首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The amount of DNA per haploid genome, the C-value, is often directly correlated with nuclear and cell volume, but inversely correlated with cell replication rate. Also, rates of cellular growth sometimes appear to be correlated with organismal developmental rates and life history patterns. Among vertebrates, salamanders exhibit the greatest variation in genome size. In the present study we have examined interspecific and intraspecific variation in blood cell DNA levels in the genus Desmognathus, which shows greater variation in life history traits than any other salamander genus. Specimens of Desmognathus quadramaculatus, D. monticola, D. ochrophaeus and D. wrighti were collected from nature at two localities in the southern Appalachian Mountains. Estimates of genome size in pg of DNA were obtained from blood smears by DNA-Feulgen cytophotometry, using erythrocyte nuclei of Xenopus laevis as an internal reference standard of 6.35 pg DNA per cell. C-values of Desmognathus are the smallest in the order Caudata. Although significant variation in DNA levels was found among the four species, the differences were small, and do not support previously proposed relationships between C-value and life-history variation.  相似文献   

2.
Variation in the amount of nuclear DNA, the C-value, does not correlate with differences in morphological complexity. There are two classes of explanations for this observation, which is known as the ''C-value paradox''. The quantity of DNA may serve a ''nucleotypic'' function that is positively selected. Alternatively, large genomes may consist of junk DNA, which increases until it negatively affects fitness. Attempts to resolve the C-value paradox focus on the link between genome size and fitness. This link is usually sought in life history traits, particularly developmental rates. I examined the relationship among two life history traits, egg size and embryonic developmental time and genome size, in 15 species of plethodontid salamanders. Surprisingly, there is no correlation between egg size and developmental time, a relationship included in models of life history evolution. However, genome size is positively correlated with embryonic developmental time, a result that is robust with respect to many sources of variation in the data. Without information on the targets of natural selection it is not possible with these data to distinguish between nucleotypic and junk DNA explanations for the C-value paradox.  相似文献   

3.
郭水良  于晶  李丹丹  周平  方其  印丽萍 《生态学报》2015,35(19):6516-6529
为了评估DNA C-值和基因组大小(genome size)在植物入侵性评估中的价值,应用流式细胞仪测定了长三角及邻近地区138种草本植物的核DNA含量,其中111种为首次报道。在此基础上比较了不同植物类群这两个值的差异,特别是入侵性与非入侵性植物这两个值的差异。结果表明:(1)138种草本植物平均DNA C-值为1.55 pg,最大者是最小者的37.17倍。127个类群平均基因组大小为1.08 pg,最大者是最小者的34.11倍;(2)统计了菊科(Asteraceae)、禾本科(Poaceae)、石竹科(Caryophyllaceae)、十字花科(Brassicaceae)、玄参科(Scrophulariaceae)、蓼科(Polygonaceae)、唇形科(Labiatae)和伞形科(Umbelliferae)的DNA C-值和基因组大小,发现禾本科植物的这两个值显著地大于其他7个科(P0.01)。单子叶的DNA C-值和基因组极显著地大于双子叶植物(P0.01);(3)杂草比非杂草具有更低的DNA C-值(P0.01)和基因组大小(P0.001);与DNA C-值相比,基因组大小在这两个类群之间的差异更为明显(P0.001),这种现象也体现在菊科植物中。随着基因组(X1)和DNA C-值(X2)由大变小,植物的杂草性(入侵性,Y)由弱变强,两者关系分别符合:Y=2.2334-1.2847 ln(X1)(r=0.4612,P0.01)和Y=2.4421-0.7234 ln(X2)(r=0.2522,P0.01),DNA C-值和基因组大小可以作为植物入侵性评估的一个指标;(4)多倍体杂草的基因组极明显地小于二倍体杂草(P0.01),前者为后者的0.63倍。在非杂草中,多倍体基因组比二倍体的略小,前者仅为后者的0.84倍,差异不显著(P0.5)。菊科植物中多倍体杂草的基因组也显著地小于二倍体杂草(P0.1)。基因组变小和多倍体化相结合,进一步增强了植物的入侵性。在多倍体植物入侵性评估中,基因组大小比DNA C-值更有价值。  相似文献   

4.
Patterns of genome size in the copepoda   总被引:1,自引:1,他引:0  
Adult somatic nuclear DNA contents are reported for eleven cyclopoid species (Megacyclops latipes, Mesocyclops edax, M. longisetus, M. ruttneri, M. leuckarti, M. woutersi, Macrocyclops albidus, Cyclops strenuus, Acanthocyclops robustus, Diothona oculata, Thermocyclops crassus) and for the harpacticoid Tigriopus californicus and range from 0.50 to 4.1 pg DNA per nucleus. These diploid genome sizes are consistent with previously published values for four Cyclops species (0.28–1.8 pg DNA per nucleus), but are strikingly smaller than those reported for marine calanoids (4.32–24.92 pg DNA per nucleus). We discuss three explanations, none of them exclusive of another, to account for the smaller size and range of cyclopoid genome sizes relative to calanoid genome sizes: (1) higher prevalence of chromatin diminution in the Cyclopoida, (2) phylogenetic structure or older age of the Calanoida relative to Cyclopoida and (3) nucleotypic selection that may influence life history variation and fitness. Measurements of genome size were made on Feulgen stained, somatic cell nuclei, using scanning microdensitometry which is well suited to the sparse and heterogeneous populations of copepod nuclei. The importance of measuring large numbers of nuclei per specimen, possible sources of variation associated with cytophotometric measurements, and appropriate use of internal reference standards and stoichiometry of the Feulgen stained nuclei are discussed.  相似文献   

5.
Nuclear DNA contents of developing sperm were estimated for 17 species of bryophytes by cytophotometry in squash preparations of antheridia after Feulgen staining. Genome sizes are in the lower end of the range for land plants. Two homwort C-values have the lowest recorded for bryophytes at 0.17 and 0.26 pg DNA per nucleus. In liverworts, C-values range from 0.49 pg in Blasia pusilla to 4.05 pg in Pellia epiphylla, while moss genome sizes are less variable, ranging from 0.38 pg in Takakia ceratophylla to 0.92 pg in Atrichum oerstedianum. DNA content is not correlated with chromosome number in these bryophytes, but sperm cell size and cellular complexity are directly related to C-value. Structural variations in the locomotory apparatus are viewed as evolutionary modifications associated with changes in genomic complexity, with a generalized increase in complexity of the motile assemblage accompanying increases in DNA content. Nuclear DNA values are not as variable in bryophytes as they are in pteridophytes and seed plants. We suggest that in plants producing biflagellated gametes, lower DNA contents afford a selective advantage. Comparisons with plants that produce multiflagellated or pollen-dispersed sperm indicate operation of a nucleotypic effect in archegoniates with biflagellated sperm. This effect may be on sperm cell functioning, which in turn influences reproductive success.  相似文献   

6.
The geographic position of Lebanon in the Mediterranean basin at the transition of two major landmasses, Eurasia and Africa, has contributed to its high plant diversity and makes its flora particularly interesting to study. This paper contributes to the plant DNA C-value database of native Lebanese taxa. These data should reinforce biodiversity evaluation, systematic and evolution studies involving processes of speciation such as polyploidisation. C-values have been estimated by flow cytometry using propidium iodide as intercalary fluorochrome stain. Each sample comprised at least five individuals. Where possible, several populations were measured for each species. This study presents C-values for 225 taxa belonging to 55 families and 141 genera. C-values are novel for 193 taxa including 126 plants endemic to the Eastern Mediterranean region. These are the first values for 50 genera. In this panel, genome size ranged from 1C = 0.28 pg in Hypericum thymifolium to 54.69 pg in Fritillaria alfredae. The life growth form and life cycle type are analysed according to the genome size class. Cases of polyploidy are reported for some species usually considered as only diploid. Examination of C-value variation through flow cytometry constitutes a powerful tool to screen taxonomic heterogeneity, opening further investigations.  相似文献   

7.
It is now clear that whole genome duplications have occurred in all eukaryotic evolutionary lineages, and that the vast majority of flowering plants have experienced polyploidisation in their evolutionary history. However, study of genome size variation in microalgae lags behind that of higher plants and seaweeds. In this study, we have addressed the question whether microalgal phylogeny is associated with DNA content variation in order to evaluate the evolutionary significance of polyploidy in the model genus Micrasterias. We applied flow-cytometric techniques of DNA quantification to microalgae and mapped the estimated DNA content along the phylogenetic tree. Correlations between DNA content and cell morphometric parameters were also tested using geometric morphometrics. In total, DNA content was successfully determined for 34 strains of the genus Micrasterias. The estimated absolute 2C nuclear DNA amount ranged from 2.1 to 64.7 pg; intraspecific variation being 17.4–30.7 pg in M. truncata and 32.0–64.7 pg in M. rotata. There were significant differences between DNA contents of related species. We found strong correlation between the absolute nuclear DNA content and chromosome numbers and significant positive correlation between the DNA content and both cell size and number of terminal lobes. Moreover, the results showed the importance of cell/life cycle studies for interpretation of DNA content measurements in microalgae.  相似文献   

8.
The study of genome size evolution in a phylogenetic context in related polyploid and diploid lineages can help us to understand the advantages and disadvantages of genome size changes and their effect on diversification. Here, we contribute 199 new DNA sequences and a nearly threefold increase in genome size estimates in polyploid and diploid Veronica (Plantaginaceae) (to 128 species, c. 30% of the genus) to provide a comprehensive baseline to explore the effect of genome size changes. We reconstructed internal transcribed spacer (ITS) and trnL‐trnL‐trnF phylogenetic trees and performed phylogenetic generalized least squares (PGLS), ancestral character state reconstruction, molecular dating and diversification analyses. Veronica 1C‐values range from 0.26 to 3.19 pg. Life history is significantly correlated with 1C‐value, whereas ploidy and chromosome number are strongly correlated with both 1C‐ and 1Cx‐values. The estimated ancestral Veronica 1Cx‐value is 0.65 pg, with significant genome downsizing in the polyploid Southern Hemisphere subgenus Pseudoveronica and two Northern Hemisphere subgenera, and significant genome upsizing in two diploid subgenera. These genomic downsizing events are accompanied by increased diversification rates, but a ‘core shift’ was only detected in the rate of subgenus Pseudoveronica. Polyploidy is important in the evolution of the genus, and a link between genome downsizing and polyploid diversification and species radiations is hypothesized. © 2015 The Linnean Society of London, Botanical Journal of the Linnean Society, 2015, 178 , 243–266.  相似文献   

9.
Genome size has been estimated by flow cytometry in 14 populations belonging to eight taxa (seven species, one of them with two varieties) of the genus Tripleurospermum. 2C nuclear DNA amounts range from 4.87 to 9.22 pg, and nuclear DNA amounts per basic chromosome set from 1.99 to 2.75 pg. Statistically significant differences depending on ploidy level, life cycle or environmental factors such as altitude have been found. Also, genome size is positively correlated with total karyotype length. The presence of rhizome is related to nuclear DNA content in these species.This work was supported by project BOS2001-3041-C02-01 of the Spanish government, and one of the authors (S.G.) received a predoctoral grant from the Spanish government.  相似文献   

10.
M Torrell  J Vallès 《Génome》2001,44(2):231-238
Genome size was estimated by flow cytometry in 24 populations belonging to 22 Artemisia taxa (21 species, 1 with two subspecies), which represent the distinct subgenera, life forms, basic chromosome numbers, and ploidy levels in the genus. 2C nuclear DNA content values range from 3.5 to 25.65 pg, which represents a more than sevenfold variation. DNA content per haploid genome ranges from 1.75 to 5.76 pg. DNA amount is very well correlated with karyotype length and ploidy level. Some variations in genome size have systematic and evolutionary implications, whereas others are linked to ecological selection pressures.  相似文献   

11.
Fluorescent chromosome banding and measurements of nuclear DNA content by image cytometry of Feulgen-stained cells were performed in one sample each of eight diploid (2n?=?24) species of Solanum: S.?endoadenium, S.?argentinum, S.?pseudocapsicum, S.?atropurpureum, S.?elaeagnifolium, S.?sisymbriifolium, S.?chenopodioides, and S.?palustre. The species studied could be distinguished by heterochromatin amount, banding patterns, and genome size. They exhibited only GC-rich heterochromatin and showed a comparatively low heterochromatin amount (expressed as percentage of haplotype karyotype length), ranging from 2.10 in S.?argentinum to 8.37 in S.?chenopodioides. Genome size displayed significant variation between species, with 1C-values ranging from 0.75?pg (735?Mbp) in S.?palustre to 1.79?pg (1,754?Mbp) in S.?sisymbriifolium. No significant correlation between genome size and heterochromatin amount was observed, but intrachromosomal asymmetry index (A 1) was negative and significantly correlated with heterochromatin amount. DNA content was positively and significantly correlated with karyotype length. DNA C-value distribution in the genus as well as karyotype affinities and relationships between species are discussed in relation to different infrageneric classifications of Solanum.  相似文献   

12.
在检索植物C值数据库和种子数据信息库的基础上,对禾本科282种植物的基因组参数(倍性、染色体数、C值、GS值和平均每条染色体DNA含量)和种子特性(千粒重、含油量和蛋白含量)进行了统计分析。分析结果表明,禾本科植物C值在0.35~19.7 pg,大多位于1.6~3.2 pg之间,呈偏正态分布,种子千粒重在0.05~252 g,绝大多数位于0.05~20.0 g,呈偏态分布,二者平均值分别为4.14 pg和7.1 g。随着染色体倍性增加,C值在二倍体到八倍体之间显著增加,而GS值和平均每染色体DNA含量在二倍体到六倍体之间显著下降(p<0.05)。雀麦属和羊茅属随着倍性增加,C值显著增加,表现与禾本科相似的变化规律,GS值下降却不明显。相关性分析表明,禾本科植物C值与倍性、染色体数、GS值及平均每条染色体DNA含量均呈极显著正相关(p<0.01),与种子千粒重无相关性。GS值与染色体数、倍性呈极显著负相关,而与千粒重呈极显著正相关。C值与种子含油量呈显著负相关,但与种子蛋白含量之间无相关性。以上结果表明,禾本科植物在系统演化和进化过程中,主要通过倍性和染色体的增加来增大C值,可能通过某种删除或丢失机制来降低GS值,从而保持较高的适应环境能力和进化速率。  相似文献   

13.
In 1965 Van't Hof estimated the nuclear DNA amount of an unidentifiedAllium cepa L. cultivar as 2C = 33.55 pg (Experimental CellResearch39: 8–58). This value has been adopted by commonusage as the main calibration standard for angiosperm DNA C-valueestimations. However, different cultivars have been used whileassuming species DNA C-value constancy. Surprisingly this assumptionhas never been tested. A. cepa is an outbreeder with telomericheterochromatic segments, so intraspecific variation in C-value,possibly correlated with environmental factors as seen in Zeamays L., might be expected. We used laser flow cytometry tocompare nuclear DNA amounts in roots of six A. cepa cultivarsused as calibration standards or from different environments.Tissues from one cultivar, or similar volumes of tissue fromtwo cultivars, were run and the variance between nuclei in 2Cpeaks compared. Only one shoulderless 2C peak was seen for allpairs of co-chopped cultivars. Thus, no large differences inC-value between cultivars from different environments were found.Moreover, comparing cultivars run singly or as pairs showedno evidence for increased variation in 2C peaks in the latter,and hence of critical differences in DNA amounts between ‘AilsaCraig’ and another cultivar. Such variation was insufficientto make their use as alternative calibration standards, or thepractice of imputing Van't Hof's original C-value estimate tothem, unacceptable for most practical purposes. Given the mechanismsknown which can generate genome size variation, the degree ofconstancy in DNA C-value found seems remarkable. Copyright 2000Annals of Botany Company Allium cepa, onion cultivars, calibration standards, DNA C-value constancy, flow cytometry  相似文献   

14.
云南芒果种质基因组大小测定与变异分析   总被引:1,自引:0,他引:1  
为了解云南芒果(Mangifera indica L.)种质资源的基因组的变异情况, 采用流式细胞术对35 份云南芒果种质资源的基因组大小进行了测定和变异分析。结果表明, 云南芒果种质资源的基因组大小存在一定差异, 基因组的平均C值是0.445110 pg, 0.4353177×109 bp, 最小的是采自景洪的半栽培种YSM-44 (0.434567 pg, 0.4250060×109 bp), 最大的是采自红河的野生种YSM-25 (0.458679 pg, 0.4485881×109 bp)。基因组C值变异程度最大的是野生种(CV=1.65%), 其次为半野生种(CV=1.26%)、半栽培种(CV=1.21%)和栽培种(CV=0.11%)。与芒果具有相近基因组大小的多为苔藓植物, 与"C值悖论"观点相一致。因此, 应用流式细胞术能准确、快捷地测定芒果基因组大小, 而且云南野生、半野生及半栽培芒果种质资源遗传变异类型丰富, 有较大的挖掘利用潜力。  相似文献   

15.
We determined female genome sizes using flow cytometry for 211 Drosophila melanogaster sequenced inbred strains from the Drosophila Genetic Reference Panel, and found significant conspecific and intrapopulation variation in genome size. We also compared several life history traits for 25 lines with large and 25 lines with small genomes in three thermal environments, and found that genome size as well as genome size by temperature interactions significantly correlated with survival to pupation and adulthood, time to pupation, female pupal mass, and female eclosion rates. Genome size accounted for up to 23% of the variation in developmental phenotypes, but the contribution of genome size to variation in life history traits was plastic and varied according to the thermal environment. Expression data implicate differences in metabolism that correspond to genome size variation. These results indicate that significant genome size variation exists within D. melanogaster and this variation may impact the evolutionary ecology of the species. Genome size variation accounts for a significant portion of life history variation in an environmentally dependent manner, suggesting that potential fitness effects associated with genome size variation also depend on environmental conditions.  相似文献   

16.
The present communication deals with 2C nuclear genome size variation in a fairly small genus Guizotia. Twenty-four accessions belonging to six species, out of seven known, were analysed in order to elucidate the extent of DNA variation both at an intra—as well as interspecific level. At the intraspecific level none of the species exhibited significant differences in their genome size. Between the species, the 2C DNA amounts ranged from 3.61 pg in G. reptans to 11.37 pg in G. zavattarii; over three-fold DNA variation is evident. Apparently these interspecific DNA differences have been achieved independent of the numerical chromosomal change(s), as all the Guizotias share a common chromosome number 2n=2x=30. The cultivated oilseed crop, G. abyssinica (7.57 pg), has accommodated nearly 78% extra DNA in its chromosome complement during the evolutionary time scale of its origin and domestication from the wild progenitor G. schimperi (4.25 pg). The extent of genomic DNA difference(s) between the species has been discussed in the light of their interrelationships and diversity.  相似文献   

17.
为探究黄藤(Daemonoropsjenkinsiana)染色体核型和基因组的大小,采用体细胞染色体常规制片法与显微摄影技术相结合的方法,对黄藤染色体进行了核型分析,同时以番茄(Lycopersicon esculentum)为内标,应用流式细胞术对黄藤叶片基因组大小、DNA含量和DNA倍性进行了测定。结果表明,黄藤茎尖是理想的染色体制片材料;黄藤的染色体数为2n=24,核型公式为K(2n)=1M+17m+5sm+1st,核型类型为2C;核型不对称系数61.20%;黄藤的DNA含量为1.57 pg,基因组大小为1 539.53 Mb,黄藤的DNA倍性为二倍体(2n)。这是首次报道黄藤的核型和基因组大小,为深入开展黄藤属及其近缘属植物的核型和基因组比较分析提供了参考依据。  相似文献   

18.
论DNA C-值与植物入侵性的关系   总被引:13,自引:1,他引:12  
倪丽萍  郭水良 《生态学报》2005,25(9):2372-2381
外来植物的入侵已引起世界普遍关注,强调并迅速提高对外来植物的预警能力是目前首当其冲的任务,由此,如何预测植物的入侵能力,也就成为入侵生态学的一个核心问题。20世纪90年代以来,关于植物入侵争论的焦点集中于入侵植物本身的生物学特点或入侵生境特点,然而,争议多于结论,至今未能找出有效预测外来植物入侵性的答案。着重从DNAC-值与植物入侵性关系这一角度进行论述。自20世纪30年代以来,染色体数目、大小、倍性在细胞水平的变化被认为可能与植物入侵性相关,因为染色体数目、大小变化是物种在细胞水平上的一种表型变异形式,而细胞水平累积的效应有可能决定着植物整体水平上对环境的适应能力,从而决定植物的分布范围,最终与入侵性相关。但是,这些领域的研究也没有得到一致的结论。近年来,人们将注意力转移至被子植物DNAC-值变化在植物环境适应中的生物学意义。现有资料表明,DNAC-值与细胞大小、体积、重量、发育速率等细胞水平上的表型特征存在正相关关系,这些与核型相关的DNAC-值的影响效应,可扩展到多细胞植物有机体的发育速率,在植物生活史的各个阶段起作用,其中就影响到两个受时间因子限制同时又与植物分布相关联的特征——最短世代时间及生活周期类型,而许多入侵成功植物即表现为世代时间短等特点,对于入侵性植物,其不可避免会受生长时间及分布环境的限制,如能保证其在这两方面占有优势便能入侵成功。已有研究结果表明,某些外来入侵种比同属其它种类具有较低的核DNA含量,由此,提出通过研究植物DNAC值,就有可能预测植物入侵能力的强弱,低DNAC-值的植物具有更强的适应环境的能力,即与入侵性大小呈负相关,这为发现新的植物入侵性预测指标提供了思路。  相似文献   

19.
BACKGROUND AND AIMS: The amount of DNA per chromosome set is known to be a fairly constant characteristic of a species. Its interspecific variation is enormous, but the biological significance of this variation is little understood. Some of the characters believed to be correlated with DNA amount are alpine habitat, life history and breeding system. In the present study, the aim is to distinguish between direct causal connections and chance correlation of the amount of DNA in the genus Veronica. METHODS: Estimates of DNA amount were analysed for 42 members of Veroniceae in connection with results from a phylogenetic analysis of plastid trnL-F DNA sequences and tested correlations using standard statistical tests, phylogenetically independent contrasts and a model-based generalized least squares method to distinguish the phylogenetic effect on the results. KEY RESULTS: There appears to be a lower upper limit for DNA amount in annuals than in perennials. Most DNAC-values in Veroniceae are below the mean DNA C-value for annuals in angiosperms as a whole. However, the long-debated correlation of low genome size with annual life history is not significant (P = 0.12) using either standard statistical tests or independent contrasts, but it is significant with the generalized least squares method (P < 0.01). CONCLUSIONS: The correlation of annual life history and low genome size found in earlier studies could be due to the association of annual life history and selfing, which is significantly correlated with low genome size using any of the three tests applied. This correlation can be explained by models showing a reduction in transposable elements in selfers. A significant correlation of higher genome sizes with alpine habitats was also detected.  相似文献   

20.

Background  

Diatoms are one of the most species-rich groups of eukaryotic microbes known. Diatoms are also the only group of eukaryotic micro-algae with a diplontic life history, suggesting that the ancestral diatom switched to a life history dominated by a duplicated genome. A key mechanism of speciation among diatoms could be a propensity for additional stable genome duplications. Across eukaryotic taxa, genome size is directly correlated to cell size and inversely correlated to physiological rates. Differences in relative genome size, cell size, and acclimated growth rates were analyzed in isolates of the diatom Ditylum brightwellii. Ditylum brightwellii consists of two main populations with identical 18s rDNA sequences; one population is distributed globally at temperate latitudes and the second appears to be localized to the Pacific Northwest coast of the USA. These two populations co-occur within the Puget Sound estuary of WA, USA, although their peak abundances differ depending on local conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号