首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 38 毫秒
1.
(1) Glucose stimulates the incorporation of amino acids into protein in lung cells isolated by digestion of the lung stroma with collagenase. This effect reflects mainly an increase in protein synthesis since no effect of glucose had been found to the uptake of amino acid precursors and, although glucose decreases the rate of intracellular proteolysis by 15%, this effect cannot account for the increased incorporation of radioactivity into proteins. Furthermore, glucose did not induce any significant change in the intracellular content of valine. (2) For glucose to act on protein synthesis, it must be glycolyzed since its stereoisomer, L-glucose, which is not metabolized by lung cells, has no effect. (3) The mechanism of glucose action does not seem to be related simply to variations of cellular ATP content or energy charge. The following arguments seem to support this conclusion: (i) glucose does not bring about significant variations in the concentration of reactants of the adenylate system; (ii) the increase in protein synthesis induced by glucose in energy-depleted cells correlates with a rise in ATP content and energy charge; however, adenosine, which increases ATP levels in a form quantitatively similar to glucose, is unable to affect protein synthesis: (iii) glucose also accelerates the incorporation of amino acids into proteins in adenosine-treated lung cells in which the ATP concentration was almost double that of the control and the energy charge was considerably elevated, ruling out the possibility that a rise in the steady-state concentration of ATP and/or energy charge alone could be responsible for the acceleration of protein synthesis. (4) It can be concluded that the effect of glucose in increasing protein synthesis in lung cells is dependent on some signal arising from its breakdown and not to variations in the concentration of reactants or energy charge of the adenylate system.  相似文献   

2.
The adenylate energy charge in Ehrlich ascites tumor cells increases when cells are cultivated in serum-limiting medium and decreases when they are incubated in glucose- or amino acid-limited media. Protein synthetic rates decrease in cells deprived of serum, glucose, or amino acids. Supplementation of deprived cells with respective nutrients restores normal protein synthetic rates and adenylate energy charge values. Serum-deprived cells incubated in depleted serum media do not increase their rates of protein synthesis and their adenylate energy charge remains elevated. These results suggest that serum factors regulate protein synthetic rates by mechanisms other than those regulating the availability in cells of glucose or of amino acids. The increased rates of utilization of glucose and of amino acids following the addition of serum are probably due to increased biosynthetic requirements.  相似文献   

3.
The rate of kaurene biosynthesis from mevalonate in a cell-free enzyme preparation from the endosperm of immature seeds of Marah macrocarpus is regulated by adenylate energy charge. The response curve is typical of a biosynthetic energy-utilizing sequence in which the rate of biosynthesis increases sharply as the energy charge is increased above 0.80. ADP proved to be an effective inhibitor of this process. AMP gave no inhibition at concentrations up to 2 mm and orthophosphate gave no inhibition up to 15 mm. Measurement of the pool sizes of intermediates in the sequence showed that the presence of ADP caused an increase in the levels of 5-phosphomevalonate and 5-pyrophosphomevalonate and a decrease in the levels of isopentenyl pyrophosphate and kaurene. These results indicate that pyrophosphomevalonate decarboxylase is the enzyme most subject to regulation by adenylate energy charge. The rate of conversion of isopentenyl pyrophosphate to kaurene and the rate of utilization of mevalonate by mevalonate kinase were not influenced by variations in the adenylate energy charge.  相似文献   

4.
The role of AMP deaminase reaction in the stabilization of the adenylate energy charge was investigated using permeabilized yeast cells. The addition of Pi or Zn2+, which inhibits AMP deaminase, remarkably retarded the depletion of total adenylate pool and the recovery of the adenylate energy charge. Polyamine, an activator of the enzyme, decreased total adenylates, resulting in the enhanced recovery of the energy charge in situ. AMP deaminase can act as a regulatory enzyme in the system that stabilizes the adenylate energy charge in yeast cells under the conditions of severe metabolic stress.  相似文献   

5.
The role of fatty acid and polyamine in the interaction of AMP deaminase (EC 3.5.4.6)-ammonium system with glycolysis was investigated using permeabilized yeast cells. (1) The addition of fatty acid inhibited the activity of AMP deaminase in situ, resulting in a decrease in the total adenylate pool depletion, and in the recovery of the adenylate energy charge. (2) The addition of fatty acid resulted in an indirect decrease in the activity of phosphofructokinase (EC 2.7.1.11) through a reduced level of ammonium ion; fatty acid itself did not inhibit phosphofructokinase activity in the presence of excess ammonium ion. (3) Spermine protected AMP deaminase from inhibition by fatty acid: the increased ammonium level enhanced phosphofructokinase activity, glycolytic flux and the recovery of the energy charge. In contrast, alkali metals, which are also activators of AMP deaminase had little effect on the inhibition of the enzyme. The inhibition of glycolysis by fatty acid and its reversal by polyamine can be accounted for by the changes in ammonium ion through the action of AMP deaminase-ammonium system, and the physiological relevance is discussed.  相似文献   

6.
1. Stabilization of adenylate energy charge and control of adenylate pool were analysed in the erythrocytes of the rat and the human exposed to highly hypoxic conditions. 2. Red cell energy charge was decreased in the rats exposed to a simulated altitude of 5000-8000 m, and then recovered to the normal value with the depletion of adenylate pool. 3. The energy charge and the adenylate pool size of the human erythrocytes did not show any change under highly hypoxic conditions. 4. Anaerobic incubation of rat erythrocytes caused a marked decrease in the energy charge, and its recovery was accompanied by the depletion of total adenylates. 5. The energy charge and total adenylates of human red cells did not change under the anaerobic incubation of erythrocytes. 6. These results suggest that the energy charge of rat erythrocytes can be controlled by depletion of the adenylate pool, but the adenylate degradation is not responsible for the stabilization of the energy charge in human erythrocytes.  相似文献   

7.
Regulation of cytosol 5'-nucleotidase by adenylate energy charge   总被引:5,自引:0,他引:5  
In the physiological range of the adenylate energy charge in liver (0.7-0.9), th rate of AMP-hydrolysis catalysed by rat liver cytosol 5'-nucleotidase (5'-ribonucleotide phosphohydrolase, EC 3.1.3.5) increased sharply with decreasing energy charge. In addition, a decrease in the concentration of Pi caused marked acceleration of the AMP-hydrolysing activity over the physiological range of adenylate energy charge. These responses seem to serve to protect the cells against a metabolic stress which could result from sudden utilization of ATP by removal of AMP. The AMP-hydrolysing activity of this enzyme decreased sharply as the size of the adenine nucleotide pool decreased in the physiological range. This effect may be a self-limiting response to prevent excess depletion of the pool. IMP-hydrolysing activity of this enzyme increased with increasing adenylate energy charge. But no marked response to its variation within the physiological range was observed. On the basis of the data obtained in this study, the IMP-hydrolysing activity of the cytosol 5'-nucleotidase in rat liver cells seems to be comparable to that of AMP deaminase reaction, but the AMP-hydrolysing activity was estimated to be less than 10% of AMP deaminase reaction at energy charge value of about 0.7. This strongly suggests that the AMP leads to IMP leads to inosine pathway is more significant that the AMP leads to adenosine leads to inosine pathway in rat liver.  相似文献   

8.
The effect of muscarinic agonist on adenylate cyclase was investigated in neonatal islet cells and in a clonal pituitary cell line (GH4C1) following labelling of the intracellular ATP pool with [2,8 3H]adenine. In islet cells carbamylcholine was without effect on basal or glucagon-stimulated adenylate cyclase activity, measured as 3H cyclic AMP production, but inhibited 3H cyclic AMP production in the clonal pituitary cells. The involvement of the inhibitory guanine nucleotide binding protein of adenylate cyclase (Ni) was investigated by the use of the Bordetella pertussis exotoxin, islet activating protein (IAP). Pre-treatment of islet cells with IAP was without effect on adenylate cyclase following carbamylcholine but in the clonal pituitary line abolished the inhibition of 3H cyclic AMP production. It is concluded that in the islet cell, in contrast to the clonal pituitary cell, muscarinic receptors are not effectively coupled through Ni to inhibit adenylate cyclase.  相似文献   

9.
Summary Stimulation of human arterial endothelial cells with heparin-binding growth factor-1 (HBGF-1) resulted in a 40% to 60% increase in the cellular adenylate cyclase activity and intracellular cAMP content. The stimulatory effect of HBGF-1 was effectively suppressed by pretreating the cells with transforming growth factor-β (TGF-β), an endothelial cell growth inhibitor. The inhibition of the adenylate cyclase activity precedes growth inhibition by at least 24 h. The half maximal inhibitory dose was calculated to be 0.2 ng/ml for the inhibition of both cyclase activity and cell growth. The possible role of the adenylate cyclase suppression in growth inhibition by TGF-β is discussed. This work was supported in part by grants from NCI (CA 37589), RJR Nabisco, Inc. and Kyowa Hakko Kogyo, Co., Ltd. Editor's Statement The observation that heparin-binding growth factor activates adenylate cyclase in endothelial cells and TGF beta lowers cAMP levels in endothelial cells treated with heparin-binding growth factor raises the possibility that growth control may be mediated, at least partially, through cyclic nucleotides in this system, as well as raising questions about relationships between activities of these peptide growth factors and G protein activation.  相似文献   

10.
Adenylate energy charge of rat and human cultured hepatocytes   总被引:3,自引:0,他引:3  
Summary A simple and rapid method for the assay of adenine nucleotides (ATP, ADP, and AMP) was established to evaluate the adenylate energy charge (ATP+ADP/2)/(ATP+ADP+AMP) of cultured hepatocytes. The effects of inhibitors of glycolysis, fatty acid oxidation, or oxidative phosphorylation on the energy charge were examined. The energy charges of cultured hepatocytes in rats and human were almost identical and were maintained at a high level between 6 and 24 h after changing the media (rat: 0.908±0.008n=9, human: 0.918±0.014n=6, mean ± SD). Inhibition of glycolysis with sodium fluoride or oxidative phosphorylation with antimycin A irreversibly reduced both the adenine nucleotide contents and the energy charge. However, the inhibition of fatty acid oxidation with 2-tetradecylglycidic acid did not affect the nucleotide contents, and the energy charge only decreased transiently to recover within 8 h. When the inhibitor of oxidative phosphorylation was removed, the recovery in the energy charge preceded the recovery in the adenine nucleotide contents. These findings suggest that the adenylate energy charge is a more sensitive measure of the changes in energy metabolism than the adenine nucleotide contents. Furthermore, energy charge regulates adenine nucleotide contents in cultured hepatocytes. It is important to confirm that the high energy charge of the cultured hepatocytes is maintained when these cells are used for metabolic studies.  相似文献   

11.
Escherichia coli strain CR341T28 will not grow at temperatures above 34 degrees C in liquid medium, and the adenylate kinase of this strain is heat sensitive. When a culture was shifted from a permissive (30 degrees C) to a nonpermissive (36 degrees C) temperature, the adenylate energy charge fell from 0.9 to 0.2, with a concurrent decrease in the number of viable cells and in the specific activity of adenylate kinase. When cultures of the temperature-sensitive strain were grown at temperatures above 30 degrees C, the adenylate energy charge, the specific activity of adenylate kinase, and the growth rate were lower than the corresponding parameters for the parental strain. By isotopic labeling of the adenine nucleotides in vivo, it was determined that increasing growth temperatures between 30 and 34 degrees C for the heat-sensitive strain resulted in a decrease in the adenosine triphosphate-to-adenosine monophosphate and adenosine triphosphate-to-adenosine diphosphate ratios. Between 26 and 30 degrees C the adenosine triphosphate-to-adenosine diphosphate ratio was essentially normal in the temperature-sensitive strain, but the adenosine triphosphate-to-adenosine diphosphate ratio was decreased. The adenylate ratios in the parental strain did not change between 30 and 34 degrees C. The adenylate kinase mass action ratio for each strain was essentially constant under all growth conditions. When assayed at 30 degrees C, the affinities of the enzyme from the mutant strain were somewhat lower than those of the parent adenylate kinase. The mutant enzyme also did not exhibit the substrate inhibition that was observed at high adenosine monophosphate concentrations with the parental enzyme. An increase in the assay temperature from 30 degrees to 40 degrees C had little or no effect on the Km values determined for the parental adenylate kinase, but caused the Km values determined for the mutant adenylate kinase to increase by a factor of two or more.  相似文献   

12.
The potentiation of corticotropin-releasing factor (CRF)-stimulated cAMP production by vasopressin (VP) in the pituitary cell was investigated by studies on the interaction of CRF, VP, and the protein kinase C activator, phorbol 12-myristate 13-acetate (PMA) on cAMP, adenylate cyclase and phosphodiesterase. Addition of VP or PMA (0.01-100 nM) alone did not alter cellular cAMP content, but markedly increased the effect of 10 nM CRF with ED50 of about 1 nM. Treatment of the cells with 200 ng/ml pertussis toxin for 4 h increased CRF-stimulated cAMP accumulation by 3.2-fold, an effect that was not additive to those of VP and PMA. Incubation of pituitary cells with 2 mM 1-methyl-3-isobutylxanthine increased CRF-stimulated cAMP accumulation and decreased the relative effect of VP and PMA, suggesting that the actions of VP and PMA are partially due to inhibition of phosphodiesterase. This was confirmed by the demonstration of a 30% inhibition of the low-affinity phosphodiesterase activity in cytosol and membranes prepared from cells preincubated with VP or PMA. In intact cells, following [3H]adenine prelabeling of endogenous ATP pools, measurement of adenylate cyclase in the presence of 1-methyl-3-isobutylxanthine showed no effect of VP and PMA alone, but did show a 2-fold potentiation of the effect of CRF. Measurement of adenylate cyclase in pituitary homogenates by conversion of [alpha-32P]ATP to [32P]cAMP showed a paradoxical GTP-dependent inhibition by VP of basal and CRF-stimulated adenylate cyclase activity, suggesting that the VP receptor is coupled to an inhibitory guanyl nucleotide-binding protein. Pertussis toxin pretreatment of the cells prevented the VP inhibition of adenylate cyclase activity observed in pituitary cell homogenates. These findings indicate that besides inhibition of phosphodiesterase, VP has a dual interaction with the pituitary adenylate cyclase system; a direct inhibitory effect, manifested only in broken cells, that is mediated by a receptor-coupled guanyl nucleotide-binding protein, and a physiologically predominant indirect stimulatory effect in the intact cell, mediated by protein kinase C phosphorylation of one of the components of the CRF-activated adenylate cyclase system.  相似文献   

13.
Depriving rat thymocytes of energy-providing substrates for 2 hr results in a 75–80% drop in rates of protein synthesis and a shift of ribosomes from active polysomes to inactive monomers and dimers. Glucose prevents these changes or, when added to starved cells, rapidly reverses them. Restoration of protein synthesis is associated with reversal of the 7% decline in the adenylate energy charge seen in starved cells. The data is consistent with the hypothesis that glucose increases initiation in starved cells, probably via effects on the balance of adenine nucleotides. Data with other substrates support this concept. The inability of glucose to fully restore energy charge in the presence of glucocorticoids or rotenone correlates with the limitation of protein synthesis.  相似文献   

14.
We studied the changes occurring in the adenylate system andrelated metabolic parameters during the shift from rest to activegrowth, by feeding ammonium ions to N-starved Rhodotorula graciliscells. The addition of ammonium induces an early, rapid dropin ATP level and in energy charge, decrease in RQ, a gradualincrease in O2 uptake and a rapid increase in the synthesesof amino acids, protein and RNA. CHI at a protein-synthesisblocking concentration also blocks the early decrease in ATPlevel. The data suggest that growth inhibition, due to N-starvationis not determined by the phosphorylation state of the adenylatesystem and that the observed behavior of the adenylate poolis a consequence of the onset of macromolecular synthesis. (Received June 1, 1977; )  相似文献   

15.
The activity of corn phosphoglycolate phosphatase (EC 3.1.3.18), a bundle sheath chloroplastic enzyme, is modulated, in vitro, both by NADP(H) and adenylate energy charge. The Vmax of the enzyme is increased by NADP (25%) and NADPH (16%) whatever the pH used, 7.0 or 7.9 respective pH of the stroma in the dark and in the light. At both pH, the adenylate energy charge alone has a positive effect with two peaks of activation, characteristics for this enzyme, at 0.2 and a maximum at 0.8 accentuated under nonsaturating concentration of phosphoglycolate. At low energy charge, NADP(H) increased the activation with an additive effect most particularly observed at pH 7.9 under saturating phosphoglycolate concentration; at high energy charge, NADP(H) had a positive or negative effect on the activation, depending on the pH value and the concentrations of substrate and NADP(H).The ferredoxin-thioredoxin system does not regulate the activity since i) DTT addition do not have any effect, ii) the light-reconstituted system containing ferredoxin, ferredoxin-thioredoxin reductase, thioredoxins and thylakoids is not effective either. However, light-dark experiments indicate that phosphophycolate phosphatase can be subjected to a fine tuning of its activity.All these data suggest that light cannot induce a modification of the protein but could exert a tight control of its activity by the intermediate of Mg2+ and substrate concentrations and the levels of metabolites such as NADP(H), ATP, ADP, AMP. So, the regulation of the activity shown, in vitro, by energy charge and NADP(H) might be of physiological significance.Abbreviations AEC adenylate energy charge - DTT dithiothreitol - FBPase fructose 1,6-bisphosphatase - Fd ferredoxin - FTR ferredoxin-thioredoxin reductase - NADP-MDH NADP-malate dehydrogenase - P glycolate-phosphoglycolate - P glycolate phosphatase-phosphoglycolate phosphatase - PSII photosystem II - PPDK pyruvate, Pi dikinase - Rubisco Ribulose 1,5-bisphosphate carboxylase/oxygenase  相似文献   

16.
Adenylate Energy Charge in Escherichia coli During Growth and Starvation   总被引:91,自引:41,他引:50       下载免费PDF全文
The value of the adenylate energy charge, [(adenosine triphosphate) + (1/2) (adenosine diphosphate)]/[(adenosine triphosphate) + (adenosine diphosphate) + (adenosine monophosphate)], in Escherichia coli cells during growth is about 0.8. During the stationary phase after cessation of growth, or during starvation in carbon-limited cultures, the energy charge declines slowly to a value of about 0.5, and then falls more rapidly. During the slow decline in energy charge, all the cells are capable of forming colonies, but a rapid fall in viability coincides with the steep drop in energy charge. These results suggest that growth can occur only at energy charge values above about 0.8, that viability is maintained at values between 0.8 and 0.5, and that cells die at values below 0.5. Tabulation of adenylate concentrations previously reported for various organisms and tissues supports the prediction, based on enzyme kinetic observations in vitro, that the energy charge is stabilized near 0.85 in intact metabolizing cells of a wide variety of types.  相似文献   

17.
NG108-15 cells were exposed in culture to 1 microM [D-Ala2,D-Leu5]enkaphalin (DADLE) for 17 h. This treatment increased the maximum iloprost- and 5'-(N-ethylcarboxamido)adenosine-dependent activation of adenylate cyclase, as well as basal enzyme activity. In addition, there was an increase in the capacity of 5'-guanylylimidodiphosphate [Gpp(NH)p] to inhibit adenylate cyclase activity by direct interaction with the alpha-subunit of the Gi regulatory protein. A similar effect was observed if the cells were exposed to 10 microM carbachol. These treatments of NG108-15 cells did not alter the capacity of NaF to activate adenylate cyclase by direct interaction with Gs alpha. Exposure of NG108-15 cells to DADLE alone or DADLE plus carbachol had no effect on the capacity of pertussis toxin to ADP-ribosylate membrane proteins in these cells; neither was there any change in the activity of eukaryotic ADP-ribosyltransferase expressed in these cells. Under these conditions, the endogenous enzyme did not label any protein with a molecular mass similar to Gi alpha, 41 kDa. Treatment of the cells with DADLE or carbachol had no effect on the abundance of Gs alpha, Gi alpha, or G beta. The underlying mechanism for the changes in agonist-dependent stimulatory responses or Gpp(NH)p-dependent inhibition of adenylate cyclase remains obscure, but appears not to be mediated by eukaryotic ADP-ribosyltransferase activity or a change in the abundance of G proteins known to regulate adenylate cyclase.  相似文献   

18.
The effect of phosphorylation on glycolysis reactions was studied in respect with the rate of 1-14C-glucose metabolization and the composition of synthesized labelled products in isolated cells of assimilating millet leave tissues incapable to reassimilation of respiratory CO2. Data on oxygen metabolism in mesophyll protoplasts and in cells of parenchymal facing of vascular bundle sheaths in the absence and in the presence of electron acceptors (3,5-dichlorophenolindophenol and methylviologen) show that they retain adenylate pool and energy charge characteristic of photosynthetizing tissues. The glycolysis rate decreased in illuminated cells, which did not remove carbon products from chloroplasts. Analysis of compounds produced from 1-14C-glucose exogenous ADP effect on their ration and the change of adenylate energy charge in the presence of methylviologen demonstrates that the acting factor is a decrease of Pi and ADP concentrations in cytoplasm because of their use chloroplast phosphorylation. It is suggested, that a short-cut chain of glycolysis reactions may take place in intact cells assimilating CO2 in photosynthesis, and the capacity of this chain is determined by the type of carbon metabolism and photorespiration mechanism.  相似文献   

19.
Numerous methods used for the isolation of brain microvessels involve procedures which disturb the structural integrity of the cells and their organelles. In the present study, analysis of the adenylate energy charge and content as well as the incorporation of adenosine derivatives in isolated rat brain microvessels indicated a lesion of the mechanisms of energy production. The results show that experiments on isolated microvessels prepared by a mechanical homogenization exerting shear forces should be interpretated with caution when the rate of energy metabolism is a significant factor in the study.  相似文献   

20.
The aerobic to anaerobic transition of E. coli is accompanied with interrelated changes of the adenylate pool, energy charge, respiration rate, as well as the phospholipid content of the cell membranes and the activity of the polyamine synthesizing system. The role of the cellular energy status in the control of the relative content of membrane phospholipids is discussed. The control is based either on energy redistribution in phospholipid metabolism or on the effect on the activity of the polyamine synthesizing system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号