首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
P2U/2Y-receptors elicit multiple signaling in Madin-Darby canine kidney (MDCK) cells, including a transient increase of [Ca2+] i , activation of phospholipases C (PLC) and A2 (PLA2), protein kinase C (PKC) and mitogen-activated protein kinase (MAPK). This study examines the involvement of these signaling pathways in the inhibition of Na+,K+,Cl cotransport in MDCK cells by ATP. The level of ATP-induced inhibition of this carrier (∼50% of control values) was insensitive to cholera and pertussis toxins, to the PKC inhibitor calphostin C, to the cyclic nucleotide-dependent protein kinase inhibitors, H-89 and H-8 as well as to the inhibitor of serine-threonine type 1 and 2A phosphoprotein phosphatases okadaic acid. ATP led to a transient increase of [Ca2+]i that was abolished by a chelator of Ca2+ i , BAPTA. However, neither BAPTA nor the Ca2+ ionophore A231287, or an inhibitor of endoplasmic reticulum Ca2+-pump, thapsigargin, modified ATP-induced inhibition of Na+,K+,Cl cotransport. An inhibitor of PLC, U73122, and an inhibitor of MAPK kinase (MEK), PD98059, blocked ATP-induced inositol-1,4,5-triphosphate production and MAPK phosphorylation, respectively. However, these compounds did not modify the effect of ATP on Na+,K+,Cl cotransport activity. Inhibitors of PLA2 (AACOCF3), cycloxygenase (indomethacin) and lypoxygenase (NDGA) as well as exogenous arachidonic acid also did not affect ATP-induced inhibition of Na+,K+,Cl cotransport. Inhibition of the carrier by ATP persisted in the presence of inhibitors of epithelial Na+ channels (amiloride), Cl channels (NPPB) and Na+/H+ exchanger (EIPA) and was insensitive to cell volume modulation in anisosmotic media and to depletion of cells with monovalent ions, thus ruling out the role of other ion transporters in purinoceptor-induced inhibition of Na+,K+,Cl cotransport. Our data demonstrate that none of the known purinoceptor-stimulated signaling pathways mediate ATP-induced inhibition of Na+,K+,Cl cotransport and suggest the presence of a novel P2-receptor-coupled signaling mechanism. Received: 29 July 1998/Revised: 19 October  相似文献   

3.
4.
5.
Epithelial cells lining the gastrointestinal tract and kidney have different abilities to facilitate paracellular and transcellular transport of water and solutes. In the kidney, the proximal tubule allows both transcellular and paracellular transport, while the collecting duct primarily facilitates transcellular transport. The claudins and E-cadherin are major structural and functional components regulating paracellular transport. In this study we present the novel finding that the transmembrane matrix receptors, integrins, play a role in regulating paracellular transport of renal proximal tubule cells. Deleting the integrin β1 subunit in these cells converts them from a “loose” epithelium, characterized by low expression of E-cadherin and claudin-7 and high expression of claudin-2, to a “tight” epithelium with increased E-cadherin and claudin-7 expression and decreased claudin-2 expression. This effect is mediated by the integrin β1 cytoplasmic tail and does not entail β1 heterodimerization with an α-subunit or its localization to the cell surface. In addition, we demonstrate that deleting the β1 subunit in the proximal tubule of the kidney results in a major urine-concentrating defect. Thus, the integrin β1 tail plays a key role in regulating the composition and function of tight and adherens junctions that define paracellular transport properties of terminally differentiated renal proximal tubule epithelial cells.  相似文献   

6.
Polarized epithelial cells coexpress two almost identical AP-1 clathrin adaptor complexes: the ubiquitously expressed AP-1A and the epithelial cell–specific AP-1B. The only difference between the two complexes is the incorporation of the respective medium subunits μ1A or μ1B, which are responsible for the different functions of AP-1A and AP-1B in TGN to endosome or endosome to basolateral membrane targeting, respectively. Here we demonstrate that the C-terminus of μ1B is important for AP-1B recruitment onto recycling endosomes. We define a patch of three amino acid residues in μ1B that are necessary for recruitment of AP-1B onto recycling endosomes containing phosphatidylinositol 3,4,5-trisphosphate [PI(3,4,5)P3]. We found this lipid enriched in recycling endosomes of epithelial cells only when AP-1B is expressed. Interfering with PI(3,4,5)P3 formation leads to displacement of AP-1B from recycling endosomes and missorting of AP-1B–dependent cargo to the apical plasma membrane. In conclusion, PI(3,4,5)P3 formation in recycling endosomes is essential for AP-1B function.  相似文献   

7.
Tumors that formed in newborn nude mice that were inoculated with 107 Madin–Darby canine kidney (MDCK) cells were associated with a failure-to-thrive (FTT) syndrome consisting of growth retardation, lethargy, weakness, and dehydration. Scoliosis developed in 41% of affected pups. Pups were symptomatic by week 2; severely affected pups became moribund and required euthanasia within 3 to 4 wk. Mice with FTT were classified into categories of mild, moderate, and severe disease by comparing their weight with that of age-matched normal nude mice. The MDCK-induced tumors were adenocarcinomas that invaded adjacent muscle, connective tissue, and bone; 6 of the 26 pups examined had lung metastases. The induction of FTT did not correlate with cell-line aggressiveness as estimated by histopathology or the efficiency of tumor formation (tumor-forming dose 50% endpoint range = 102.8 to 107.5); however, tumor invasion of the paravertebral muscles likely contributed to the scoliosis noted. In contrast to the effect of MDCK cells, tumor formation observed in newborn mice inoculated with highly tumorigenic, human-tumor–derived cell lines was not associated with FTT development. We suggest that tumor formation and FTT are characteristics of these MDCK cell inocula and that FTT represents a new syndrome that may be similar to the cachexia that develops in humans with cancer or other diseases.Abbreviations: FTT, failure-to-thrive; MDCK, Madin–Darby canine kidney; TPD50, tumor-producing dose log10 50% endpointThe Madin–Darby canine kidney (MDCK) cell line was established in 1958 from the kidney of a cocker spaniel.6,16 Since 1962, this cell line has been an important reagent for the isolation and study of influenza viruses8,22,31 and, more recently, for the development and manufacture of influenza virus vaccines.3,7,19 MDCK cells are polarized, epithelial cells that exhibit properties of renal tubular epithelium and have been used as in vitro models to evaluate renal tubular functions.24,36 Due to their apparent lack of expression of a tumorigenic phenotype in rodents,25 MDCK cells have also been used to study neoplastic processes including epithelial-to-mesenchymal transition23,27,28 and to assess the effects of viral oncogenes and chemical carcinogens on their phenotype.13,32The results of studies that evaluate the ability of MDCK cells to form tumors in vivo have varied. Early studies found that these cells could produce tumors in chicken embryos but not in mature BALB/c nude mice.14 In contrast, MDCK cells formed progressively growing adenocarcinomas in newborn BALB/c nude mice, but tumor growth ceased as the pups approached maturity.25 More recently, 2 different sublines of MDCK cells developed by independent groups were shown to be tumorigenic in athymic nude mice; but the incidence of tumor formation did not correlate with cell dose.33-35As an initial approach to the study of neoplastic development in cells in culture, we evaluated the ability of MDCK cells to form tumors in athymic nude mice. We previously described the tumor-forming capacity of MDCK cells from different lots obtained from ATCC.21 That study revealed that MDCK cells from each of these lots formed tumors efficiently in adult and newborn nude mice, but the capacity of the cells to form tumors differed from lot to lot. During the initial experiments on MDCK cell tumor-forming efficiency in newborn nude mice, we observed what appeared to be a syndrome whose symptoms included tumor formation and disrupted growth leading to a failure-to-thrive (FTT) condition manifested by morbidity that required euthanasia of those pups most severely affected. During the study on the development of FTT, we found that the FTT syndrome occurred in newborn nude mice inoculated with 3 different sublines of MDCK cells. The current report describes an FTT syndrome associated with the formation of tumors by 107 MDCK cells in newborn, athymic, nude mice.  相似文献   

8.
The landmark paper by Hirose et al. (Hirose, K., Kadowaki, S., Tanabe, M., Takeshima, H., Iino, M., Science 284:1527–1530, 1999) presented experimental investigations to show that not only can calcium upregulate IP3, but that it can also have an inhibitory effect on IP3. In this paper, we present a preliminary model, which is consistent with these experiments. This model includes positive and negative feedback between calcium and IP3 and is able to reproduce more precisely the data presented in Hirose et al. (Hirose, K., Kadowaki, S., Tanabe, M., Takeshima, H., Iino, M., Science 284:1527–1530, 1999). In the second part of the paper, the intracellular and intercellular calcium movement in Madin–Darby canine kidney epithelial cells is investigated. With the aid of the model we are able to identify the aspects of IP3 and calcium signalling, which should be studied further experimentally before refining the model.  相似文献   

9.
Regulation of epithelial cell attachment and migration are essential for normal development and maintenance of numerous tissues. G proteins and integrins are critical signaling proteins regulating these processes, yet in polarized cells little is known about the interaction of these pathways. Herein, we demonstrate that Gα12 inhibits interaction of MDCK cells with collagen-I, the major ligand for α2β1 integrin. Activating Gα12 (QL point mutation or stimulating endogenous Gα12 with thrombin) inhibited focal adhesions and lamellipodia formation and led to impaired cell migration. Consistent with Gα12-regulated attachment to collagen-I, Gα12-silenced MDCK cells revealed a more adherent phenotype. Inhibiting Rho kinase completely restored normal attachment in Gα12-activated cells, and there was partial recovery with inhibition of Src and protein phosphatase pathways. Gα12 activation led to decreased phosphorylation of focal adhesion kinase and paxillin with displacement of α2 integrin from the focal adhesion protein complex. Using the MDCK cell 3D-tubulogenesis assay, activated Gα12 inhibited tubulogenesis and led to the formation of cyst-like structures. Furthermore, Gα12-silenced MDCK cells were resistant to thrombin-stimulated cyst development. Taken together, these studies provide direct evidence for Gα12–integrin regulation of epithelial cell spreading and migration necessary for normal tubulogenesis.  相似文献   

10.
Understanding how different species of Aβ are generated by γ-secretase cleavage has broad therapeutic implications, because shifts in γ-secretase processing that increase the relative production of Aβx-42/43 can initiate a pathological cascade, resulting in Alzheimer disease. We have explored the sequential stepwise γ-secretase cleavage model in cells. Eighteen BRI2-Aβ fusion protein expression constructs designed to generate peptides from Aβ1–38 to Aβ1–55 and C99 (CTFβ) were transfected into cells, and Aβ production was assessed. Secreted and cell-associated Aβ were detected using ELISA and immunoprecipitation MALDI-TOF mass spectrometry. Aβ peptides from 1–38 to 1–55 were readily detected in the cells and as soluble full-length Aβ proteins in the media. Aβ peptides longer than Aβ1–48 were efficiently cleaved by γ-secretase and produced varying ratios of Aβ1–40:Aβ1–42. γ-Secretase cleavage of Aβ1–51 resulted in much higher levels of Aβ1–42 than any other long Aβ peptides, but the processing of Aβ1–51 was heterogeneous with significant amounts of shorter Aβs, including Aβ1–40, produced. Two PSEN1 variants altered Aβ1–42 production from Aβ1–51 but not Aβ1–49. Unexpectedly, long Aβ peptide substrates such as Aβ1–49 showed reduced sensitivity to inhibition by γ-secretase inhibitors. In contrast, long Aβ substrates showed little differential sensitivity to multiple γ-secretase modulators. Although these studies further support the sequential γ-secretase cleavage model, they confirm that in cells the initial γ-secretase cleavage does not precisely define subsequent product lines. These studies also raise interesting issues about the solubility and detection of long Aβ, as well as the use of truncated substrates for assessing relative potency of γ-secretase inhibitors.  相似文献   

11.
12.
Matriptase is a type II transmembrane serine protease. In the present study, matriptase C-terminal fragments containing the catalytic serine protease domain were found to occur on the apical and basolateral sides of Madin–Darby canine kidney epithelial cells transfected with a cDNA encoding the protease. This suggests that matriptase interacts with various potential substrates when expressed in simple epithelia.  相似文献   

13.
14.
15.
ADENOVIRUS infection of human embryonic kidney (HEK) cultures seems to induce cellular RNA synthesis, which is preceded by a transient increase in the activities of the Mg2+-activated and Mn2+-(NH4)2SO4-activated DNA dependent RNA polymerases and in the rate of histone acetylation1. The two polymerase reactions, assayed in isolated cell nuclei, apparently reflect the activities of distinct nucleolar and nucleo-plasmic RNA polymerases2,3. We were therefore prompted to test the effect of a specific inhibitor of the mammalian DNA-dependent RNA polymerase function, α-amanitin, on the multiplication of adenovirus. α-Amanitin is a bicyclic octapeptide isolated from the poisonous mushroom Amanita phalloides4 and which blocks RNA synthesis in intact animals5,6. Nuclei isolated from the livers of such animals show a reduced activity of the RNA polymerases associated with nucleoplasm5,6 and the nucleolus6.  相似文献   

16.
17.
18.
19.
The role that transforming growth factor β1 (TGF-β1) plays in influencing growth of glioma cells is somewhat controversial. To further understand the potential growth-regulatory effects of TGF-β1,we constructed an animal astroglial tumor model by injecting either wild-type or virally transduced human U-87 glioblastoma cells into nude rat brains. Wild type U-87 cells produced very low amounts of TGF-β1 and were highly tumorigenic. In contrast, U-87 cells transduced to express high levels of TGF-β1 showed reduced tumor size in vivo, in a dose-dependent manner. This reduction in tumor size was not due to either decreased vascularity or increased apoptosis. To test whether TGF-β1 overproduction inhibited tumor growth through an autocrine mechanism, the highest TGF-β1 producing cells were then double transduced with a vector expressing the kinase-truncated type II TGF-β receptor. Cells expressing high levels of truncated TGF-β receptor were less sensitive to TGF-β1 mediated growth inhibition in vitro and produced more aggressive tumors in vivo. The data suggest that the degree of tumorigenicity of the U-87 high-grade glioblastoma cell line may be associated with correspondingly low level of production of TGF-β1. These results also would tend to support the possibility that TGF-β1 may be useful in treating some high-grade gliomas.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号