首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
We have studied activation-induced dephosphorylation of proteins in human neutrophils loaded with [32P]orthophosphate using two-dimensional gel electrophoresis and autoradiography. A major phosphoprotein of 20 kDa in resting neutrophils was markedly dephosphorylated upon activation of cells with chemotactic peptide or phorbol 12-myristate 13-acetate (PMA), an activator of protein kinase C (PKC). Using a monoclonal anti-cofilin antibody, this phosphoprotein could be shown to be identical with cofilin, a protein implicated in actin filament remodeling. Signaling pathways leading to this dephosphorylation were further characterized. To define the role of PKC isoforms in cofilin dephosphorylation, we used different PKC inhibitors. Gö 6976 (10 μM), which inhibits preferentially PKC α and β, did not prevent PMA-induced dephosphorylation of cofilin, whereas Ro 31-8220 and CGP 41 251 (10 μM), which act also on Ca2+-independent PKC isoforms, almost completely suppressed this event. The lack of effect of Gö 6976 was not due to insufficient entry into the cells, as this drug suppressed PMA-induced increases in protein phosphorylation. Ca2+-independent PKC isoforms, rather than PKC α or β, may thus be involved in PMA-induced cofilin dephosphorylation. In contrast, Ro 31-8220 did not inhibit chemotactic peptide-induced cofilin dephosphorylation, suggesting here a PKC-independent pathway. The phosphatase inhibitor okadaic acid (1–2 μM) attenuated phosphorylation of cofilin in resting cells. This reduced level was not further attenuated by PMA. Phosphatases 1 and/or 2A may thus control cofilin phosphorylation in resting cells and contribute to PMA-induced cofilin dephosphorylation. Dephosphorylation of cofilin induced by PMA, chemotactic peptide, or okadaic acid was always accompanied by a shift of cofilin to the cell periphery into F-actin-rich areas. These findings suggest a role of cofilin in stimulus-dependent actin remodeling in motile neutrophils.  相似文献   

2.
Asymmetric dimethylarginine (ADMA), inhibiting the nitric oxide (NO) synthesis from l-arginine, is a known cardiovascular risk factor. Our aim was to investigate if ADMA and/or l-arginine are substrates of the human cationic amino acid transporters 2A (CAT2A, SLC7A2A) and 2B (CAT2B, SLC7A2B), the organic cation transporter 2 (OCT2, SLC22A2), and the multidrug and toxin extrusion protein 1 (MATE1, SLC47A1). We systematically investigated the kinetics of ADMA and l-arginine transport in human embryonic kidney (HEK293) cells stably overexpressing CAT2A, CAT2B, OCT2, or MATE1. Vector-only transfected HEK293 cells served as controls. Compared to vector control cells, uptake of ADMA and l-arginine was significantly higher (p < 0.05) in cells expressing CAT2B and OCT2 at almost all investigated concentrations, while cells expressing CAT2A only showed a significant uptake at concentrations above 300 μM. Uptake of MATE1 overexpressing cells was significantly (p < 0.05) higher at pH 7.8 and 8.2 than controls. Apparent V max values (nmol mg protein?1 min?1) for cellular uptake of ADMA and l-arginine were ≈11.8 ± 1.2 and 19.5 ± 0.7 for CAT2A, ≈14.3 ± 1.0 and 15.3 ± 0.4 for CAT2B, and 6.3 ± 0.3 and >50 for OCT2, respectively. Apparent K m values (μmol/l) for cellular uptake of ADMA and l-arginine were ≈3,033 ± 675 and 3,510 ± 419 for CAT2A, ≈4,021 ± 532 and 952 ± 92 for CAT2B, and 967 ± 143 and >10,000 for OCT2, respectively. ADMA and l-arginine are substrates of human CAT2A, CAT2B, OCT2 and MATE1. Transport kinetics of CAT2A, CAT2B, and OCT2 indicate a low affinity, high capacity transport, which may be relevant for renal and hepatic elimination of ADMA or l-arginine.  相似文献   

3.
Escherichia coli O157:H7 is an endemic pathogen causing a variety of human diseases including mild diarrhea, hemorrhagic colitis, hemolytic-uremic syndrome, and thrombotic thrombocytopenic purpura. This study concerns the exploitation of bacteriophages as biocontrol agents to eliminate the pathogen E. coli O157:H7. Two distinct lytic phages (e11/2 and e4/1c) isolated against a human strain of E. coli O157:H7, a previously isolated lytic phage (pp01), and a cocktail of all three phages were evaluated for their ability to lyse the bacterium in vivo and in vitro. Phage e11/2, pp01, and the cocktail of all three virulent phages resulted in a 5-log-unit reduction of pathogen numbers in 1 h at 37°C. However, bacteriophage-insensitive mutants (BIMs) emerged following the challenge. All tested BIMs had a growth rate which approximated that of the parental O157 strain, although many of these BIMs had a smaller, more coccoid cellular morphology. The frequency of BIM formation (10−6 CFU) was similar for e11/2, pp01, and the phage cocktail, while BIMs insensitive to e4/1c occurred at the higher frequency (10−4 CFU). In addition, BIMs commonly reverted to phage sensitivity within 50 generations. In an initial meat trial experiment, the phage cocktail completely eliminated E. coli O157:H7 from the beef meat surface in seven of nine cases. Given that the frequency of BIM formation is low (10−6 CFU) for two of the phages, allied to the propensity of these mutants to revert to phage sensitivity, we expect that BIM formation should not hinder the use of these phages as biocontrol agents, particularly since low levels of the pathogen are typically encountered in the environment.  相似文献   

4.
Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR), together with associated genes (cas), form the CRISPR–cas adaptive immune system, which can provide resistance to viruses and plasmids in bacteria and archaea. Here, we use mathematical models, population dynamic experiments, and DNA sequence analyses to investigate the host–phage interactions in a model CRISPR–cas system, Streptococcus thermophilus DGCC7710 and its virulent phage 2972. At the molecular level, the bacteriophage-immune mutant bacteria (BIMs) and CRISPR–escape mutant phage (CEMs) obtained in this study are consistent with those anticipated from an iterative model of this adaptive immune system: resistance by the addition of novel spacers and phage evasion of resistance by mutation in matching sequences or flanking motifs. While CRISPR BIMs were readily isolated and CEMs generated at high rates (frequencies in excess of 10−6), our population studies indicate that there is more to the dynamics of phage–host interactions and the establishment of a BIM–CEM arms race than predicted from existing assumptions about phage infection and CRISPR–cas immunity. Among the unanticipated observations are: (i) the invasion of phage into populations of BIMs resistant by the acquisition of one (but not two) spacers, (ii) the survival of sensitive bacteria despite the presence of high densities of phage, and (iii) the maintenance of phage-limited communities due to the failure of even two-spacer BIMs to become established in populations with wild-type bacteria and phage. We attribute (i) to incomplete resistance of single-spacer BIMs. Based on the results of additional modeling and experiments, we postulate that (ii) and (iii) can be attributed to the phage infection-associated production of enzymes or other compounds that induce phenotypic phage resistance in sensitive bacteria and kill resistant BIMs. We present evidence in support of these hypotheses and discuss the implications of these results for the ecology and (co)evolution of bacteria and phage.  相似文献   

5.
6.
The importance of the organic cation transporter OCT2 in the renal excretion of cationic drugs raises the possibility of drug-drug interactions (DDIs) in which an inhibitor (perpetrator) drug decreases OCT2-dependent renal clearance of a victim (substrate) drug. In fact, there are clinically significant interactions for drugs that are known substrates of OCT2 such as metformin. To identify drugs as inhibitors for OCT2, individual drugs or entire drug libraries have been investigated in vitro by using experimental probe substrates such as 1-methyl-4-phenylpyridinium (MPP+) or 4–4-dimethylaminostyryl-N-methylpyridinium (ASP+). It has been questioned whether the inhibition data obtained with an experimental probe substrate such as MPP+ or ASP+ might be used to predict the inhibition against other, clinical relevant substrates such as metformin. Here we compared the OCT2 inhibition profile data for the substrates metformin, MPP+ and ASP+. We used human embryonic kidney (HEK 293) cells stably overexpressing human OCT2 as the test system to screen 125 frequently prescribed drugs as inhibitors of OCT2-mediated metformin and MPP+ uptake. Data on inhibition of OCT2-mediated ASP+ uptake were obtained from previous literature. A moderate correlation between the inhibition of OCT2-mediated MPP+, ASP+, and metformin uptake was observed (pairwise r s between 0.27 and 0.48, all P < 0.05). Of note, the correlation in the inhibition profile between structurally similar substrates such as MPP+ and ASP+ (Tanimoto similarity T = 0.28) was even lower (r s = 0.27) than the correlation between structurally distinct substrates, such as ASP+ and metformin (T = 0.01; r s = 0.48) or MPP+ and metformin (T = 0.01; r s = 0.40). We identified selective as well as universal OCT2 inhibitors, which inhibited transport by more than 50% of one substrate only or of all substrates, respectively. Our data suggest that the predictive value for drug-drug interactions using experimental substrates rather than the specific victim drug is limited.  相似文献   

7.
Aims: An efficient approach for generation of bacteriophage‐insensitive mutants (BIMs) of Streptococcus thermophilus starters was described in our laboratory [Mills et al. (2007) J Microbiol Methods 70 , 159–164]. The aim of this study was to analyse the phage resistance mechanism responsible for BIM formation. Methods and Results: Three clustered regularly interspaced short palindromic repeat (CRISPR) regions have been identified in Strep. thermophilus, and Strep. thermophilus can integrate novel spacers into these loci in response to phage attack. Characterization of three sets of BIMs indicated that two sets had altered CRISPR1 and/or CRISPR3 loci. A range of BIMs of yoghurt starter CSK938 were generated with the same phage in different phage challenge experiments, and each acquired unique spacer regions ranging between one and four new spacers in CRISPR1. In addition, the BIM that acquired only one new spacer in CRISPR1 also acquired an additional spacer in CRISPR3. A fourth BIM, generated with a different phage, had two spacers deleted from CRISPR1 but acquired two spacers in CRISPR3. Analysis of the Mozzarella starter CSK939 and its associated BIMs indicated that formation of second generation BIMs does not lead to increases in spacer number but to alterations in spacer regions. BIMs of an exopolysaccharide (EPS)‐producing strain that lost the ability to produce EPS did not harbour an altered CRISPR, suggesting that phage sensitivity may be related to the EPS‐producing phenotype. Conclusions: Acquisition/deletion of new spacers in CRISPR loci in response to phage attack generates distinctly individual variants. It also demonstrates that other modifications may be responsible for the phage resistance of Strep. thermophilus BIMs. Significance and Impact of the Study: Isolation of individual BIMs that have unique spacers towards the leader region of the CRISPR locus may be a very useful approach for rotation strategies with the same starter backbone. Upon phage infection, BIMs ‘in reserve’ can be slotted into the rotation scheme.  相似文献   

8.
Using two newly synthesized inhibitors, Ro 31-8220 and CGP 41 251, of protein kinase C (PKC), we analyzed: (1) how distinct PMN functions (shape changes, locomotion, pinocytosis) are regulated, and (2) the role of protein phosphorylation and PKC in this process. We were able to transform: (1) resting PMNs into locomoting cells using fNLPNTL, (2) locomoting cells into non-locomoting highly pinocytic cells using PMA, and (3) PMA-stimulated cells showing marked pinocytosis into locomoting or into resting cells using Ro 31-8220. It is thus possible to selectively manipulate PMN function (resting state, locomotion, marked pinocytosis), indicating that there are different regulatory pathways. It was not possible to induce locomotion and marked pinocytosis simultaneously, indicating crosstalk between pathways. Ro 31-8220 inhibited PMA-induced shape changes (nonpolar cells) and pinocytosis, but not fNLPNTL-induced shape changes (polarity) and pinocytosis. At higher concentrations, Ro 31-8220 alone elicited cell polarity and chemokinesis, indicating that a constitutively active protein kinase is involved in maintaining the spherical shape of resting PMNs. Functional effects of another PKC inhibitor, CGP 41 251, on neutrophil function were strikingly different. CGP 41 251 selectively inhibited fNLPNTL-induced polarity and locomotion (but not colchicine or Ro 31-8220-induced polarity), and it failed to inhibit PMA-induced, stimulated pinocytosis and shape changes. Although the effects of Ro 31-8220 vs. CGP 41 251 on PMN function were strikingly different, the inhibition of profiles for constitutive and for fNLPNTL- or PMA-induced protein phosphorylation in intact PMNs showed only small differences, which could not yet be conclusively related to cell function. © 1994 Wiley-Liss, Inc.  相似文献   

9.
Radiation therapy is frequently used to treat non-small cell lung cancers (NSCLCs). We have previously shown that a combination of ionizing radiation (IR) and the staurosporine analog PKC 412, but not Ro 31–8220, increases cell death in NSCLC cells. To identify genes involved in the enhancement of cell death, a total gene profiling in response to co-administration of (i) PKC 412 with IR, or (ii) Ro 31–8220 with IR was implemented. These combined treatments caused upregulation of 140 and 179 genes and downregulation of 253 and 425 genes, respectively. Certain genes were selected and verified by real-time quantitative PCR and, of these genes, robust suppression of Ephrin B3 expression was suggested as a possible cell death-inducing mechanism of combined treatment with IR and PKC 412. Indeed, silencing of Ephrin B3 using siRNA in NSCLC cells resulted in a major alteration of their morphology with an elongated phenotype, decreased proliferation and increased cell death signaling. Moreover, silencing of Ephrin B3 in combination with IR caused a decrease in IR-mediated G2-arrest, induced cellular senescence, inhibited MAPK ERK and p38 phosphorylation, and caused an upregulation of p27kip1 expression. Finally, silencing of Ephrin B3 in combination with IR sensitized U-1810 cells to IR-induced apoptosis. In conclusion, we identify and describe Ephrin B3 as a putative signaling molecule involved in the response of NSCLC cells to combined treatment with PKC 412 and ionizing radiation.  相似文献   

10.
The responsiveness of normal human keratinocytes to different modulators of protein kinase C (PKC) was investigated. The PKC agonist TPA, staurosporine (a non-specific inhibitor), and Ro31–8220 (a specific inhibitor) were studied for effect on cell morphology, growth rate, involucrin expression, and intracellular calcium levels. Surprisingly the response to nanomolar concentrations of staurosporine was similar to TPA and induced a fusiform morphology, inhibited growth, increased involucrin levels, and raised intracellular calcium. Staurosporine also increased the number of cornified envelopes, and its action therefore appeared identical to TPA. In contrast, Ro31–8220 had little effect on morphology or growth and blocked both the TPA-induced growth inhibition and calcium rise. Ro31–8220 had no effect on staurosporine-induced growth inhibition but partially reduced its associated calcium rise. These results suggest PKC activation is required for keratinocyte differentiation and that staurosporine acts like a PKC agonist to give a similar effect as TPA. Specific inhibition of PKC by Ro31–8220 inhibits TPA-induced differentiation. © 1994 wiley-Liss, Inc.  相似文献   

11.
Green tea catechins inhibit the function of organic anion transporting polypeptides (OATPs) that mediate the uptake of a diverse group of drugs and endogenous compounds into cells. The present study was aimed at investigating the effect of green tea and its most abundant catechin epigallocatechin gallate (EGCG) on the transport activity of several drug transporters expressed in enterocytes, hepatocytes and renal proximal tubular cells such as OATPs, organic cation transporters (OCTs), multidrug and toxin extrusion proteins (MATEs), and P-glycoprotein (P-gp). Uptake of the typical substrates metformin for OCTs and MATEs and bromosulphophthalein (BSP) and atorvastatin for OATPs was measured in the absence and presence of a commercially available green tea and EGCG. Transcellular transport of digoxin, a typical substrate of P-gp, was measured over 4 hours in the absence and presence of green tea or EGCG in Caco-2 cell monolayers. OCT1-, OCT2-, MATE1- and MATE2-K-mediated metformin uptake was significantly reduced in the presence of green tea and EGCG (P < 0.05). BSP net uptake by OATP1B1 and OATP1B3 was inhibited by green tea [IC50 2.6% (v/v) and 0.39% (v/v), respectively]. Green tea also inhibited OATP1B1- and OATP1B3-mediated atorvastatin net uptake with IC50 values of 1.9% (v/v) and 1.0% (v/v), respectively. Basolateral to apical transport of digoxin was significantly decreased in the presence of green tea and EGCG. These findings indicate that green tea and EGCG inhibit multiple drug transporters in vitro. Further studies are necessary to investigate the effects of green tea on prototoypical substrates of these transporters in humans, in particular on substrates of hepatic uptake transporters (e.g. statins) as well as on P-glycoprotein substrates.  相似文献   

12.
The effects of agents that modulate intracellular release of calcium and protein kinase C (PKC) activation on noradrenaline (NA)-induced contractions of epididymal vas deferens in calcium-free/EGTA (1 mM) medium were investigated. NA (100 microM) or methoxamine (100 microM) evoked repeatable contractions. Clonidine (100-300 microM) was ineffective. The contractions to NA were reduced by procaine (1-10 mM) but not by thapsigargin (0.1-30 microM), ryanodine (1-30 microM) or TMB-8 (1-30 microM). Contractions to cumulative additions of NA (1-100 microM) were enhanced in the presence of cyclopiazonic acid (10 & 30 microM) but not ryanodine (10 & 30 microM). Sequential contractions to NA were not blocked by PKC inhibitors, calphostin C (1 microM) or Ro 31-8220 (1-30 microM) but were reduced by H-7 (1-30 microM), a broad spectrum protein kinase inhibitor. Although RT-PCR experiments detected mRNA for some Ca2+-dependent/DAG-activated and Ca2+-independent/DAG-activated PKC isoforms in epididymal vas deferens, the PKC activators, phorbol 12, 13-dibutyrate (100 microM) or phorbol 12-myristate 13-acetate (100 microM) failed to activate the tissues in calcium-free medium but enhanced subsequent contractions to NA. These results indicate a limited role for intracellular calcium stores and phorbol ester/DAG-sensitive PKC isoforms in NA-induced contraction of epididymal rat vas deferens in calcium-free medium. The results suggest that pharmacomechanical coupling triggered by NA may involve the sensitization of contractile myofilaments to Ca2+ or a Ca2+-independent mechanism. The possible involvement of Ca2+-independent/DAG-insensitive PKC isoforms and agonist-dependent but PKC-independent sensitization pathway is discussed.  相似文献   

13.
The electrogenic cation transporters OCT1 and OCT2 in the basolateral membrane of renal proximal tubules mediate the first step during secretion of organic cations. Previously we demonstrated stimulation and change of selectivity for rat OCT1 (rOCT1) by protein kinase C. Here we investigated the effect of cGMP on cation transport by rOCT1 or human OCT2 (hOCT2) after expression in human embryonic kidney cells (HEK293) or oocytes of Xenopus laevis. In HEK293 cells, uptake was measured by microfluorimetry using the fluorescent cation 4-(4-(dimethyl-amino)styryl)-N-methylpyridinium iodide (ASP + ) as substrate, whereas uptake into Xenopus laevis oocytes was measured with radioactively labelled cations. In addition, ASP +-induced depolarizations of membrane voltages (Vm) were measured in HEK293 cells using the slow whole-cell patch-clamp method. Incubation of rOCT1-expressing HEK293 cells for 10 min with 100 mM 8-Br-cGMP reduced initial ASP + uptake by maximally 78% with an IC50 value of 24 +/- 16 mM. This effect was not abolished by the specific PKG inhibitor KT5823, indicating that a cGMP-dependent kinase is not involved. An inhibition of ASP + uptake by rOCT1 in HEK293 cells was also obtained when the cells were incubated for 10 min with 100 mM cGMP, whereas no effect was obtained when cGMP was given together with ASP +. ASP + (100 mM)-induced depolarizations of Vm were reduced in the presence of 8-Br-cGMP (100 mM) by 44 +/- 11% (n = 6). Since it could be demonstrated that [3H]cGMP is taken up by an endogeneous cyanine863-inhibitable transporter, the effect of cGMP is probably mediated from inside the cell. Uptake measurements with [14C]tetraethylammonium and [3H]2-methyl-4-phenylpyridinium in Xenopus laevis oocytes expressing rOCT1 performed in the absence and presence of 8-Br-cGMP showed that cGMP does not interact directly with the transporter. The data suggest that the inhibition mediated by cGMP observed in HEK293 cells occurs most likely via a mammalian cGMP-binding protein that interacts with OCT1-2 transporters.  相似文献   

14.
Non-small cell lung carcinoma (NSCLC) is characterized by resistance to drug-induced apoptosis, which might explain the survival of lung cancer cells following treatment. Recently we have shown that the broad-range kinase inhibitor staurosporine (STS) reactivates the apoptotic machinery in U1810 NSCLC cells [Joseph et al., Oncogene 21 (2002) 65]. Lately, several STS analogs that are more specific in kinase inhibition have been suggested for tumor treatment. In this study the apoptosis-inducing ability of the STS analogs PKC 412 and Ro 31-8220 used alone or in combination with DNA-damaging agents in U1810 cells was investigated. In these cells Ro 31-8220 neither induced apoptosis when used alone, nor sensitized cells to etoposide treatment. PKC 412 as a single agent induced death of a small number of U1810 cells, whereas it efficiently triggered a dose- and time-dependent apoptosis in U1285 small cell lung carcinoma cells. In both cell types PKC 412 triggered release of mitochondrial proteins followed by caspase activation. However, concomitant activation of a caspase-independent pathway was essential to kill NSCLC cells. Importantly, PKC 412 was able to sensitize etoposide- and radiation-induced death of U1810 cells. The best sensitization was achieved when PKC 412 was administered 24 h after treatments. In U1810 cells, Ro 31-8220 decreased PMA-induced ERK phosphorylation as efficiently as PKC 412, indicating that the failure of Ro 31-8220 to induce apoptosis was not due to weaker inhibition of conventional and novel PKC isoforms. However, Ro 31-8220 increased the basal level of ERK and Akt phosphorylation in both cell lines, whereas Akt phosphorylation was suppressed in the U1810 cells, which might influence apoptosis. These results suggest that PKC 412 could be a useful tool in increasing the efficiency of therapy of NSCLC.  相似文献   

15.
We analyzed the kinetic and spatial patterns characterizing activation of the MAP kinases ERK 1 and 2 (ERK1/2) by the three α1-adrenoceptor (α1-AR) subtypes in HEK293 cells and the contribution of two different pathways to ERK1/2 phosphorylation: protein kinase C (PKC)-dependent ERK1/2 activation and internalization-dependent ERK1/2 activation. The different pathways of phenylephrine induced ERK phosphorylation were determined by western blot, using the PKC inhibitor Ro 31-8425, the receptor internalization inhibitor concanavalin A and the siRNA targeting β-arrestin 2. Receptor internalization properties were studied using CypHer5 technology and VSV-G epitope-tagged receptors. Activation of α1A- and α1B-ARs by phenylephrine elicited rapid ERK1/2 phosphorylation that was directed to the nucleus and inhibited by Ro 31-8425. Concomitant with phenylephrine induced receptor internalization α1A-AR, but not α1B-AR, produced a maintained and PKC-independent ERK phosphorylation, which was restricted to the cytosol and inhibited by β-arrestin 2 knockdown or concanavalin A treatment. α1D-AR displayed constitutive ERK phosphorylation, which was reduced by incubation with prazosin or the selective α1D antagonist BMY7378. Following activation by phenylephrine, α1D-AR elicited rapid, transient ERK1/2 phosphorylation that was restricted to the cytosol and not inhibited by Ro 31-8425. Internalization of the α1D-AR subtype was not observed via CypHer5 technology. The three α1-AR subtypes present different spatio-temporal patterns of receptor internalization, and only α1A-AR stimulation translates to a late, sustained ERK1/2 phosphorylation that is restricted to the cytosol and dependent on β-arrestin 2 mediated internalization.  相似文献   

16.
In this study, we investigated the signaling pathway involved in cyclooxygenase-2 (COX-2) expression and prostaglandin E2 (PGE2) release by phorbol 12-myristate 13-acetate (PMA), a protein kinase C (PKC) activator, in human pulmonary epithelial cells (A549). PMA-induced COX-2 expression was attenuated by PKC inhibitors (Go 6976 and Ro 31-8220), a Ras inhibitor (manumycin A), a Raf-1 inhibitor (GW 5074), a MEK inhibitor (PD 098059), and an NF-kappaB inhibitor (PDTC), but not by a tyrosine kinase inhibitor (genistein) or a p38 MAPK inhibitor (SB 203580). PMA also caused the activation of Ras, Raf-1, and ERK1/2. PMA-induced activation of Ras and Raf-1 was inhibited by Ro 31-8220 and manumycin A. PMA-mediated activation of ERK1/2 was inhibited by Ro 31-8220, manumycin A, GW 5074, and PD 098059. Stimulation of cells with PMA caused IkappaBalpha phosphorylation, IkappaBalpha degradation, and the formation of a NF-kappaB-specific DNA-protein complex. The PMA-mediated increase in kappaB-luciferase activity was inhibited by Ro 31-8220, manumycin A, GW5074, PD 098059, and PDTC. Taken together, these results indicate that PMA might activate PKC to elicit activation of the Ras/Raf-1/ERK1/2 pathway, which in turn initiates NF-kappaB activation, and finally induces COX-2 expression and PGE2 release in A549 cells.  相似文献   

17.
Protein kinase C (PKC) is a family of serine/threonine kinases that play isoform-specific inhibitory and stimulatory roles in platelet activation. We show here that the pan-PKC inhibitor Ro31-8220 can be used to dissect these events following platelet activation by ADP. Submaximal concentrations of Ro31-8220 potentiated aggregation and dense granule secretion to ADP in plasma anticoagulated with citrate, in D-Phe-Pro-Arg-chloromethyl ketone-anticoagulated plasma, which has physiological levels of Ca(2+), and in washed platelets. Potentiation was retained on inhibition of cyclooxygenase and was associated with an increase in intracellular Ca(2+). Potentiation of aggregation and secretion was abolished by a maximally effective concentration of Ro31-8220, consistent with a critical role of PKC in secretion. ADP-induced secretion was potentiated in the presence of an inhibitor of PKCβ but not in the presence of available inhibitors of other PKC isoforms in human and mouse platelets. ADP-induced secretion was also potentiated in mouse platelets deficient in PKCε but not PKC. These results demonstrate that partial blockade of PKC potentiates aggregation and dense granule secretion by ADP in association with increased Ca(2+). This provides a molecular explanation for the inability of ADP to induce secretion in plasma in the presence of physiological Ca(2+) concentrations, and it reveals a novel role for PKC in inhibiting platelet activation by ADP in vivo. These results also demonstrate isoform-specific inhibitory effects of PKC in platelets.  相似文献   

18.
19.
Myotonic dystrophy type 1 (DM1) is a multi-systemic disease with no established treatment to date. Small, cell-permeable molecules hold the potential to treat DM1. In this study, we investigated the association between protein kinase C (PKC) signaling and splicing of sarcoplasmic reticulum Ca(2+)-ATPase1 (SERCA1). Our aim was to clarify the mechanisms underlying the regulation of alternative splicing, in order to explore new therapeutic strategies for DM1. By assessing the splicing pattern of the endogenous SERCA1 gene in HEK293 cells, we found that treatment with phorbol 12-myristate 13-acetate (PMA) regulated SERCA1 splicing. Interestingly, treatment with PMA for 48 h normalized SERCA1 splicing, while treatment for 1.5h promoted aberrant splicing. These two responses showed dose dependency and were completely abolished by the PKC inhibitor Ro 31-8220. Furthermore, repression of PKCβII and PKCθ by RNAi mimicked prolonged PMA treatment. These results indicate that PKC signaling is involved in the splicing of SERCA1 and provide new evidence for a link between alternative splicing and PKC signaling.  相似文献   

20.
蛋白激酶C对大鼠支气管平滑肌KV通道的影响   总被引:16,自引:5,他引:11  
Liu XS  Xu YJ  Zhang ZX  Ni W  Chen SX 《生理学报》2003,55(2):135-141
用全细胞膜片钳、Western印迹法和逆转录—PCR技术,观察蛋白激酶C(protein kinase C,PKC)对大鼠支气管平滑肌细胞(bronchial smooth muscle cells,BSMCs)电压依赖性延迟整流钾通道(Kv)活性及其亚型Kvl.5表达的影响。结果为:(1)PKC激活剂豆蔻酰佛波醇乙酯(phorbol 12-myristate 13-acetate,PMA)显著抑制急性分离大鼠BSMCs的Kv通道电流,该效应被PKC阻断剂Ro31—8220显著抑制;(2)PMA显著抑制体外培养大鼠BSMCs的Kvl.5 mRNA和蛋白质的表达,该效应被Ro31—8220显著抑制。上述观察结果提示,PKC活化可抑制大鼠BSMCs的Kv通道电流活性,下调Kvl.5亚型的表达水平。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号