regions of California. A model-based Bayesian clustering analysis identified seven distinct gene pools in cultivated C. selloana. Probabilities of assignment of invasive individuals to cultivated gene pools indicated that two gene pools accounted for the genomic origin of 78% of the invasive C. selloana sampled. Extensive admixture between cultivated source gene pools was detected within invasive individuals. Sources of admixed invasive individuals are probably landscape plantings. Consistent with the Bayesian assignment results indicating that multiple cultivated gene pools and landscape plantings are probable sources of invasive populations, F(ST) and neighbour-joining clustering analyses indicated multiple escapes from shared sources in each geographical region. No isolation by distance or geographical trend in reduction of genetic diversity was evident. Furthermore, a generally random and discontinuous distribution of proportional assignments of invasive populations to cultivated gene pools suggests that introductions occurred recurrently within each geographical region. Our results strongly suggest that dispersal through local landscape plantings has contributed to the range expansion of invasive C. selloana in California.  相似文献   

19.

Invasive populations of green iguanas (Iguanidae: Iguana iguana) are widely established beyond their native Central, South American, and Lesser Antillean range in various islands of the Pacific, Florida USA, and in the Greater Caribbean Region. Although widespread, information about these invasions is scarce. Here we determine the origin of invasive populations of green iguanas in Puerto Rico, Fiji, The Caymans, Florida USA, The Dominican Republic, the US Virgin Islands (USVI) of St. Thomas and St. Croix, and a U.S.A pet store. We sampled 120 individuals from these locations and sequenced one mitochondrial (ND4) and two nuclear (PAC and NT3) loci. We also include a preliminary characterization of population structure throughout Puerto Rico using six microsatellite loci to genotype individuals across 10 sampling sites. Comparing the genealogical relationships of all our samples to published sequencing data from the native range, we found that sampled populations were largely a product of populations from Colombia and El Salvador; two countries with multiple, industrial-size pet iguana farming operations. Notably, we found that haplotypes detected exclusively in the USVI and Puerto Rico’s outlying island of Vieques are closely linked to green iguanas native to Saba and Montserrat (Lesser Antilles); a clade not reported in the pet trade. Our population genetic analyses did not reveal isolation among sampling sites in Puerto Rico, rather the evidence supported admixture across the island. This study highlights the roles of the pet trade and lack of regulation in the spread of green iguanas beyond their native range.

  相似文献   

20.
Although ecological differences between native and introduced ranges have been considered to drive rapid expansion of invasive species, recent studies suggest that rapid evolutionary responses of invasive species to local environments may also be common. Such expansion across heterogeneous environments by adaptation to local habitats requires genetic variation. In this study, we investigated the source and role of standing variation in successful invasion of heterogeneous abiotic environments in a self-incompatible species, Lotus corniculatus. We compared phenotypic and genetic variation among cultivars, natives, and introduced genotypes, and found substantial genetic variation within both native and introduced populations. Introduced populations possessed genotypes derived from both cultivars and native populations, and had lower population differentiation, indicating multiple sources of introduction and population admixture among the sources in the introduced range. Both cultivars and introduced populations had similarly outperforming phenotypes on average, with increased biomass and earlier flowering compared with native populations, but those phenotypes were within the range of the variation in phenotypes of the native populations. In addition, clinal variation within introduced populations was detected along a climatic gradient. Multiple introductions from different sources, including cultivars, may have contributed to pre-adaptive standing variation in the current introduced populations. We conclude that both introduction of cultivar genotypes and natural selection in local environments contributed to current patterns of genetic and phenotypic variation observed in the introduced populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号