首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Multiple nanosecond duration molecular dynamics simulations on the pore-lining M2 helix of the nicotinic acetylcholine receptor reveal how its structure and dynamics change as a function of environment. In water, the M2 helix partially unfolds to form a molecular hinge in the vicinity of a central Leu residue that has been implicated in the mechanism of ion channel gating. In a phospholipid bilayer, either as a single transmembrane helix, or as part of a pentameric helix bundle, the M2 helix shows less flexibility, but still exhibits a kink in the vicinity of the central Leu. The single M2 helix tilts relative to the bilayer normal by 12 degrees, in agreement with recent solid state NMR data (Opella et al., Nat Struct Biol 6:374-379, 1999). The pentameric helix bundle, a model for the pore domain of the nicotinic receptor and for channels formed by M2 peptides in a bilayer, is remarkably stable over a 2-ns MD simulation in a bilayer, provided one adjusts the pK(A)s of ionizable residues to their calculated values (when taking their environment into account) before starting the simulation. The resultant transbilayer pore shows fluctuations at either mouth which transiently close the channel. Proteins 2000;39:47-55.  相似文献   

2.
Molecular dynamics simulations of water within models of ion channels.   总被引:5,自引:5,他引:0  
The transbilayer pores formed by ion channel proteins contain extended columns of water molecules. The dynamic properties of such waters have been suggested to differ from those of water in its bulk state. Molecular dynamics simulations of ion channel models solvated within and at the mouths of their pores are used to investigate the dynamics and structure of intra-pore water. Three classes of channel model are investigated: a) parallel bundles of hydrophobic (Ala20) alpha-helices; b) eight-stranded hydrophobic (Ala10) antiparallel beta-barrels; and c) parallel bundles of amphipathic alpha-helices (namely, delta-toxin, alamethicin, and nicotinic acetylcholine receptor M2 helix). The self-diffusion coefficients of water molecules within the pores are reduced significantly relative to bulk water in all of the models. Water rotational reorientation rates are also reduced within the pores, particularly in those pores formed by alpha-helix bundles. In the narrowest pore (that of the Ala20 pentameric helix bundle) self-diffusion coefficients and reorientation rates of intra-pore waters are reduced by approximately an order of magnitude relative to bulk solvent. In Ala20 helix bundles the water dipoles orient antiparallel to the helix dipoles. Such dipole/dipole interaction between water and pore may explain how water-filled ion channels may be formed by hydrophobic helices. In the bundles of amphipathic helices the orientation of water dipoles is modulated by the presence of charged side chains. No preferential orientation of water dipoles relative to the pore axis is observed in the hydrophobic beta-barrel models.  相似文献   

3.
A parallel bundle of transmembrane (TM) alpha-helices surrounding a central pore is present in several classes of ion channel, including the nicotinic acetylcholine receptor (nAChR). We have modeled bundles of hydrophobic and of amphipathic helices using simulated annealing via restrained molecular dynamics. Bundles of Ala20 helices, with N = 4, 5, or 6 helices/bundle were generated. For all three N values the helices formed left-handed coiled coils, with pitches ranging from 160 A (N = 4) to 240 A (N = 6). Pore radius profiles revealed constrictions at residues 3, 6, 10, 13, and 17. A left-handed coiled coil and a similar pattern of pore constrictions were observed for N = 5 bundles of Leu20. In contrast, N = 5 bundles of Ile20 formed right-handed coiled coils, reflecting loosened packing of helices containing beta-branched side chains. Bundles formed by each of two classes of amphipathic helices were examined: (a) M2a, M2b, and M2c derived from sequences of M2 helices of nAChR; and (b) (LSSLLSL)3, a synthetic channel-forming peptide. Both classes of amphipathic helix formed left-handed coiled coils. For (LSSLLSL)3 the pitch of the coil increased as N increased from 4 to 6. The M2c N = 5 helix bundle is discussed in the context of possible models of the pore domain of nAChR.  相似文献   

4.
Electrostatics and the ion selectivity of ligand-gated channels.   总被引:2,自引:2,他引:0       下载免费PDF全文
C Adcock  G R Smith    M S Sansom 《Biophysical journal》1998,75(3):1211-1222
The nicotinic acetylcholine receptor (nAChR) is a cation-selective ion channel that opens in response to acetylcholine binding. The related glycine receptor (GlyR) is anion selective. The pore-lining domain of each protein may be modeled as a bundle of five parallel M2 helices. Models of the pore-lining domains of homopentameric nAChR and GlyR have been used in continuum electrostatics calculations to probe the origins of ion selectivity. Calculated pKA values suggest that "rings" of acidic or basic side chains at the mouths of the nAChR or GlyR M2 helix bundles, respectively, may not be fully ionized. In particular, for the nAChR the ring of glutamate side chains at the extracellular mouth of the pore is predicted to be largely protonated at neutral pH, whereas those glutamate side chains in the intracellular and intermediate rings (at the opposite mouth of the pore) are predicted to be fully ionized. Inclusion of the other domains of each protein represented as an irregular cylindrical tube in which the M2 bundles are embedded suggests that both the M2 helices and the extramembrane domains play significant roles in determining ion selectivity.  相似文献   

5.
Hung A  Tai K  Sansom MS 《Biophysical journal》2005,88(5):3321-3333
Multiple nanosecond duration molecular dynamics simulations were performed on the transmembrane region of the Torpedo nicotinic acetylcholine receptor embedded within a bilayer mimetic octane slab. The M2 helices and M2-M3 loop regions were free to move, whereas the outer (M1, M3, M4) helix bundle was backbone restrained. The M2 helices largely retain their hydrogen-bonding pattern throughout the simulation, with some distortions in the helical end and loop regions. All of the M2 helices exhibit bending motions, with the hinge point in the vicinity of the central hydrophobic gate region (corresponding to residues alphaL251 and alphaV255). The bending motions of the M2 helices lead to a degree of dynamic narrowing of the pore in the region of the proposed hydrophobic gate. Calculations of Born energy profiles for various structures along the simulation trajectory suggest that the conformations of the M2 bundle sampled correspond to a closed conformation of the channel. Principal components analyses of each of the M2 helices, and of the five-helix M2 bundle, reveal concerted motions that may be relevant to channel function. Normal mode analyses using the anisotropic network model reveal collective motions similar to those identified by principal components analyses.  相似文献   

6.
S Oiki  V Madison  M Montal 《Proteins》1990,8(3):226-236
Channel proteins are transmembrane symmetric (or pseudosymmetric) oligomers organized around a central ionic pore. We present here a molecular model of the pore forming structures of two channel proteins with different primary structures and oligomeric size: the voltage-sensitive sodium channel and the nicotinic cholinergic receptor. We report low-energy arrangements of alpha-helical bundles calculated by semiempiricial potential energy functions and optimization routines and further refined using molecular dynamics. The ion-conducting pore is considered to be a symmetric or pseudosymmetric homooligomer of 3-5 amphipathic alpha-helices arranged such that the polar residues line a central hydrophilic pathway and the apolar residues face the hydrophobic bilayer interior. The channel lining exposes either charged (Asp, Glu, Arg, Lys) or polar-neutral (Ser, Thr) residues. A bundle of four parallel helices constrained to C4 symmetry, the helix axis aligned with the symmetry axis, and the helices constrained to idealized dihedral angles, produces a structure with a pore of the size inferred for the sodium channel protein (area approximately 16 A2). Similarly, a pentameric array optimized with constraints to maintain C5 symmetry and backbone torsions characteristic of alpha-helices adopts a structure that appears well suited to form the lining of the nicotinic cholinergic receptor (pore area approximately 46 A2). Thus, bundles of amphipathic alpha-helices satisfy the structural, energetic, and dynamic requirements to be the molecular structural motif underlying the function of ionic channels.  相似文献   

7.
The structures of functional peptides corresponding to the predicted channel-lining M2 segment of the nicotinic acetylcholine (AChR) were determined using solution NMR experiments on micelle samples, and solid-state NMR experiments on bilayer samples. The AChR M2 peptide forms a straight transmembrane alpha-helix, with no kinks. M2 inserts in the lipid bilayer at an angle of 12 degrees relative to the bilayer normal, with a rotation about the helix long axis such that the polar residues face the N-terminus of the peptide, which is assigned to be intracellular. A molecular model of the AChR channel pore, constructed from the solid-state NMR 3-D structure of the AChR M2 helix in the membrane assuming a pentameric organization, results in a funnel-like architecture for the channel with the wide opening on the N-terminal intracellular side. A central narrow pore has a diameter ranging from about 3.0 A at its narrowest, to 8.6 A at its widest. Nonpolar residues are predominantly on the exterior of the bundle, while polar residues line the pore. This arrangement is in fair agreement with evidence collected from permeation, mutagenesis, affinity labeling and cysteine accessibility measurements. A pentameric M2 helical bundle may, therefore, represent the structural blueprint for the inner bundle that lines the channel of the nicotinic AChR.  相似文献   

8.
Using molecular dynamics simulations, we studied the structure, interhelix interactions, and dynamics of transmembrane proteins. Specifically, we investigated homooligomeric helical bundle systems consisting of synthetic α-helices with either the sequence Ac-(LSLLLSL)3-NH2 (LS2) or Ac-(LSSLLSL)3-NH2 (LS3). The LS2 and LS3 helical peptides are designed to have amphipathic characteristics that form ion channels in membrane. We simulated bundles containing one to six peptides that were embedded in palmitoyl-oleoyl-phosphatidylcholine (POPC) lipid bilayer and placed between two lamellae of water. We aim to provide a fundamental understanding of how amphipathic helical peptides interact with each other and their dynamical behaviors in different homooligomeric states. To understand structural properties, we examined the helix lengths, tilt angles of individual helices and the entire bundle, interhelix distances, interhelix cross-angles, helix hydrophobic-to-hydrophilic vector projections, and the average number of interhelix hydrophilic (serine–serine) contacts lining the pore of the transmembrane channel. To analyze dynamical properties, we calculated the rotational autocorrelation function of each helix and the cross-correlation of the rotational velocity between adjacent helices. The observed structural and dynamical characteristics show that higher order bundles containing four to six peptides are composed of multiple lower order bundles of one to three peptides. For example, the LS2 channel was found to be stable in a tetrameric bundle composed of a “dimer of dimers.” In addition, we observed that there is a minimum of two strong hydrophilic contacts between a pair of adjacent helices in the dimer to tetramer systems and only one strong hydrophilic interhelix contact in helix pairs of the pentamer and hexamer systems. We believe these results are general and can be applied to more complex ion channels, providing insight into ion channel stability and assembly.  相似文献   

9.
Using molecular dynamics simulations, we studied the structure, interhelix interactions, and dynamics of transmembrane proteins. Specifically, we investigated homooligomeric helical bundle systems consisting of synthetic α-helices with either the sequence Ac-(LSLLLSL)3-NH2 (LS2) or Ac-(LSSLLSL)3-NH2 (LS3). The LS2 and LS3 helical peptides are designed to have amphipathic characteristics that form ion channels in membrane. We simulated bundles containing one to six peptides that were embedded in palmitoyl-oleoyl-phosphatidylcholine (POPC) lipid bilayer and placed between two lamellae of water. We aim to provide a fundamental understanding of how amphipathic helical peptides interact with each other and their dynamical behaviors in different homooligomeric states. To understand structural properties, we examined the helix lengths, tilt angles of individual helices and the entire bundle, interhelix distances, interhelix cross-angles, helix hydrophobic-to-hydrophilic vector projections, and the average number of interhelix hydrophilic (serine–serine) contacts lining the pore of the transmembrane channel. To analyze dynamical properties, we calculated the rotational autocorrelation function of each helix and the cross-correlation of the rotational velocity between adjacent helices. The observed structural and dynamical characteristics show that higher order bundles containing four to six peptides are composed of multiple lower order bundles of one to three peptides. For example, the LS2 channel was found to be stable in a tetrameric bundle composed of a “dimer of dimers.” In addition, we observed that there is a minimum of two strong hydrophilic contacts between a pair of adjacent helices in the dimer to tetramer systems and only one strong hydrophilic interhelix contact in helix pairs of the pentamer and hexamer systems. We believe these results are general and can be applied to more complex ion channels, providing insight into ion channel stability and assembly.  相似文献   

10.
The structures of functional peptides corresponding to the predicted channel-lining M2 segment of the nicotinic acetylcholine (AChR) were determined using solution NMR experiments on micelle samples, and solid-state NMR experiments on bilayer samples. The AChR M2 peptide forms a straight transmembrane α-helix, with no kinks. M2 inserts in the lipid bilayer at an angle of 12° relative to the bilayer normal, with a rotation about the helix long axis such that the polar residues face the N-terminus of the peptide, which is assigned to be intracellular. A molecular model of the AChR channel pore, constructed from the solid-state NMR 3-D structure of the AChR M2 helix in the membrane assuming a pentameric organization, results in a funnel-like architecture for the channel with the wide opening on the N-terminal intracellular side. A central narrow pore has a diameter ranging from about 3.0 Å at its narrowest, to 8.6 Å at its widest. Nonpolar residues are predominantly on the exterior of the bundle, while polar residues line the pore. This arrangement is in fair agreement with evidence collected from permeation, mutagenesis, affinity labeling and cysteine accessibility measurements. A pentameric M2 helical bundle may, therefore, represent the structural blueprint for the inner bundle that lines the channel of the nicotinic AChR.  相似文献   

11.
Molecular dynamics (MD) simulations have been carried out on bundles of the channel-forming transmembrane (TM) domain of the viral protein U (VPU(1-27) and VPU(6-27)) from the human immunodeficiency virus (HIV-1). Simulations of hexameric and pentameric bundles of VPU(6-27) in an octane/water membrane mimetic system suggested that the pentamer is the preferred oligomer. Accordingly, an unconstrained pentameric helix bundle of VPU(1-27) was then placed in a hydrated palmitoyl-oleyl-3-n-glycero-phosphatidylethanolamine (POPE) lipid bilayer and its structural properties calculated from a 3-ns MD run. Some water molecules, initially inside the channel lumen, were expelled halfway through the simulation and the bundle adopted a conical structure reminiscent of previous MD results obtained for VPU(6-27) in an octane/water system. The pore constriction generated may correspond to a closed state of the channel and underlies the relocation of the W residue toward the pore lumen. The relative positions of the helices with respect to the bilayer and their interactions with the lipids are discussed. The observed structure is stabilized via specific interactions between the VPU helices and the carbonyl oxygen atoms of the lipid molecules, particularly at the Q and S residues.  相似文献   

12.
The nicotinic acetylcholine receptor (nAChR) is an integral membrane protein that forms ligand-gated and cation-selective channels. The central pore is lined by a bundle of five approximately parallel M2 helices, one from each subunit. Candidate model structures of the solvated pore region of a homopentameric (alpha7)5 nAChR channel in the open state, and in two possible forms of the closed state, have been studied using molecular dynamics simulations with restraining potentials. It is found that the mobility of the water is substantially lower within the pore than in bulk, and the water molecules become aligned with the M2 helix dipoles. Hydrogen-bonding patterns in the pore, especially around pore-lining charged and hydrophilic residues, and around exposed regions of the helix backbone, have been determined. Initial studies of systems containing both water and sodium ions together within the pore region have also been conducted. A sodium ion has been introduced into the solvated models at various points along the pore axis and its energy profile evaluated. It is found that the ion causes only a local perturbation of the water structure. The results of these calculations have been used to examine the effectiveness of the central ring of leucines as a component of a gate in the closed-channel model.  相似文献   

13.
Part of the genome of the human immunodeficiency virus type 1 (HIV-1) encodes for a short membrane protein Vpu, which has a length of 81 amino acids. It has two functional roles: (i) to downregulate CD4 and (ii) to support particle release. These roles are attributed to two distinct domains of the peptide, the cytoplasmic and transmembrane (TM) domains, respectively. It has been suggested that the enhanced particle release function is linked to the ion channel activity of Vpu, with a slight preference for cations over anions. To allow ion flux across the membrane Vpu would be required to assemble in homooligomers to form functional water-filled pores. In this study molecular dynamics simulations are used to address the role of particular amino acids in 4, 5, and 6 TM helix bundle structures. The helices (Vpu(6-33)) are extended to include hydrophilic residues such as Glu, Tyr, and Arg (EYR motif). Our simulations indicate that this motif destabilizes the bundles at their C-terminal ends. The arginines point into the pore to form a positive charged ring that could act as a putative selectivity filter. The helices of the bundles adopt slightly higher average tilt angles with decreasing number of helices. We also suggest that the helices are kinked. Conductance measurements on a peptide (Vpu(1-32)) reconstituted into lipid membranes show that the peptide forms ion channels with several conductance levels.  相似文献   

14.
Alamethicin is an antimicrobial peptide that forms stable channels with well-defined conductance levels. We have used extended molecular dynamics simulations of alamethicin bundles consisting of 4, 5, 6, 7, and 8 helices in a palmitoyl-oleolyl-phosphatidylcholine bilayer to evaluate and analyze channel models and to link the models to the experimentally measured conductance levels. Our results suggest that four helices do not form a stable water-filled channel and might not even form a stable intermediate. The lowest measurable conductance level is likely to correspond to the pentamer. At higher aggregation numbers the bundles become less symmetrical. Water properties inside the different-sized bundles are similar. The hexamer is the most stable model with a stability comparable with simulations based on crystal structures. The simulation was extended from 4 to 20 ns or several times the mean passage time of an ion. Essential dynamics analyses were used to test the hypothesis that correlated motions of the helical bundles account for high-frequency noise observed in open channel measurements. In a 20-ns simulation of a hexameric alamethicin bundle, the main motions are those of individual helices, not of the bundle as a whole. A detailed comparison of simulations using different methods to treat long-range electrostatic interactions (a twin range cutoff, Particle Mesh Ewald, and a twin range cutoff combined with a reaction field correction) shows that water orientation inside the alamethicin channels is sensitive to the algorithms used. In all cases, water ordering due to the protein structure is strong, although the exact profile changes somewhat. Adding an extra 4-nm layer of water only changes the water ordering slightly in the case of particle mesh Ewald, suggesting that periodicity artifacts for this system are not serious.  相似文献   

15.
Proline residues are commonly found in putative transbilayer helices of many integral membrane proteins which act as transporters, channels and receptors. Intramembranous prolines are often conserved between homologous proteins. It has been suggested that such intrahelical prolines provide liganding sites for cations via exposure of the backbone carbonyl oxygen atoms of residues i-3 and i-4 (relative to the proline). Molecular modelling studies have been carried out to evaluate this proposal. Bundles of parallel proline-kinked helices are considered as simplified models of ion channels. The energetics of K+ ion-helix bundle interactions are explored. It is shown that carbonyl oxygens exposed by the proline-induced kink and at the C-terminus of the helices may provide cation-liganding sites. 'Hybrid' bundles of antiparallel helices, only some of which contain proline residues, are considered as models of transport proteins. Again, proline-exposed carbonyl oxygens are shown to be capable of liganding cations. The roles of alpha-helix dipoles and of the geometry of helix packing are considered in relation to cation-bundle interactions. Implications with respect to modelling of ion channel and transport proteins are discussed.  相似文献   

16.
The M2delta peptide self-assembles to form a pentameric bundle of transmembrane alpha-helices that is a model of the pore-lining region of the nicotinic acetylcholine receptor. Long (>15 ns) molecular dynamics simulations of a model of the M2delta(5) bundle in a POPC bilayer have been used to explore the conformational dynamics of the channel assembly. On the timescale of the simulation, the bundle remains relatively stable, with the polar pore-lining side chains remaining exposed to the lumen of the channel. Fluctuations at the helix termini, and in the helix curvature, result in closing/opening transitions at both mouths of the channel, on a timescale of approximately 10 ns. On average, water within the pore lumen diffuses approximately 4x more slowly than water outside the channel. Examination of pore water trajectories reveals both single-file and path-crossing regimes to occur at different times within the simulation.  相似文献   

17.
Isolated pore-lining helices derived from three types of K-channel have been analyzed in terms of their structural and dynamic features in nanosecond molecular dynamics (MD) simulations while spanning a lipid bilayer. The helices were 1) M1 and M2 from the bacterial channel KcsA (Streptomyces lividans), 2) S5 and S6 from the voltage-gated (Kv) channel Shaker (Drosophila melanogaster), and 3) M1 and M2 from the inward rectifier channel Kir6.2 (human). In the case of the Kv and Kir channels, for which x-ray structures are not known, both short and long models of each helix were considered. Each helix was incorporated into a lipid bilayer containing 127 palmitoyloleoylphosphatidylcholine molecules, which was solvated with approximately 4000 water molecules, yielding approximately 20, 000 atoms in each system. Nanosecond MD simulations were used to aid the definition of optimal lengths for the helix models from Kv and Kir. Thus the study corresponds to a total simulation time of 10 ns. The inner pore-lining helices (M2 in KcsA and Kir, S6 in Shaker) appear to be slightly more flexible than the outer pore-lining helices. In particular, the Pro-Val-Pro motif of S6 results in flexibility about a molecular hinge, as was suggested by previous in vacuo simulations (, Biopolymers. 39:503-515). Such flexibility may be related to gating in the corresponding intact channel protein molecules. Analysis of H-bonds revealed interactions with both water and lipid molecules in the water/bilayer interfacial region. Such H-bonding interactions may lock the helices in place in the bilayer during the folding of the channel protein (as is implicit in the two-stage model of membrane protein folding). Aromatic residues at the extremities of the helices underwent complex motions on both short (<10 ps) and long (>100 ps) time scales.  相似文献   

18.
We have studied the structure and properties of a bundle of alpha-helical peptides embedded in a 1,2-dimyristoyl-3-phosphatidylcholine phospholipid bilayer by molecular dynamics simulations. The bundle of five transmembrane deltaM2 segments constitutes the model for the pore region of the nicotinic acetylcholine receptor, which is the neurotransmitter-gated ion-channel responsible for the fast propagation of electrical signals between cells at the nerve-muscle synapse. The deltaM2 segments were shown to oligomerize in biomembranes resulting in ion-channel activity with characteristics similar to the native protein, and the structure of the isolated peptides was studied in 1,2-dimyristoyl-3-phosphatidylcholine bilayers and micelles by NMR experiments (Opella, S. J., et al. 1999. Nat. Struct. Biol. 6:374-379). Our analyses indicate that the structure, helix tilt, and the overall shape of the channel are in good agreement with the NMR experiments and the proposed model for the channel, which we show is formed by rings of functional residues. The studied geometry resulted in a closed pore state, where the channel is partially dehydrated at the hydrophobic extracellular half and the extracellular mouth of the channel blocked by the hydrocarbon chains of Arg+ residues. The arginine amino acids form intermolecular salt-bridges with the C-terminus, which contribute as well to the bundle stabilization.  相似文献   

19.
Antiamoebin (AAM) is a polypeptide antibiotic that is capable of forming ion channels in phospholipid membranes: planar bilayer studies have suggested the channels are octamers. The crystal structure of a monomeric form of AAM has provided the basis for molecular modelling of an octameric helical bundle channel. The channel model is funnel-shaped due to a substantial bend in the middle of the polypeptide chain caused by the presence of several imino acids. Inter-monomer hydrogen bonds orientate a ring of glutamine side chains to form a constriction in the pore lumen. The channel lumen is lined both by side chains of Gln11 and by polypeptide backbone carbonyl groups. Electrostatic calculations on the model are compatible with a channel that transports cations across membranes. The AAM channel model is compared with the crystal structures of two bacterial (KcsA andMthK) potassium channels. AAM and the potassium channels exhibit common functional features, such as cation-selectivity and similar single channel conductances. Common structural features include being multimers, each formed from a bundle of eight transmembrane helices, with lengths roughly comparable to the thickness of lipid bilayers. In addition, they all have aromatic amino acids that lie at the bilayer interfaces and which may aid in the stabilization of the transmembrane helices, as well as narrower constrictions that define the ion binding sites or selectivity filters in the pore lumen. The commonality of structural and functional features in these channels thus suggests that antiamoebin is a good, simple model for more complex bacterial and eukaryotic ion channels, capable of providing insight into details of the mechanisms of ion transport and multimeric channel stability.  相似文献   

20.
We present the results of 2-ns molecular dynamics (MD) simulations of a hexameric bundle of Alm helices in a 1-palmitoyl-2-oleoylphosphatidylcholine bilayer. These simulations explore the dynamic properties of a model of a helix bundle channel in a complete phospholipid bilayer in an aqueous environment. We explore the stability and conformational dynamics of the bundle in a phospholipid bilayer. We also investigate the effect on bundle stability of the ionization state of the ring of Glu18 side chains. If all of the Glu18 side chains are ionised, the bundle is unstable; if none of the Glu18 side chains are ionized, the bundle is stable. pKA calculations suggest that either zero or one ionized Glu18 is present at neutral pH, correlating with the stable form of the helix bundle. The structural and dynamic properties of water in this model channel were examined. As in earlier in vacuo simulations (Breed et al., 1996 .Biophys. J. 70:1643-1661), the dipole moments of water molecules within the pore were aligned antiparallel to the helix dipoles. This contributes to the stability of the helix bundle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号