首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The molecular mechanisms of membrane proteins that are activated either by ions or by ATP are just beginning to come into focus, as long-awaited structural data are revealed. This information is being leveraged and supplemented to great effect by molecular modeling and computer simulation studies. Important examples include the homology modeling of eukaryotic protein structures based on distantly related templates, as well as the use of internal structural symmetry for modeling different states in conformational cycles. Molecular simulation studies have elucidated the location and coordination structure of ion binding sites, and explained their selectivity, while also providing tantalizing insights into the mechanisms that couple conformational change to ion translocation or ATP hydrolysis.  相似文献   

2.
Zheng W 《Proteins》2011,79(7):2291-2305
To explore the structural basis of processive stepping of myosin V along filamentous actin, we have performed comprehensive modeling of its key conformational states and transitions with an unprecedented residue level of details. We have built structural models for a myosin V monomer complexed with filamentous actin at four biochemical states [adenosine diphosphate (ATP)-, adenosine diphosphate (ADP)-phosphate-, ADP-bound or nucleotide-free]. Then we have modeled a myosin V dimer (consisting of lead and rear head) at various two-head-bound states with nearly straight lever arms rotated by intramolecular strain. Next, we have performed transition pathway modeling to determine the most favorable sequence of transitions (namely, phosphate release at the lead head followed by ADP release at the rear head, while ADP release at the lead head is inhibited), which underlie the kinetic coordination between the two heads. Finally, we have used transition pathway modeling to reveal the order of structural changes during three key biochemical transitions (phosphate release at the lead head, ADP release and ATP binding at the rear head), which shed lights on the strain-dependence of the allosterically coupled motions at various stages of myosin V's work cycle. Our modeling results are in agreement with and offer structural insights to many results of kinetic, single-molecule and structural studies of myosin V.  相似文献   

3.
Considerable interest is currently focused on fish haemoglobins in order to identify the structural basis for their diversity of functional behavior. Hoplosternum littorale is a catfish that presents bimodal gill (water)/gut (air)-breathing, which allows this species to survive in waters with low oxygen content. The hemolysate of this fish showed the presence of two main haemoglobins, cathodic and anodic. This work describes structural features analyzed here by integration of molecular modeling with small angle X-ray scattering. Here is described a molecular model for the cathodic haemoglobin in the unliganded and liganded states. The models were determined by molecular modeling based on the high-resolution crystal structure of fish haemoglobins. The structural models for both forms of H. littorale haemoglobin were compared to human haemoglobin.  相似文献   

4.
Disordered states of proteins include the biologically functional intrinsically disordered proteins and the unfolded states of normally folded proteins. In recent years, ensemble‐modeling strategies using various experimental measurements as restraints have emerged as powerful means for structurally characterizing disordered states. However, these methods are still in their infancy compared with the structural determination of folded proteins. Here, we have addressed several issues important to ensemble modeling using our ENSEMBLE methodology. First, we assessed how calculating ensembles containing different numbers of conformers affects their structural properties. We find that larger ensembles have very similar properties to smaller ensembles fit to the same experimental restraints, thus allowing a considerable speed improvement in our calculations. In addition, we analyzed the contributions of different experimental restraints to the structural properties of calculated ensembles, enabling us to make recommendations about the experimental measurements that should be made for optimal ensemble modeling. The effects of different restraints, most significantly from chemical shifts, paramagnetic relaxation enhancements and small‐angle X‐ray scattering, but also from other data, underscore the importance of utilizing multiple sources of experimental data. Finally, we validate our ENSEMBLE methodology using both cross‐validation and synthetic experimental restraints calculated from simulated ensembles. Our results suggest that secondary structure and molecular size distribution can generally be modeled very accurately, whereas the accuracy of calculated tertiary structure is dependent on the number of distance restraints used. Proteins 2012. © 2011 Wiley Periodicals, Inc.  相似文献   

5.
ML DeMarco 《Biochemistry》2012,51(29):5725-5732
Characterizing the structure-function relationships of glycolipids in lipid membranes is a challenging endeavor. Glycolipid "structure" is rarely, if ever, a unique low-energy conformer, but an ensemble of dynamic states, which vary in their presentation of binding epitopes. The modulation of binding epitopes not only is an internal process but also is influenced by external factors such as glycolipid clustering and fluctuations in and composition of the fluid membrane environment. As with other glyco-conjugates, three-dimensional structural elucidation has relied heavily on nuclear magnetic resonance spectroscopy and computational modeling. Discrete conformational states can be discerned from motion-averaged experimental data by employing independent molecular dynamics simulations. Using model membranes such as micelles, bicelles, and bilayers, we can approximate the effect of their biological environment and quantify cell-surface presentation.  相似文献   

6.
Several methods have been applied to study protein-protein interaction from structural and thermodynamic point of view. The present study reveals that atomic force microscopy (AFM), molecular modeling, and docking approaches represent alternative methods offering new strategy to investigate structural aspects in oligomerization process of proteinase inhibitors. The topography of the black-eyed pea trypsin/chymotrypsin inhibitor (BTCI) was recorded by AFM and compared with computational rigid-bodies docking approaches. Multimeric states of BTCI identified from AFM analysis showed globular-ellipsoidal shapes. Monomers, dimers, trimers, and hexamers were the most prominent molecular arrays observed in AFM images as evaluated by molecular volume calculations and corroborated by in silico docking and theoretical approaches. We therefore propose that BTCI adopts stable and well-packed self-assembled states in monomer-dimer-trimer-hexamer equilibrium. Although there are no correlation between specificity and packing efficiency among proteinases and proteinase inhibitors, the AFM and docked BTCI analyses suggest that these assemblies may exist in situ to play their potential function in oligomerization process.  相似文献   

7.
8.
Integrative structural modeling enables structure determination of macromolecules and their complexes by integrating data from multiple sources. It has been successfully used to characterize macromolecular structures when a single structural biology technique was insufficient. Recent developments in cellular structural biology, including in-cell cryo-electron tomography and artificial intelligence-based structure prediction, have created new opportunities for integrative structural modeling. Here, we will review these opportunities along with the latest developments in integrative modeling methods and their applications. We also highlight open challenges and directions for further development.  相似文献   

9.
A new force field, Quantized Valence Bonds′ Molecular Mechanics (QVBMM) has been included in the molecular modeling program STR3DI.EXE. The QVBMM force field successfully embraces and implements all of the pivotal concepts in VSEPR theory and uniquely integrates lone pairs into molecular mechanics. QVBMM facilitates a detailed analysis of the stereo-electronic effects that contribute to the structural and conformational preferences of organic molecules in their ground states, including those molecules that possess the common heteroatoms. The design, parameterization and application of the force field to a few representative molecules is discussed. The anomeric effect is also briefly examined.  相似文献   

10.
Molecular modeling of conformational changes occurring in the transmembrane region of the complement factor 5a receptor (C5aR) during receptor activation was performed by comparing two constitutively active mutants (CAMs) of C5aR, NQ (I124N/L127Q), and F251A, to those of the wild-type C5aR and NQ-N296A (I124N/L127Q/N296A), which have the wild-type phenotype. Modeling involved comprehensive sampling of various rotations of TM helices aligned to the crystal template of the dark-adapted rhodopsin along their long axes. By assuming that the relative energies of the spontaneously activated states of CAMs should be lower or at least comparable to energies characteristic for the ground states, we selected the plausible models for the conformational states associated with constitutive activation in C5aR. The modeling revealed that the hydrogen bonds between the side chains of D82-N119, S85-N119, and S131-C221 characteristic for the ground state were replaced by the hydrogen bonds D82-N296, N296-Y300, and S131-R134, respectively, in the activated states. Also, conformational transitions that occurred upon activation were hindered by contacts between the side chains of L127 and F251. The results rationalize the available data of mutagenesis in C5aR and offer the first specific molecular mechanism for the loss of constitutive activity in NQ-N296A. Our results also contributed to understanding the general structural mechanisms of activation in G-protein-coupled receptors lacking the "ionic lock", R(3.50) and E/D(6.30). Importantly, these results were obtained by modeling approaches that deliberately simplify many elements in order to explore potential conformations of GPCRs involving large-scale molecular movements.  相似文献   

11.
12.
Efforts in structural biology have targeted the systematic determination of all protein structures through experimental determination or modeling. In recent years, 3-D electron cryomicroscopy (cryoEM) has assumed an increasingly important role in determining the structures of these large macromolecular assemblies to intermediate resolutions (6–10 Å). While these structures provide a snapshot of the assembly and its components in well-defined functional states, the resolution limits the ability to build accurate structural models. In contrast, sequence-based modeling techniques are capable of producing relatively robust structural models for isolated proteins or domains. In this work, we developed and applied a hybrid modeling approach, utilizing cryoEM density and ab initio modeling to produce a structural model for the core domain of a herpesvirus structural protein, VP26. Specifically, this method, first tested on simulated data, utilizes the cryoEM density map as a geometrical constraint in identifying the most native-like models from a gallery of models generated by ab initio modeling. The resulting model for the core domain of VP26, based on the 8.5-Å resolution herpes simplex virus type 1 (HSV-1) capsid cryoEM structure and mutational data, exhibited a novel fold. Additionally, the core domain of VP26 appeared to have a complementary interface to the known upper-domain structure of VP5, its cognate binding partner. While this new model provides for a better understanding of the assembly and interactions of VP26 in HSV-1, the approach itself may have broader applications in modeling the components of large macromolecular assemblies.  相似文献   

13.
Homomeric coiled‐coils can self‐assemble into a wide range of structural states with different helix topologies and oligomeric states. In this study, we have combined de novo structure modeling with stability calculations to simultaneously predict structure and oligomeric states of homomeric coiled‐coils. For dimers an asymmetric modeling protocol was developed. Modeling without symmetry constraints showed that backbone asymmetry is important for the formation of parallel dimeric coiled‐coils. Collectively, our results demonstrate that high‐resolution structure of coiled‐coils, as well as parallel and antiparallel orientations of dimers and tetramers, can be accurately predicted from sequence. De novo modeling was also used to generate models of competing oligomeric states, which were used to compare stabilities and thus predict the native stoichiometry from sequence. In a benchmark set of 33 coiled‐coil sequences, forming dimers to pentamers, up to 70% of the oligomeric states could be correctly predicted. The calculations demonstrated that the free energy of helix folding could be an important factor for determining stability and oligomeric state of homomeric coiled‐coils. The computational methods developed here should be broadly applicable to studies of sequence‐structure relationships in coiled‐coils and the design of higher order assemblies with improved oligomerization specificity. Proteins 2015; 83:235–247. © 2014 Wiley Periodicals, Inc.  相似文献   

14.
单颗粒电子显微学是一种新型的结构生物学技术和方法,一方面,其解析生物大分子复合体结构的分辨率日益提高,可以达到近原子分辨率,提供大蛋白分子或复合体的精细结构;另一方面,还可以解析生物大分子在不同功能状态下的结构及变化,对于揭示生物大分子复合体结构的作用机理具有重要作用。本文就单颗粒电子显微学的研究进展作一综述。  相似文献   

15.
A permeant ion is known to create in the channel pore a local electrical field, the intensity of which exceeds the intensity of an electrical field produced by the membrane potential. In our study, we consider a sodium channel model, in which the effects of a permeant ion, an inactivating particle, and pharmacological agents on mobile charged groups of the channel are semi-phenomenologically taken into account by using motion equations for a generalized structural variable. Stationary solutions for the equation correspond to “open,” “closed,” and “inactivated” channel states. Because of this, the channel free energy profile, as a function of the structural variable, has three local minima. The three energy values of these states depend both on the electrical field applied externally and on the near-membrane concentrations of permeant ions and acting pharmacological agents. Sodium channel activation and inactivation kinetics are considered resulting from relative changes of the free energy typical of the above three states of the channel. The results we obtained in the course of channel activation and inactivation modeling and their voltage dependence are qualitatively consistent with the commonly known experimental data. The proposed model allows one to qualitatively predict the dependence of the sodium channel kinetic characteristics on the concentrations of permeant ions and pharmacological agents.  相似文献   

16.
Key to successful protein structure prediction is a potential that recognizes the native state from misfolded structures. Recent advances in empirical potentials based on known protein structures include improved reference states for assessing random interactions, sidechain-orientation-dependent pair potentials, potentials for describing secondary or supersecondary structural preferences and, most importantly, optimization protocols that sculpt the energy landscape to enhance the correlation between native-like features and the energy. Improved clustering algorithms that select native-like structures on the basis of cluster density also resulted in greater prediction accuracy. For template-based modeling, these advances allowed improvement in predicted structures relative to their initial template alignments over a wide range of target-template homology. This represents significant progress and suggests applications to proteome-scale structure prediction.  相似文献   

17.
Lee C  Lee SH  Kim DH  Han KH 《BMB reports》2012,45(5):275-280
Nicotinic acetylcholine receptors (nAChRs) are a diverse family of homo- or heteropentameric ligand-gated ion channels. Understanding the physiological role of each nAChR subtype and the key residues responsible for normal and pathological states is important. α-Conotoxin neuropeptides are highly selective probes capable of discriminating different subtypes of nAChRs. In this study, we performed homology modeling to generate the neuronal α3, β2 and β4 subunits using the x-ray structure of the α1 subunit as a template. The structures of the extracellular domains containing ligand binding sites in the α3β2 and α3β4 nAChR subtypes were constructed using MD simulations and ligand docking processes in their free and ligand-bound states using α-conotoxin GIC, which exhibited the highest α3β2 vs. α3β4 discrimination ratio. The results provide a reasonable structural basis for such a discriminatory ability, supporting the idea that the present strategy can be used for future investigations on nAChR-ligand complexes.  相似文献   

18.
Cryo-electron microscopy allows the visualization of macromolecules in their native state. Combined with techniques of three-dimensional reconstruction, cryo-EM images of single molecules can be used to study macromolecular interactions. The ribosome, a large RNA-protein complex with multiple binding interactions, is an excellent test case illustrating the power of these new techniques. Conformational changes during the binding of tRNA and protein factors to the ribosome can now be studied without the interference of crystal packing. Now that the first X-ray structures of ribosomal subunits have become available, conformational changes observed by cryo-EM in different functional states can be traced back to internal rearrangements of the underlying structural framework. Electron microscopy, X-ray crystallography, and modeling should be used together in the endeavor to understand the functioning of the translational machinery.  相似文献   

19.
In the era of structural genomics, it is necessary to generate accurate structural alignments in order to build good templates for homology modeling. Although a great number of structural alignment algorithms have been developed, most of them ignore intermolecular interactions during the alignment procedure. Therefore, structures in different oligomeric states are barely distinguishable, and it is very challenging to find correct alignment in coil regions. Here we present a novel approach to structural alignment using a clique finding algorithm and environmental information (SAUCE). In this approach, we build the alignment based on not only structural coordinate information but also realistic environmental information extracted from biological unit files provided by the Protein Data Bank (PDB). At first, we eliminate all environmentally unfavorable pairings of residues. Then we identify alignments in core regions via a maximal clique finding algorithm. Two extreme value distribution (EVD) form statistics have been developed to evaluate core region alignments. With an optional extension step, global alignment can be derived based on environment-based dynamic programming linking. We show that our method is able to differentiate three-dimensional structures in different oligomeric states, and is able to find flexible alignments between multidomain structures without predetermined hinge regions. The overall performance is also evaluated on a large scale by comparisons to current structural classification databases as well as to other alignment methods.  相似文献   

20.
Although crystallographic information is available on several nucleotide-induced states in myosin, little is known about the corresponding structural changes in kinesin, since a crystallographic model is only available for the kinesin:ADP complex. This makes it difficult to characterize at a molecular level the structural changes that occur in this motor through the course of its ATPase cycle. In this study, we report on the production of a series of single tryptophan mutants of a monomeric human kinesin motor domain, which demonstrate nucleotide-dependent changes in microtubule affinity that are similar to wild type. We have used these mutations to measure intramolecular distances in both strong and weak binding states, using fluorescence resonance energy transfer. This work provides direct evidence that movement of the switch II loop and helix are essential to mediate communication between the catalytic and microtubule binding sites, evidence that is supported as well by molecular modeling. Kinetic studies of fluorescent nucleotide binding to these mutants are consistent with these distance changes, and demonstrate as well that binding of ADP produces two structural transitions, neither of which are identical to that produced by the binding of ATP. This study provides a basis for understanding current structural models of the kinesin mechanochemical cycle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号