首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Introduction

Wnt signalling has been implicated in stem cell regulation however its role in breast cancer stem cell regulation remains unclear.

Methods

We used a panel of normal and breast cancer cell lines to assess Wnt pathway gene and protein expression, and for the investigation of Wnt signalling within stem cell-enriched populations, mRNA and protein expression was analysed after the selection of anoikis-resistant cells. Finally, cell lines and patient-derived samples were used to investigate Wnt pathway effects on stem cell activity in vitro.

Results

Wnt pathway signalling increased in cancer compared to normal breast and in both cell lines and patient samples, expression of Wnt pathway genes correlated with estrogen receptor (ER) expression. Furthermore, specific Wnt pathway genes were predictive for recurrence within subtypes of breast cancer. Canonical Wnt pathway genes were increased in breast cancer stem cell-enriched populations in comparison to normal breast stem cell-enriched populations. Furthermore in cell lines, the ligand Wnt3a increased whilst the inhibitor DKK1 reduced mammosphere formation with the greatest inhibitory effects observed in ER+ve breast cancer cell lines. In patient-derived metastatic breast cancer samples, only ER-ve mammospheres were responsive to the ligand Wnt3a. However, the inhibitor DKK1 efficiently inhibited both ER+ve and ER-ve breast cancer but not normal mammosphere formation, suggesting that the Wnt pathway is aberrantly activated in breast cancer mammospheres.

Conclusions

Collectively, these data highlight differential Wnt signalling in breast cancer subtypes and activity in patient-derived metastatic cancer stem-like cells indicating a potential for Wnt-targeted treatment in breast cancers.  相似文献   

2.
3.
4.
Endocrine therapy has successfully been used to treat estrogen receptor (ER)-positive breast cancer, but this invariably fails with cancers becoming refractory to treatment. Emerging evidence has suggested that fluctuations in ER co-regulatory protein expression may facilitate resistance to therapy and be involved in breast cancer progression. To date, a small number of enzymes that control methylation status of histones have been identified as co-regulators of ER signalling. We have identified the histone H3 lysine 9 mono- and di-methyl demethylase enzyme KDM3A as a positive regulator of ER activity. Here, we demonstrate that depletion of KDM3A by RNAi abrogates the recruitment of the ER to cis-regulatory elements within target gene promoters, thereby inhibiting estrogen-induced gene expression changes. Global gene expression analysis of KDM3A-depleted cells identified gene clusters associated with cell growth. Consistent with this, we show that knockdown of KDM3A reduces ER-positive cell proliferation and demonstrate that KDM3A is required for growth in a model of endocrine therapy-resistant disease. Crucially, we show that KDM3A catalytic activity is required for both ER-target gene expression and cell growth, demonstrating that developing compounds which target demethylase enzymatic activity may be efficacious in treating both ER-positive and endocrine therapy-resistant disease.  相似文献   

5.
6.
7.
《Translational oncology》2020,13(2):423-440
Tamoxifen is a successful endocrine therapy drug for estrogen receptor–positive (ER+) breast cancer. However, resistance to tamoxifen compromises the efficacy of endocrine treatment. In the present study, we identified potential tamoxifen resistance–related gene markers and investigated their mechanistic details. First, we established two ER + breast cancer cell lines resistant to tamoxifen, named MCF-7/TMR and BT474/TMR. Gene expression profiling showed that CXXC finger protein 4 (CXXC4) expression is lower in MCF-7/TMR cells than in MCF-7 cells. Furthermore, CXXC4 mRNA and protein expression are lower in the resistant cell lines than in the corresponding parental cell lines. We also investigated the correlation between CXXC4 and endocrine resistance in ER + breast cancer cells. CXXC4 knockdown accelerates cell proliferation in vitro and in vivo and renders breast cancer cells insensitive to tamoxifen, whereas CXXC4 overexpression inhibits cancer cell growth and increases tamoxifen sensitivity of resistant cells. In addition, we demonstrated that CXXC4 inhibits Wnt/β-catenin signaling in cancer cells by modulating the phosphorylation of GSK-3β, influencing the integrity of the β-catenin degradation complex. Silencing the CXXC4 gene upregulates expression of cyclinD1 and c-myc (the downstream targets of Wnt signaling) and promotes cell cycle progression. Conversely, ectopic expression of CXXC4 downregulates the expression of these proteins and arrests the cell cycle in the G0/G1 phase. Finally, the small-molecule inhibitor XAV939 suppresses Wnt signaling and sensitizes resistant cells to tamoxifen. These results indicate that components of Wnt pathway that are early in response to tamoxifen could be involved as an intrinsic factor of the transition to endocrine resistance, and inhibition of Wnt signaling may be an effective therapeutic strategy to overcome tamoxifen resistance.  相似文献   

8.
Expression of estrogen receptor β (ERβ) has been described to reduce growth of cancer cell lines derived from hormone-dependent tumors, like breast cancer. In this study we tested to what extent two ERβ agonists, androgen derivative 3β-Adiol and flavonoid Liquiritigenin, would affect growth and gene expression of different ERβ-positive human breast cancer cell lines. Under standard cell culture conditions, we observed 3β-Adiol to inhibit growth of MCF-7 cells in a dose-dependent manner, whereas growth of BT-474 and MCF-10A cells was suppressed by the maximum concentration (100 nM) only. When treated in serum-free medium, all cell lines except of MDA-MB-231 were responsive to 1 nM 3β-Adiol, and ZR75-1 cells exhibited a dose-dependent antiproliferative response. Providing putative mechanisms underlying the observed growth-inhibitory effect, expression of Ki-67 or cyclins A2 and B1 was downregulated after 3β-Adiol treatment in all responsive lines. In contrast, treatment with lower doses of Liquiritigenin did not affect growth. In MCF-7 cells, the highest dose of this flavonoid exerted proliferative effects accompanied by increased expression of cyclin B1, PR and PS2, indicating unspecific activation of ERα. In conclusion, the ERβ agonists tested exerted distinct concentration-dependent and cell line-specific effects on growth and gene expression. The observed inhibitory effects of 3β-Adiol on breast cancer cell growth encourage further studies on the potential of this and other ERβ agonists as targeted drugs for breast cancer therapy.  相似文献   

9.
10.
11.
The nuclear hormone receptor estrogen receptor α (ERα) mediates the actions of estrogens in target cells and is a master regulator of the gene expression and proliferative programs of breast cancer cells. The presence of ERα in breast cancer cells is crucial for the effectiveness of endocrine therapies, and its loss is a hallmark of endocrine-insensitive breast tumors. However, the molecular mechanisms underlying the regulation of the cellular levels of ERα are not fully understood. Our findings reveal a unique cellular pathway involving the p38 mitogen-activated protein kinase (p38MAPK)-mediated phosphorylation of ERα at Ser-294 that specifies its turnover by the SCF(Skp2) proteasome complex. Consistently, we observed an inverse relationship between ERα and Skp2 or active p38MAPK in breast cancer cell lines and human tumors. ERα regulation by Skp2 was cell cycle stage dependent and critical for promoting the mitogenic effects of estradiol via ERα. Interestingly, by the knockdown of Skp2 or the inhibition of p38MAPK, we restored functional ERα protein levels and the control of gene expression and proliferation by estrogen and antiestrogen in ERα-negative breast cancer cells. Our findings highlight a novel pathway with therapeutic potential for restoring ERα and the responsiveness to endocrine therapy in some endocrine-insensitive ERα-negative breast cancers.  相似文献   

12.
Loss of estrogen receptor α (ERα) expression and gain of TWIST (TWIST1) expression in breast tumors correlate with increased disease recurrence and metastasis and poor disease-free survival. However, the molecular and functional regulatory relationship between TWIST and ERα are unclear. In this study, we found TWIST was associated with a chromatin region in intron 7 of the human ESR1 gene coding for ERα. This association of TWIST efficiently recruited the nucleosome remodeling and deacetylase (NuRD) repressor complex to this region, which subsequently decreased histone H3K9 acetylation, increased histone H3K9 methylation and repressed ESR1 expression in breast cancer cells. In agreement with these molecular events, TWIST expression was inversely correlated with ERα expression in both breast cancer cell lines and human breast ductal carcinomas. Forced expression of TWIST in TWIST-negative and ERα-positive breast cancer cells such as T47D and MCF-7 cells reduced ERα expression, while knockdown of TWIST in TWIST-positive and ERα-negative breast cancer cells such as MDA-MB-435 and 4T1 cells increased ERα expression. Furthermore, inhibition of histone deacetylase (HDAC) activity including the one in NuRD complex significantly increased ERα expression in MDA-MB-435 and 4T1 cells. HDAC inhibition together with TWIST knockdown did not further increase ERα expression in 4T1 and MDA-MB-435 cells. These results demonstrate that TWIST/NuRD represses ERα expression in breast cancer cells. Therefore, TWIST may serve as a potential molecular target for converting ERα-negative breast cancers to ERα-positive breast cancers, allowing these cancers to restore their sensitivity to endocrine therapy with selective ERα antagonists such as tamoxifen and raloxifene.  相似文献   

13.
14.
Chumsri S  Sabnis GJ  Howes T  Brodie AM 《Steroids》2011,76(8):730-735
Aromatase inhibitors (AIs) have become the front-line choice for treatment of ER+ breast cancer. Nevertheless, although patients are responsive initially, they may acquire resistance and become unresponsive to further treatment. In addition, approximately 25% of breast cancers do not express the estrogen receptor (ERα) and consequently, are innately resistant to endocrine therapy. We have investigated the mechanisms associated with this lack of treatment response using xenograft models. We found that in cells and tumors that acquired resistance to the AI letrozole therapy, expression of the ER was reduced whereas growth factor signally was enhanced, including a marked increase in HER2 expression. Treatment with trastuzumab (HER2 antibody) resulted in a significant down-regulation of HER2 and p-MAPK as well as restoration of ERα expression. Thus, when trastuzumab was added to letrozole treatment at the time of tumor progression, there was significantly prolonged tumor suppression compared to trastuzumab or letrozole alone. This suggests that inhibition of both HER2 and ERα signaling pathways are required for overcoming resistance and restoring treatment sensitivity. ER negative tumors are innately resistant to endocrine therapy. Repression of the ERα has been found to be due to epigenetic modifications such as increased methylation and histone deacetylation. We found that entinostat (ENT), a histone deacetylase inhibitor (HDACi), activated not only expression of ERα but also aromatase in MDA-MB-231 ER-negative breast cancer cells, resulting in their ability to respond to estrogen and letrozole. Treatment with ENT in combination with letrozole significantly reduced tumor growth rate in xenografts compared to control tumors (p < 0.001). ENT plus letrozole treatment also prevented the colonization and growth of MDA-MB-231 cells in the lung with a significant reduction (p < 0.03) in both visible and microscopic foci. These results provide a strong indication for possible use of AIs in combination with HDAC inhibitors for the treatment of ER-negative breast cancer.  相似文献   

15.
ATBF1 is a candidate tumor suppressor that interacts with estrogen receptor (ER) to inhibit the function of estrogen-ER signaling in gene regulation and cell proliferation control in human breast cancer cells. We therefore tested whether Atbf1 and its interaction with ER modulate the development of pubertal mammary gland, where estrogen is the predominant steroid hormone. In an in vitro model of cell differentiation, i.e., MCF10A cells cultured in Matrigel, ATBF1 expression was significantly increased, and knockdown of ATBF1 inhibited acinus formation. During mouse mammary gland development, Atbf1 was expressed at varying levels at different stages, with higher levels during puberty, lower during pregnancy, and the highest during lactation. Knockout of Atbf1 at the onset of puberty enhanced ductal elongation and bifurcation and promoted cell proliferation in both ducts and terminal end buds of pubertal mammary glands. Enhanced cell proliferation primarily occurred in ER-positive cells and was accompanied by increased expression of ER target genes. Furthermore, inactivation of Atbf1 reduced the expression of basal cell markers (CK5, CK14 and CD44) but not luminal cell markers. These findings indicate that Atbf1 plays a role in the development of pubertal mammary gland likely by modulating the function of estrogen-ER signaling in luminal cells and by modulating gene expression in basal cells.  相似文献   

16.
Expression of estrogen and progesterone hormone receptors indicates a favorable prognosis due to the successful use of hormonal therapies such as tamoxifen and aromatase inhibitors. Unfortunately, 15–20% of patients will experience breast cancer recurrence despite continued use of tamoxifen. Drug resistance to hormonal therapies is of great clinical concern so it is imperative to identify novel molecular factors that contribute to tumorigenesis in hormone receptor positive cancers and/or mediate drug sensitivity. The hope is that targeted therapies, in combination with hormonal therapies, will improve survival and prevent recurrence. We have previously shown that the DEK oncogene, which is a chromatin remodeling protein, supports breast cancer cell proliferation, invasion and the maintenance of the breast cancer stem cell population. In this report, we demonstrate that DEK expression is associated with positive hormone receptor status in primary breast cancers and is up-regulated in vitro following exposure to the hormones estrogen, progesterone, and androgen. Chromatin immunoprecipitation experiments identify DEK as a novel estrogen receptor α (ERα) target gene whose expression promotes estrogen-induced proliferation. Finally, we report for the first time that DEK depletion enhances tamoxifen-induced cell death in ER+ breast cancer cell lines. Together, our data suggest that DEK promotes the pathogenesis of ER+ breast cancer and that the targeted inhibition of DEK may enhance the efficacy of conventional hormone therapies.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号