首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Biophysical journal》2019,116(9):1682-1691
The dynamics of phosphocholine and maltoside micelles, detergents frequently used for membrane protein structure determination, were investigated using electron paramagnetic resonance of spin probes doped into the micelles. Specifically, phosphocholines are frequently used detergents in NMR studies, and maltosides are frequently used in x-ray crystallography structure determination. Beyond the structural and electrostatic differences, this study aimed to determine whether there are differences in the local chain dynamics (i.e., fluidity). The nitroxide probe rotational dynamics in longer chain detergents is more restricted than in shorter chain detergents, and maltoside micelles are more restricted than phosphocholine micelles. Furthermore, the micelle microviscosity can be modulated with mixtures, as demonstrated with mixtures of 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate with n-dodecylphosphocholine, n-tetradecylphosphocholine, n-decyl-β-D-maltoside, or n-dodecyl-β-D-maltoside. These results indicate that observed differences in membrane protein stability in these detergents could be due to fluidity in addition to the already determined structural differences.  相似文献   

2.
The vesicle-to-micelle transition of egg phosphatidylcholine LUVs induced by octylglucoside was studied in buffers with 0-4 M sodium chloride, sucrose or urea. We used both light scattering and fluorescent probes to follow the lipid-detergent complexes in these buffers. The vesicle-to-micelle transition process was fundamentally the same in each solute. However, the detergent-to-lipid ratio required for micelle formation shifted in ways that depended on the aqueous solute. The partitioning of octylglucoside between the vesicles and the aqueous phase was primarily determined by the change in its critical micelle concentration (cmc) induced by each solute. Specifically, the cmc decreased in high salt and sucrose buffers but increased in high concentrations of urea. Cmc for two additional nonionic detergents, decyl- and dodecyl-maltoside, and three zwittergents (3-12, 3-14 and 3-16) were determined as a function of concentration for each of the solutes. In all cases NaCl and sucrose decreased the solubility of the detergents, whereas urea increased their solubilities. The effects clearly depended on acyl chain length in urea-containing solutions, but this dependence was less clear with increasing NaCl and sucrose concentrations. The contributions of these solutes to solubility and to interfacial interactions in the bilayers, pure and mixed micelles are considered.  相似文献   

3.
A series of monoacylated glycolipids with even-numbered acyl chain lengths ranging from saturated C11 to C15 and an unsaturated C17:1 fatty acid connected by an amide in linkage to the disaccharide head groups maltose, melibiose and lactose were synthesized. The structural polymorphism of the glycolipids was investigated using Fourier-transform infrared spectroscopy and differential scanning calorimetry for the detection of the gel to liquid-crystalline acyl chain melting behaviour and small-angle X-ray scattering for the elucidation of the physical structure of the lipid aggregates. Also, the phase morphology was studied by polarizing microscopy in contact preparations. The data clearly show the existence of uni- and multilamellar structures. Although only one acyl chain is present, there is no evidence for the existence of micelles - of spherical or of cylindrical (HI) type - or of interdigitated phases. The preference for lamellar phases seems to be correlated with the intrinsic high conformational order of the amide linkage of these compounds which inhibits the formation of highly curved structures.  相似文献   

4.
The effects of phospholipid or detergent chain length on the structure and translational diffusion coefficient of the membrane-targeting peptide corresponding to the N-terminal amphipathic sequence of Escherichia coli enzyme IIA(Glc) were investigated by nuclear magnetic resonance (NMR) spectroscopy. Three anionic phospholipids (dihexanoyl phosphatidylglycerol, dioctanoyl phosphatidylglycerol, and didecanoyl phosphatidylglycerol) and four lipid-mimicking anionic detergents (sodium hexanesulfonate, 2,2-dimethyl-silapentane-5-sulfonate, sodium nonanesulfonate, and sodium dodecylsulfate) were evaluated. In all cases, the cationic peptide adopts an amphipathic helical structure. While the chain length of the two-chain phospholipids has a negligible effect on the peptide conformation, the effect of chain length of those single-chain detergents on the helix length is more pronounced. The diffusion coefficients of the peptide/micelle complexes were found to correlate with the chain lengths of both the lipid and the detergent groups. Taken together, short-chain anionic phospholipids are proposed to be useful membrane-mimetic models for the structural elucidation of membrane-binding peptides such as cationic antimicrobial peptides. DSS does not form micelles by itself according to the diffusion coefficient data, but it does associate with this cationic peptide. Consequently, both DSS and its analog may be chosen as NMR chemical shift reference compounds depending on the nature of the biomolecules under investigation.  相似文献   

5.
Micellar complexes of melittin with fully deuterated detergents have been studied by high resolution 1H nuclear magnetic resonance (NMR). The synthesis of deuterated micelles is described and it is shown that the 1H NMR spectrum of micelle-bound melittin is well resolved and suitable for detailed analysis by conventional high-resolution NMR methods. A preliminary characterization of micelle-bound melittin shows that interaction with the micelle results in different conformational and dynamic features for the hydrophobic and hydrophilic regions of the melittin amino acid sequence. The present experiments on melittin and preliminary results with other polypeptides and proteins demonstrate that in favourable cases high-resolution 1H NMR studies of the complexes formed between membrane proteins and deuterated micelles provides a viable method for conformational studies of membrane-bound proteins.  相似文献   

6.
The stoichiometry of dodecylphosphocholine/palmitoyllysophosphatidic acid/myelin basic protein complexes and the location of the protein in the micelles have been investigated by electron paramagnetic resonance, ultracentrifugation, small-angle X-ray scattering, 31P, 13C, and 1H nuclear magnetic resonance spectroscopy, and electron microscopy. Ultracentrifugation measurements indicated that well-defined complexes are formed by association of one protein molecule with approximately 133 detergent molecules. The spin-labels 5-, 12-, and 16-doxylstearate have been incorporated into detergent/protein aggregates. Electron paramagnetic resonance spectral parameters and 13C and 1H nuclear magnetic resonance relaxation times showed that the addition of myelin basic protein does not affect the environment and location of the labels or the organization of the micelles. Previous results suggesting that the protein lies primarily near the surface of the micelles have been confirmed by comparing 13C spectra of the detergents with and without protein with spectra of detergent/protein aggregates containing the spin labels. Electron micrographs of the complexes taken by using the freeze-fracture technique revealed the presence of particles with an estimated radius about three times the radius of the micelles measured by small-angle X-ray scattering. The structural integrity of the complexes appears to be based on intramolecular protein interactions as well as protein-detergent interactions.  相似文献   

7.
Structural studies of integral membrane proteins typically rely upon detergent micelles as faithful mimics of the native lipid bilayer. Therefore, membrane protein structure determination would be greatly facilitated by biophysical techniques that are capable of evaluating and assessing the fold and oligomeric state of these proteins solubilized in detergent micelles. In this study, an approach to the characterization of detergent-solubilized integral membrane proteins is presented. Eight Thermotoga maritima membrane proteins were screened for solubility in 11 detergents, and the resulting soluble protein-detergent complexes were characterized with small angle X-ray scattering (SAXS), nuclear magnetic resonance (NMR) spectroscopy, circular dichroism (CD) spectroscopy, and chemical cross-linking to evaluate the homogeneity, oligomeric state, radius of gyration, and overall fold. A new application of SAXS is presented, which does not require density matching, and NMR methods, typically used to evaluate soluble proteins, are successfully applied to detergent-solubilized membrane proteins. Although detergents with longer alkyl chains solubilized the most proteins, further characterization indicates that some of these protein-detergent complexes are not well suited for NMR structure determination due to conformational exchange and protein oligomerization. These results emphasize the need to screen several different detergents and to characterize the protein-detergent complex in order to pursue structural studies. Finally, the physical characterization of the protein-detergent complexes indicates optimal solution conditions for further structural studies for three of the eight overexpressed membrane proteins.  相似文献   

8.
X-ray scattering analysis was performed on various types of bacterial lipoteichoic acid in solution. The X-ray data show that all samples investigated were characterized by a similar micellar ultrastructure (hydrophilic moiety on the outside) with a fatty acid chain conformation of the disordered, alpha-type at all temperatures between 5 degrees-53 degrees C. The size distribution of Staphylococcus aureus lipoteichoic acid micelles was sufficiently homogeneous to determine their size and some related molecular parameters by detailed small-angle X-ray scattering analysis. Nearly independent of the degree of D-alanine substitution and the ionic strength of the aqueous dispersion, an average micelle contained about 150 lipoteichoic acid molecules arranged in a spherical assembly with a diameter of about 22 nm, whereby the hydrophilic region occupied an outer shell of about 8.5 nm thickness. Based on the average chain length of lipoteichoic acid, it could be estimated that each glycerophosphate residue contributed by about 0.34 nm to the thickness of the hydrophilic shell as compared to a theoretical value of approximately 0.8 nm for a fully extended chain conformation, indicating a highly coiled conformation of the hydrophilic chain. The bearing of these findings on the properties of membrane-associated and secreted lipoteichoic acids is discussed.  相似文献   

9.
The acyl chain packing of various endotoxins and phospholipids was monitored via the main wide-angle reflection between 0.410 and 0.460 nm by wide-angle X-ray scattering (WAXS) and via the absorption band of the symmetric stretching vibration of the methylene groups v(s)(CH(2)) around 2849 to 2853 cm(-1) by Fourier-transform infrared spectroscopy. The lipids investigated included various rough mutant (R) and smooth form (S) lipopolysaccharides (LPS) differing in the length of the sugar portion, lipid A, the "endotoxic principle" of LPS, and various saturated and unsaturated phospholipids with different head groups under a near physiological (>/=85%) water content. The packing density of the saturated endotoxin acyl chains is lower than those of saturated phospholipids but similar to those of monounsaturated phospholipids, each in the gel phase. The hydrophobic moiety of endotoxins thus exhibits significant conformational disorder already in the gel phase. The acyl chain packing of the endotoxins decreases with increasing length of the sugar chain lengths, which seems to be relevant to the observed differences in biological activity. For Re-LPS with different counterions (salt forms), in the presence of externally added cations or at reduced water content (50%), no change of the acyl chain packing density is deduced in the X-ray data, although the FT-IR data indicate its increase. The position of the v(s)(CH(2)) vibration is, thus, only a relative measure of lipid order, in particular when lipids with different head groups and in the presence of external agents are compared.  相似文献   

10.
Micellar complexes of melittin with fully deuterated detergents have been studied by high resolution 1H nuclear magnetic resonance (NMR). The synthesis of deuterated micelles is described and it is shown that the 1H NMR spectrum of micelle-bound melittin is well resolved and suitable for detailed analysis by conventional high-resolution NMR methods. A preliminary characterization of micelle-bound melittin shows that interaction with the micelle results in different conformational and dynamic features for the hydrophobic and hydrophilic regions of the melittin amino acid sequence. The present experiments on melittin and preliminary results with other polypeptides and proteins demonstrate that in favourable cases high-resolution 1H NMR studies of the complexes formed between membrane proteins and deuterated micelles provides a viable method for conformational studies of membrane-bound proteins.  相似文献   

11.
K H Mayo  J H Prestegard 《Biochemistry》1985,24(26):7834-7838
Acylated acyl carrier proteins (ACPs) with acyl chain lengths of 2, 4, 6, 8, and 10 carbons were investigated by NMR and nuclear Overhauser methods at 500 MHz. Chemical shift changes of downfield aromatic and upfield, ring-current-shifted, isoleucine proton resonances monotonically vary as a function of acyl chain length with the most prominent shifts occurring with chain lengths between four and six carbons. Chemical shifts are largest for one of the two phenylalanines; however, substantial shifts do exist for Tyr-71, His-75, and two isoleucines. Since these residues are distributed throughout the molecule, their associated resonance chemical shifts are most probably explained by an induced conformational change. Comparative NOE measurements on reduced ACP (ACP-SH) and ACP-S-C8 suggest, however, that these induced conformational changes are small except for around one of the phenylalanines. A tertiary structural model for acyl-ACP consistent with our previous model for ACP-SH [Mayo, K. H., Tyrell, P. M., & Prestegard, J. H. (1983) Biochemistry 22, 4485-4493] is presented.  相似文献   

12.
Subunit structure of casein micelles from small-angle neutron-scattering   总被引:1,自引:0,他引:1  
Wet pellets of whole casein micelles of cows' milk have been studied by small-angle neutron-scattering. Contrast variation using 2H2O/H2O mixtures showed that the previously observed inflection in scattered intensity at Q[4 pi sin theta)/gamma) = 0.035 A-1 is due primarily to scattering from protein, and not from calcium phosphate. Agreement between measured scattering and that calculated for a simple model of packed protein subunits suggests that the whole micelle contains protein subunits of the approximate size of free casein submicelles, packed in a short-range ordered arrangement.  相似文献   

13.
The self-assembled supramolecular structures of diacylphosphatidylcholine (diC(n)PC), diacylphosphatidylethanolamine (diC(n)PE), diacylphosphatidyglycerol (diC(n)PG), and diacylphosphatidylserine (diC(n)PS) were investigated by (31)P nuclear magnetic resonance (NMR) spectroscopy as a function of the hydrophobic acyl chain length. Short-chain homologs of these lipids formed micelles, and longer-chain homologs formed bilayers. The shortest acyl chain lengths that supported bilayer structures depended on the headgroup of the lipids. They increased in the order PE (C(6)) < PC (C(9)) < or = PS (C(9) or C(10)) < PG (C(11) or C(12)). This order correlated with the effective headgroup area, which is a function of the physical size, charge, hydration, and hydrogen-bonding capacity of the four headgroups. Electrostatic screening of the headgroup charge with NaCl reduced the effective headgroup area of PS and PG and thereby decreased the micelle-to-bilayer transition of these lipid classes to shorter chain lengths. The experimentally determined supramolecular structures were compared to the assembly states predicted by packing constraints that were calculated from the hydrocarbon-chain volume and effective headgroup area of each lipid. The model accurately predicted the chain-length threshold for bilayer formation if the relative displacement of the acyl chains of the phospholipid were taken into account. The model also predicted cylindrical rather than spherical micelles for all four diacylphospholipid classes and the (31)P-NMR spectra provided evidence for a tubular network that appeared as an intermediate phase at the micelle-to-bilayer transition. The free energy of micellization per methylene group was independent of the structure of the supramolecular assembly, but was -0.95 kJ/mol (-0.23 kcal/mol) for the PGs compared to -2.5 kJ/mol (-0.60 kcal/mol) for the PCs. The integral membrane protein OmpA did not change the bilayer structure of thin (diC(10)PC) bilayers.  相似文献   

14.
Cross-linkable di- and triblock copolymers of poly(epsilon-caprolactone) (PCL) and monomethoxyl poly(ethylene glycol) (MPEG) were synthesized. These amphiphilic copolymers self-assembled into nanoscale micelles capable of encapsulating hydrophobic paclitaxel in their hydrophobic cores in aqueous solutions. To further enhance their thermodynamic stability, the micelles were cross-linked by radical polymerization of the double bonds introduced into the PCL blocks. Reaction conditions were found to significantly affect both the cross-linking efficiency and the micelle size. The encapsulation of paclitaxel into the micelles was confirmed by the proton nuclear magnetic resonance (1H NMR) spectroscopy. Encouragingly, paclitaxel-loading efficiency of micelles was enhanced significantly upon micelle core-cross-linking. Both the micelle size and the drug loading efficiency increased markedly with increasing the PCL block lengths, no matter if the micelles were core-cross-linked or not. However, paclitaxel-loading did not obviously affect the micelle size or size distribution. The cross-linked micelles exhibited a significantly enhanced thermodynamic stability against dilution with aqueous solvents. The efficient cellular uptake of paclitaxel loaded in the nanomicelles was demonstrated by confocal laser scanning microscopy (CLSM) imaging. This new biodegradable nanoscale carrier system merits further investigations for parenteral drug delivery.  相似文献   

15.
Mixed micelles of deoxycholate (DOC) and 1-palmitoyl-2-oleoylphosphatidylcholine (POPC) have been prepared in which the POPC was specifically deuterated in the 2-, 6-, 10-, or 16-position of the palmitoyl chain or in the N-methyl position of the choline head group. The deuterium nuclear magnetic resonance (2H NMR) spectrum of each of these specifically deuterated mixed micelles consists of a singlet whose line width depends upon the position of deuteration. Spin-spin relaxation times indicate a gradient of mobility along the POPC palmitoyl chain in the mixed micelle, with a large increase in mobility on going from the 10- to the 16-position. Spin-lattice relaxation times (T1's) demonstrate a similar gradient of mobility. Both trends in NMR relaxation behavior are consistent with a bilayer arrangement for the solubilized POPC. 2H T1 times for DOC/POPC micelles are significantly shorter than those measured in other bilayer systems, indicating unusually tight phospholipid acyl chain packing in the mixed micelle.  相似文献   

16.
To realize safer and effective drug administration, novel well-defined and biocompatible amphiphilic block copolymers containing phospholipid polymer sequences were synthesized. At first, the homopolymer of 2-methacryloyloxyethylphosphorylcholine (MPC) was synthesized in water by reversible addition-fragmentation chain transfer (RAFT) controlled radical polymerization. The "living" polymerization was confirmed by the fact that the number-average molecular weight increased linearly with monomer conversion while the molecular weight distribution remained narrow independent of the conversion. The poly(MPC) thus prepared is end-capped with a dithioester moiety. Using the dithioester-capped poly(MPC) as a macro chain transfer agent, AB diblock copolymers of MPC and n-butyl methacrylate (BMA) were synthesized. Associative properties of the amphiphilic block copolymer (pMPC(m)-BMA(n)) with varying poly(BMA) block lengths were investigated using NMR, fluorescence probe, static light scattering (SLS), and quasi-elastic light scattering (QELS) techniques. Proton NMR data in D2O indicated highly restricted motions of the n-butyl moieties, arising from hydrophobic associations of poly(BMA) blocks. Fluorescence spectra of N-phenyl-1-naphthylamine indicated that the probes were solubilized in the polymer micelles in water. The formation of polymer micelles comprising a core with poly(BMA) blocks and shell with hydrophilic poly(MPC) blocks was suggested by SLS and QELS data. The size and mass of the micelle increased with increasing poly(BMA) block length. With an expectation of a pharmaceutical application of pMPC(m)-BMA(n), solubilization of a poorly water-soluble anticancer agent, paclitaxel (PTX), was investigated. PTX dissolved well in aqueous solutions of pMPC(m)-BMA(n) as compared with pure water, implying that PTX is incorporated into the hydrophobic core of the polymer micelle. Since excellent biocompatible poly(MPC) sequences form an outer shell of the micelle, pMPC(m)-BMA(n) may find application as a promising reagent to make a good formulation with a hydrophobic drug.  相似文献   

17.
Complexes of melittin with detergents and phospholipids have been characterized by fluorescence, circular dichroism, ultracentrifugation, quasi-elastic light scattering and 1H nuclear magnetic resonance (NMR) experiments. By ultracentrifugation and quasi-elastic light-scattering measurements it is shown that melittin forms stoichiometrically well-defined complexes with dodecylphosphocholine micelles consisting of one melittin molecule and approximately forty detergent molecules. Evidence from fluorescence, circular dichroism and 1H nuclear magnetic resonance experiments indicates that the conformation of melittin bound to micelles of various detergents or of diheptanoyl phosphatidylcholine is largely independent of the type of lipid and furthermore appears to be quite closely related to the conformation of melittin bound to phosphatidylcholine bilayers. 1H NMR is used to investigate the conformation of micelle-bound melittin in more detail and to compare certain aspects of the melittin conformation in the micelles with the spatial structures of monomeric and self-aggregated tetrameric melittin in aqueous solution. The experience gained with this system demonstrates that high resolution NMR of complexes of membrane proteins with micelles provides a viable method for conformational studies of membrane proteins.  相似文献   

18.
Fusarium solani pisi cutinase hydrolyses triglycerides of different lengths. Here we show that micelle-forming short-chain (C6-C9) phospholipids significantly reduce cutinase stability (both below and above the critical micelle concentration cmc) and rates of folding (only above cmc), trapping cutinase in an inactive state which only regains activity over hours to days, rather than the few seconds required for refolding in the absence of detergent. Destabilization decreases with increasing chain length, and increases with cmc, indicating that monomers and micelles cooperate in destabilizing cutinase. Detergents have little effect on enzymatic activity and confer no changes in secondary structure. Some changes in chemical shift occur around the enzyme active site, although distant regions are also affected. To our knowledge, this is the first example of marked destabilization of a water-soluble protein by zwitterionic detergents, highlighting the multitude of different detergent interactions with enzymes that target amphiphilic substrates and providing means of trapping a protein in a metastable state. We propose a model for destabilization where monomers via various binding sites on the native state prime it for interacting with micelles in a destabilizing fashion, whereas only micelles halt refolding due to the absence of these monomer-binding sites in the denatured state.  相似文献   

19.
Outer membrane protein A (OmpA) of Escherichia coli is a beta-barrel membrane protein that unfolds in 8 M urea to a random coil. OmpA refolds upon urea dilution in the presence of certain detergents or lipids. To examine the minimal requirements for secondary and tertiary structure formation in beta-barrel membrane proteins, folding of OmpA was studied as a function of the hydrophobic chain length, the chemical structure of the polar headgroup, and the concentration of a large array of amphiphiles. OmpA folded in the presence of detergents only above a critical minimal chain length of the apolar chain as determined by circular dichroism spectroscopy and a SDS-PAGE assay that measures tertiary structure formation. Details of the chemical structure of the polar headgroup were unimportant for folding. The minimal chain length required for folding correlated with the critical micelle concentration in each detergent series. Therefore, OmpA requires preformed detergent micelles for folding and does not adsorb monomeric detergent to its perimeter after folding. Formation of secondary and tertiary structure is thermodynamically coupled and strictly dependent on the interaction with aggregated amphiphiles.  相似文献   

20.
To combat infections by Gram-negative bacteria, it is not only necessary to kill the bacteria but also to neutralize pathogenicity factors such as endotoxin (lipopolysaccharide, LPS). The development of antimicrobial peptides based on mammalian endotoxin-binding proteins is a promising tool in the fight against bacterial infections, and septic shock syndrome. Here, synthetic peptides derived from granulysin (Gra-pep) were investigated in microbiological and biophysical assays to understand their interaction with LPS. We analyzed the influence of the binding of Gra-pep on (1) the acyl chain melting of the hydrophobic moiety of LPS, lipid A, by Fourier-transform spectroscopy, (2) the aggregate structure of LPS by small-angle X-ray scattering and cryo-transmission electron microscopy, and 3) the enthalpy change by isothermal titration calorimetry. In addition, the influence of Gra-pep on the incorporation of LPS and LPS-LBP (lipopolysaccharide-binding protein) complexes into negatively charged liposomes was monitored. Our findings demonstrate a characteristic change in the aggregate structure of LPS into multilamellar stacks in the presence of Gra-pep, but little or no change of acyl chain fluidity. Neutralization of LPS by Gra-pep is not due to a scavenging effect in solution, but rather proceeds after incorporation into target membranes, suggesting a requisite membrane-bound step.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号