首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 796 毫秒
1.
It is shown that endothelial cells from human umbilical vein have a reduced activity and gene expression of the “classic” antioxidant enzymes (Cu,Zn-superoxide dismutase, catalase, and Se-containing glutathione peroxidase). At the same time, a high expression level of peroxiredoxin genes was identified in the same endothelial cells, which obviously indicates the predominant involvement of these enzymes in protecting the endothelium from the damaging effect of free radical peroxidation.  相似文献   

2.
It has been proposed that the mode of action of ethylenediurea, a very effective antiozonant, is via an increase in the antioxidant enzyme superoxide dismutase (EH Lee, JH Bennett [1982] Plant Physiol 69: 1444-1449). Data presented here refute that hypothesis. No ethylenediurea-associated increases in Cu/Zn-superoxide dismutase or Mn-superoxide dismutase activity, nor in steady-state Cu/Zn-superoxide dismutase protein levels, were found in soluble extracts of bean (Phaseolus vulgaris L. cv Bush Blue Lake 290) leaves. However, the cytosolic Cu/Zn-superoxide dismutase increased as a result of ozone fumigation and subsequent injury. Also noted was a developmentally related difference between chloroplastic and cytosolic Cu/Zn-superoxide dismutase, the latter declining during maturation of the leaf.  相似文献   

3.
We investigated the effects of the dietary addition of orotic acid on liver antioxidant enzymes, mRNA levels of these enzymes, and peroxidative products by comparing casein with soy protein as the source of dietary protein. Rats fed the casein diet accumulated more liver lipids than those fed the soy protein diet when orotic acid was added. The addition of orotic acid lowered both the activity of liver Cu, Zn-superoxide dismutase and the level of Cu, Zn-superoxide dismutase mRNA. The addition of orotic acid led to a significant increase in the contents of conjugated dienes and protein carbonyls in the liver. In addition, dietary soy protein protected the increase in the levels of lipids and proteins peroxide induced by orotic acid. The addition of orotic acid to the casein diet increased the activities of both serum ornithine carbamoyltransferase and alanine aminotransferase. Thus, liver damage might result from the increased superoxide anion due to the decrease in the activity of hepatic superoxide dismutase, as well as increase in the production of hepatic peroxidative products in rats fed the casein diet with orotic acid.  相似文献   

4.
Mitochondrial respiratory chain dysfunction, impaired intracellular Ca2+ homeostasis and activation of the mitochondrial apoptotic pathway are pathological hallmarks in animal and cellular models of familial amyotrophic lateral sclerosis associated with Cu/Zn-superoxide dismutase mutations. Although intracellular Ca2+ homeostasis is thought to be intimately associated with mitochondrial functions, the temporal and causal correlation between mitochondrial Ca2+ uptake dysfunction and motor neuron death in familial amyotrophic lateral sclerosis remains to be established. We investigated mitochondrial Ca2+ handling in isolated brain, spinal cord and liver of mutant Cu/Zn-superoxide dismutase transgenic mice at different disease stages. In G93A mutant transgenic mice, we found a significant decrease in mitochondrial Ca2+ loading capacity in brain and spinal cord, as compared with age-matched controls, very early on in the course of the disease, long before the onset of motor weakness and massive neuronal death. Ca2+ loading capacity was not significantly changed in liver G93A mitochondria. We also confirmed Ca2+ capacity impairment in spinal cord mitochondria from a different line of mice expressing G85R mutant Cu/Zn-superoxide dismutase. In excitable cells, such as motor neurons, mitochondria play an important role in handling rapid cytosolic Ca2+ transients. Thus, mitochondrial dysfunction and Ca2+-mediated excitotoxicity are likely to be interconnected mechanisms that contribute to neuronal degeneration in familial amyotrophic lateral sclerosis.  相似文献   

5.
8-Hydroxy-2'-deoxyguanosine (oxo(8)dG) has been used as a marker of free radical damage to DNA and has been shown to accumulate during aging. Oxidative stress affects some brain regions more than others as demonstrated by regional differences in steady state oxo(8)dG levels in mouse brain. In our study, we have shown that regions such as the midbrain, caudate putamen, and hippocampus show high levels of oxo(8)dG in total DNA, although regions such as the cerebellum, cortex, and pons and medulla have lower levels. These regional differences in basal levels of DNA damage inversely correlate with the regional capacity to remove oxo(8)dG from DNA. Additionally, the activities of antioxidant enzymes (Cu/Zn superoxide dismutase, mitochondrial superoxide dismutase, and glutathione peroxidase) and the levels of the endogenous antioxidant glutathione are not predictors of the degree of free radical induced damage to DNA in different brain regions. Although each brain region has significant differences in antioxidant defenses, the capacity to excise the oxidized base from DNA seems to be the major determinant of the steady state levels of oxo(8)dG in each brain region.  相似文献   

6.
Alteration of free radical metabolism in the mouse brain by scrapie infection was evaluated. The infection of mice with scrapie agent, 87V strain, slightly increased the activities of catalase and glutathione-S-transferase, while it had no effect on glutathione peroxidase, glutathione reductase, and Cu, Zn-superoxide dismutase. Results show that the scrapie infection decreased the activity of mitochondrial Mn-superoxide dismutase by 50% but increased that of monoamine oxidase (p < 0.05). Scrapie infection also increased the rate of mitochondrial superoxide generation (p < 0.05). Following scrapie infection, the level of free-sulfhydryl compounds in brain homogenates slightly decreased, but the content of thiobarbituric-acid-reactive substances and malondialdehyde increased significantly. Electron microscopy indicated that the ultrastructure of mitochondria was destroyed in the brain of scrapie-infected mice. These results suggest that elevated oxygen free radical generation and lowered scavenging activity in mitochondria might cause the free radical damage to the brain. Such deleterious changes in mitochondria may contribute to the development of prion disease.  相似文献   

7.
The peroxidase activity of Cu,Zn-superoxide dismutase (Cu,Zn-SOD) has been extensively studied in recent years due to its potential relationship to familial amyotrophic lateral sclerosis. The mechanism by which Cu,Zn-SOD/hydrogen peroxide/bicarbonate is able to oxidize substrates has been proposed to be dependent on an oxidant whose nature, diffusible carbonate radical anion or enzyme-bound peroxycarbonate, remains debatable. One possibility to distinguish these species is to examine whether protein targets are oxidized to protein radicals. Here, we used EPR methodologies to study bovine serum albumin (BSA) oxidation by Cu,Zn-SOD/hydrogen peroxide in the absence and presence of bicarbonate or nitrite. The results showed that BSA oxidation in the presence of bicarbonate or nitrite at pH 7.4 produced mainly solvent-exposed and -unexposed BSA-tyrosyl radicals, respectively. Production of the latter was shown to be preceded by BSA-cysteinyl radical formation. The results also showed that hydrogen peroxide/bicarbonate extensively oxidized BSA-cysteine to the corresponding sulfenic acid even in the absence of Cu,Zn-SOD. Thus, our studies support the idea that peroxycarbonate acts as a two-electron oxidant and may be an important biological mediator. Overall, the results prove the diffusible and radical nature of the oxidants produced during the peroxidase activity of Cu,Zn-SOD in the presence of bicarbonate or nitrite.  相似文献   

8.
The present experiment was performed to assess if hypomagnesemia can influence antioxidant status in mice heart. The results could explain possibly a free radical theory of heart damage in magnesium deficiency. We used a rodent model of hypomagnesemia. The magnesium sufficient group received a standard diet whereas a magnesium deficient group received the diet containing a trace amount of magnesium. The activities of the most important antioxidant enzymes – catalase, glutathione peroxidase and superoxide dismutase were assessed in mice heart and liver in a time dependent manner, on the 10th and the 20th day of experiment. The level of magnesium in plasma of animals receiving the magnesium deficient diet dropped twice after the 8th day and four times after the 13th day and then reached a plateau value. The activity of catalase in heart in the magnesium deficient group increased gradually and was significantly (P<0.05) elevated by 27% on the 20th day of experiment whereas the superoxide dismutase activity was significantly decreased by 17% on the 20th day. Glutathione peroxidase activity was insignificantly elevated. The alterations of antioxidant enzyme activities in the heart indicate cardiomyocytes's exposure to oxidative stress, which can be responsible for the cardiac lesions observed during hypomagnesemia.  相似文献   

9.
The mechanism of the rate of living-free radical theory suggests that higher rate of oxidative metabolism results from greater rate of mitochondria oxidative phosphorylation, leading to a consequent increase in production of free radicals. However, the relation between metabolic rate and oxidative stress is tissue dependent in animals acclimated to cold temperatures. Here we examined oxidative stress, reflected by changes of antioxidant activity and other related markers, in striped hamsters acclimated to moderate cold (15 °C), room (23 °C) or warm temperature (30 °C) for 6 weeks, by which either higher or lower metabolic rate was induced experimentally. Energy intake and the rate of metabolism and nonshivering thermogenesis were increased at 15 °C, but decreased at 30 °C compared with that at 23 °C. Effects of temperatures on the markers of both oxidative stress and antioxidant activities were rarely significant. The percentages of positive correlation between the 11 tissues (brain, BAT, liver, heart, lung, kidneys, stomach, small and large intestine, caecum and skeletal muscle) were 14.5% (8/55) for catalase (CAT), 7.3% (4/55) for the capacity of inhibition of hydroxyl free radical (CIH), 5.5% (3/55) for activities of superoxide dismutase (SOD), 1.8% (1/55) for total antioxidant capacity (T-AOC), 4.3% (2/46) for H2O2 and 11.1% (4/36) for the capacity of inhibition of hydroxyl free radical (CIH). This indicated that the tissue-dependent changes of both oxidative stress and antioxidant activity were less consistent among the different tissues. Finally the data from this study were less consistent with the prediction of the mechanism of the rate of living-free radical theory.  相似文献   

10.
The activity of several cuproenzymes in relation to the immune system was examined in serum and blood cells from bovines with molybdenum-induced copper deficiency. Five female cattle were given molybdenum (30 ppm) and sulfate (225 ppm) to induce experimental secondary copper deficiency. Ceruloplasmin activity was determined in serum. The Cu,Zn-superoxide dismutase and cytochrome c oxidase activities were measured in peripheral blood lymphocytes, neutrophils, and monocyte-derived macrophages. Copper deficiency was confirmed from decreased serum copper levels and the animals with values less than 5.6 μmol/L were considered deficient. The content of intracellular copper decreased between 40% and 70% in deficient cells compared with the controls. In copper-deficient animals, the serum ceruloplasmin activity decreased to half of the control value. Both of them, the Cu,Zn-superoxide dismutase and the cytochrome c oxidase activities, undergo a significant reduction in leukocytes, showing differences among diverse cell populations. We concluded that the copper deficiency alters the activity of several enzymes, which mediate antioxidant defenses and ATP formation. These effects may impair the cell immune functionality, affecting the bactericidal capacity and making the animals more susceptible to infection.  相似文献   

11.
The endogenous neurotoxin, 1-methyl-6,7-dihydroxy-1,2,3,4-tetrahydroisoquinoline (salsolinol), has been considered a potential causative factor for the pathogenesis of Parkinsonos disease (PD). In the present study, we examined the pattern of human Cu,Zn-superoxide dismutase (SOD) modification elicited by salsolinol. When Cu,Zn-SOD was incubated with salsolinol, some protein fragmentation and some higher molecular weight aggregates were occurred. Salsolinol led to inactivation of Cu,Zn-SOD in a concentration-dependent manner. Free radical scavengers and catalase inhibited the salsolinolmediated Cu,Zn-SOD modificaiton. Exposure of Cu,Zn-SOD to salsolinol led also to the generation of protein carbonyl compounds. The deoxyribose assay showed that hydroxyl radicals were generated during the oxidation of salsolinol in the presence of Cu,Zn-SOD. Therefore, the results indicate that free radical may play a role in the modification and inactivation of Cu,Zn-SOD by salsolinol.  相似文献   

12.
13.
Electrochemical sensors based on immobilised cytochrome c or superoxide dismutase for the measurement of superoxide radical production by stimulated neutrophils are described. Cytochrome c was immobilised covalently at a surface-modified gold electrode and by passive adsorption to novel platinised activated carbon electrodes (PACE). The reoxidation of cytochrome c at the electrode surface upon reduction by superoxide was monitored using both xanthine/xanthine oxidase and stimulated neutrophils as sources of the free radical. In addition, bovine Cu/Zn superoxide dismutase was immobilised to PACE by passive adsorption and superoxide, generated by xanthine/xanthine oxidase, detected by oxidation of hydrogen peroxide produced by the enzymic dismutation of the superoxide radical. A biopsy needle probe electrode based on cytochrome c immobilised at PACE and suitable for continuous monitoring of free radical production was constructed and characterised.  相似文献   

14.
Lu CY  Lee HC  Fahn HJ  Wei YH 《Mutation research》1999,423(1-2):11-21
Mitochondrial DNA (mtDNA) mutations and impaired respiratory function have been demonstrated in various tissues of aged individuals. We hypothesized that age-dependent increase of ROS and free radicals production in mitochondria is associated with the accumulation of large-scale mtDNA deletions. In this study, we first confirmed that the proportion of mtDNA with the 4977 bp deletion in human skin tissues increases with age. We then investigated the 8-hydroxy-2'-deoxyguanosine (8-OH-dG) content in skin tissues and lipid peroxides content of the skin fibroblasts from subjects of different ages. The results showed an age-dependent increase of 8-OH-dG level in the total DNA of skin tissues of the subjects above the age of 60 years. The specific content of malondialdehyde, an end product of lipid peroxidation, was also found to increase with age. On the other hand, we examined the enzyme activities of Cu, Zn-superoxide dismutase (Cu,Zn-SOD), Mn-superoxide dismutase (Mn-SOD), catalase, and glutathione peroxidase (GPx) in the skin fibroblasts. The activities of Cu,Zn-SOD, catalase and glutathione peroxidase were found to decrease with age. However, the activity of Mn-SOD was increased with age before 60 years but was decreased thereafter. Moreover, the activity ratios of Mn-SOD/catalase and Mn-SOD/GPx exhibited the same pattern of change with age. This indicates that free radical scavenging enzymes can effectively dispose of ROS and free radicals before 60 years of age. However, elevated oxidative stress caused by an imbalance between the production and removal of ROS and free radicals occurred in skin fibroblasts after 60 years of age. Taken together, we suggest that the functional decline of free radical scavenging enzymes and the elevation of oxidative stress may play an important role in eliciting oxidative damage and mutation of mtDNA during the human aging process.  相似文献   

15.
Kim NH  Jeong MS  Choi SY  Hoon Kang J 《Biochimie》2004,86(8):553-559
Neurofilament-L (NF-L) is a major element of neuronal cytoskeletons and known to be important for their survival in vivo. Since oxidative stress might play a critical role in the pathogenesis of neurodegenerative diseases, we investigated the role of Cu,Zn-superoxide dismutase (SOD) in the modification of NF-L. When disassembled NF-L was incubated with Cu,Zn-SOD and H2O2, the aggregation of protein was proportional to the concentration of hydrogen peroxide. Cu,Zn-SOD/H2O2-mediated modification of NF-L was significantly inhibited by radical scavenger, spin trap agents and copper chelators. Dityrosine crosslink formation was obtained in Cu,Zn-SOD/H2O2-mediated NF-L aggregates. Antioxidant molecules, carnosine and anserine significantly inhibited the aggregation of NF-L and the formation of dityrosine. This study suggests that copper-mediated NF-L modification may be closely related to oxidative reactions which play a critical role in neurodegenerative diseases.  相似文献   

16.
The effect of rutin on total antioxidant status as well as on trace elements such as iron, copper, and zinc in mouse liver and brain were studied. Mice were administrated with 0.75 g/kg or 2.25 g/kg P. O. of rutin for 30 d consecutively. Following the treatment, the activity of total antioxidant status, catalase, Cu,Zn-superoxide dismutase, Mn-superoxide dismutase, zinc, copper, and iron were measured in mouse liver and brain. The results showed that rutin significantly increased the antioxidant status and Mn-superoxide dismutase activities in mouse liver, but it had no effect on these variables in the brain. Treatment with a higher concentration of rutin significantly decreased catalase activity and iron, zinc, and copper contents in mouse liver; it also resulted in a slower weight gain for the first 20 d. These results indicate that rutin taken in proper amount can effectively improve antioxidant status, whereas at an increased dosage, it may cause trace element (such as iron, zinc, and copper) deficiencies and a decrease in the activities of related metal-containing enzymes.  相似文献   

17.
Cajanus indicus is a herb with medicinal properties and is traditionally used to treat various forms of liver disorders. Present study aimed to evaluate the effect of a 43 kD protein isolated from the leaves of this herb against chloroform induced hepatotoxicity. Male albino mice were intraperitoneally treated with 2 mg/kg body weight of the protein for 5 days followed by oral application of chloroform (0.75 ml/kg body weight) for 2 days. Different biochemical parameters related to physiology and pathophysiology of liver, such as, serum glutamate pyruvate transaminase and alkaline phosphatase were determined in the murine sera under various experimental conditions. Direct antioxidant role of the protein was also determined from its reaction with Diphenyl picryl hydroxyl radical, superoxide radical and hydrogen peroxide. To find out the mode of action of this protein against chloroform induced liver damage, levels of antioxidant enzymes catalase, superoxide dismutase and glutathione-S-transferase were measured from liver homogenates. Peroxidation of membrane lipids both in vivo and in vitro were also measured as malonaldialdehyde. Finally, histopathological analyses were done from liver sections of control, toxin treated and protein pre- and post-treated (along with the toxin) mice. Levels of serum glutamate pyruvate transaminase and alkaline phosphatase, which showed an elevation in chloroform induced hepatic damage, were brought down near to the normal levels with the protein pretreatment. On the contrary, the levels of antioxidant enzymes such as catalase, superoxide dismutase and glutathione-S-transferase that had gone down in mice orally fed with chloroform were significantly elevated in protein pretreated ones. Besides, chloroform induced lipid peroxidation was effectively reduced by protein treatment both in vivo and in vitro. In cell free system the protein effectively quenched diphenyl picryl hydroxyl radical and superoxide radical, though it could not catalyse the breakdown of hydrogen peroxide. Post treatment with the protein for 3 days after 2 days of chloroform administration showed similar results. Histopathological studies indicated that chloroform induced extensive tissue damage was less severe in the mice livers treated with the 43 kD protein prior and post to the toxin administration. Results from all these data suggest that the protein possesses both preventive and curative role against chloroform induced hepatotoxicity and probably acts by an anti-oxidative defense mechanism.  相似文献   

18.
Cu,Zn-superoxide dismutase (SOD) can catalyze hydroxyl radical generation using H2O2 as a substrate. Lipid peroxidation induced by the Cu,Zn-SOD and H2O2 system was investigated. When linoleic acids micelles or phosphatidylcholine liposomes were incubated with Cu,Zn-SOD and H2O2, lipid peroxidation was gradually increased in a time-dependent manner. The extent of lipid peroxidation was proportional to Cu,Zn-SOD and H2O2 concentrations. Hydroxyl radical scavengers and copper chelator inhibited lipid peroxidation induced by the Cu,Zn-SOD and H2O2 system. These results suggest that lipid peroxidation is mediated by the Cu,Zn-SOD and H2O2 system via the generation of hydroxyl radicals by a combination of the peroxidative reaction of Cu,Zn-SOD and the Fenton-like reaction of free copper released from oxidatively damaged SOD.  相似文献   

19.
Lipid peroxidation stress induced by iron supplementation can contribute to the induction of gut lesions. Intensive sports lead to ischemia reperfusion, which increases free radical production. Athletes frequently use heavy iron supplementation, whose effects are unknown. On the other hand, milk proteins have in vitro antioxidant properties, which could counteract these potential side effects. The main aims of the study were: (1) to demonstrate the effects of combined exercise training (ET) and iron overload on antioxidant status; (2) to assess the protective properties of casein in vivo; (3) to study the mechanisms involved in an in vitro model.

Antioxidant status was assessed by measuring the activity of antioxidant enzymes (superoxide dismutase (SOD); glutathione peroxidase (GSH-Px)), and on the onset of aberrant crypts (AC) in colon, which can be induced by lipid peroxidation. At day 30, all ET animals showed an increase in the activity of antioxidant enzymes, in iron concentration in colon mucosa and liver and in the number of AC compared to untrained rats. It was found that Casein's milk protein supplementation significantly reduced these parameters. Additional information on protective effect of casein was provided by measuring the extent of TBARS formation during iron/ascorbate-induced oxidation of liposomes. Free casein and casein bound to iron were found to significantly reduce iron-induced lipid peroxidation. The results of the overall study suggest that Iron supplementation during intensive sport training would decrease anti-oxidant status. Dietary milk protein supplementation could at least partly prevent occurrence of deleterious effects to tissue induced by iron overload.  相似文献   

20.
The expression patterns of different genes encoding antioxidant enzymes and heat shock proteins were investigated, in present study, by real-time quantitative PCR in the hepatopancreas of abalone Haliotis discus hannai fed with different levels of dietary zinc (6.69, 33.8, 710.6 and 3462.5 mg/kg) for 20 weeks. The antioxidant enzymes include Cu/Zn-superoxide dismutase (Cu/Zn-SOD), Mn-superoxide dismutase (Mn-SOD), catalase (CAT), mu-glutathione-s-transferase (mu-GST) and thioredoxin peroxidase (TPx). The results showed that the mRNA expression of these antioxidant enzymes increased and reached the maximum at the dietary zinc level of 33.8 mg/kg, and then dropped progressively. Expression levels of the heat shock proteins (HSP26, HSP70 and HSP90) firstly increased at 33.8 mg/kg dietary Zn level, and reached to the maximum at 710.6 mg/kg, then dropped at 3462.5 mg/kg (p<0.05). Excessive dietary Zn (710.6 and 3462.5 mg/kg) significantly increases the Zn content and significantly decreases the total antioxidant capacity (T-AOC) in hepatopancreas (p<0.05). These findings showed that dietary Zn (33.8 mg/kg) could highly trigger the expression levels of antioxidant enzymes and heat shock proteins, but excessive dietary Zn (710.6 and 3462.5 mg/kg) induces a high oxidative stress in abalone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号