首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 354 毫秒
1.
Speth RC 《Regulatory peptides》2003,115(3):203-209
Studies predating the discovery of the two major subtypes of angiotensin II (Ang II) receptors, AT1 and AT2, revealed anomalous characteristics of sarcosine1,glycine8 Ang II (Sar1,Gly8 Ang II). It competed poorly for 125I-Ang II binding in bovine brain but potently antagonized dipsogenic responses to intracerebroventricularly administered Ang II. Subsequent recognition that bovine brain contains AT(2) receptors, while dipsogenic responses to Ang II are mediated by AT1 receptors, suggests that Sar1,Gly(8) Ang II is AT1 selective. Sar1,Gly8 Ang II competed for 125I-sarcosine1,isoleucine8 Ang II binding to AT1 receptors in pituitary, liver and adrenal (the latter with the AT2 selective antagonist PD 123,319) with Ki's of 0.66, 1.40 and 1.36 nM, respectively. In contrast, the Ki of Sar1,Gly8 Ang II for AT2 receptors in rat adrenal (with the selective AT1 antagonist losartan) was 52 nM. 125I-Sar1,Gly8 Ang II (0.5-3 nM) bound to AT1 receptors in pituitary, liver, heart, adrenal, and hypothalamic membranes with high affinity (Kd=0.43, 1.6, 2.3, 0.96 and 1.8 nM, respectively), but showed no saturable binding to the adrenal AT2 receptor. 125I-Sar1,Gly8 Ang II selectively labeled AT1 receptors in sections of adrenal using receptor autoradiography. Thus, binding studies reveal Sar1,Gly8 Ang II to be the first angiotensin peptide analog to show AT1 receptor selectivity. 125I-Sar1,Gly8 Ang II offers a new means to selectively radiolabel AT1 receptors and may help to characterize ligand docking sites and agonist switches for AT1 versus AT2 receptors.  相似文献   

2.
The octapeptide hormone, angiotensin II (Ang II), exerts its major physiological effects by activating AT(1) receptors. In vivo Ang II is degraded to bioactive peptides, including Ang III (angiotensin-(2-8)) and Ang IV (angiotensin-(3-8)). These peptides stimulate inositol phosphate generation in human AT(1) receptor expressing CHO-K1 cells, but the potency of Ang IV is very low. Substitution of Asn(111) with glycine, which is known to cause constitutive receptor activation by disrupting its interaction with the seventh transmembrane helix (TM VII), selectively increased the potency of Ang IV (900-fold) and angiotensin-(4-8), and leads to partial agonism of angiotensin-(5-8). Consistent with the need for the interaction between Arg(2) of Ang II and Ang III with Asp(281), substitution of this residue with alanine (D281A) decreased the peptide's potency without affecting that of Ang IV. All effects of the D281A mutation were superseded by the N111G mutation. The increased affinity of Ang IV to the N111G mutant was also demonstrated by binding studies. A model is proposed in which the Arg(2)-Asp(281) interaction causes a conformational change in TM VII of the receptor, which, similar to the N111G mutation, eliminates the constraining intramolecular interaction between Asn(111) and TM VII. The receptor adopts a more relaxed conformation, allowing the binding of the C-terminal five residues of Ang II that switches this "preactivated" receptor into the fully active conformation.  相似文献   

3.
N-(2-Mercaptoethyl)glycine [NMGly] was incorporated into the 3 and 5 positions of angiotensin II and oxidized to give the corresponding cyclized disulfide c[NMGly(3,5)]Ang II. The binding affinity to the angiotensin II receptor (AT(1)) of this conformationally constrained analogue, which is related to the potent Ang II agonist c[Hcy(3,5)]Ang II, was examined. The analogue had no affinity to the AT(1) receptor. Theoretical conformational analysis was performed to compare the conformational characteristics of model compounds of c[Hcy(3,5)]Ang II and the frame shifted analogue c[NMGly(3,5)]Ang II in an attempt to explain the lack of affinity.  相似文献   

4.
Rigidification of peptides by cyclization and iterative incorporation of well-defined secondary structure mimetics constitutes one approach to the design of non-peptidergic structures with better defined conformations. We herein present the synthesis of a potential gamma-turn mimetic scaffold, and its incorporation in the 3-5 position of angiotensin II. Two analogues of angiotensin II (Ang II) incorporating this 1,3,5-trisubstituted benzene gamma-turn scaffold were synthesized. Evaluation of the compounds in a radioligand binding assay showed that they lacked affinity to the AT1 receptor. To rationalize these results a geometrical and electrostatical comparison with Ang II analogues encompassing a bicyclic scaffold that delivered inactive pseudo peptides and an azepine scaffold producing highly active ligands was made. This analysis did not provide a clear rationale for the inactivity of the benzene gamma-turn scaffolds.  相似文献   

5.
Iodinated angiotensin II (Ang II) and its analogues are often assumed to have equal affinities for AT(1) and AT(2) receptor subtypes. However, using saturation and competition binding assays in several tissues from pregnant, nonpregnant, and fetal sheep, we found the affinity of 125I[Sar(1)Ile(8)] Ang II for Ang II receptors was different (P<0.05) between tissue types. The dissociation constants (Kd) and half maximal displacements of [Sar(1)Ile(8)] Ang II (Sar IC(50)) were directly related (P<0.05) to proportions of AT(1) receptors, and inversely related (P<0.05) to proportions of AT(2) receptors in tissues from all groups combined, in tissues from individual groups (pregnant, nonpregnant or fetal), and in some individual tissues (uterine arteries and aortae). This suggests that 125I[Sar(1)Ile(8)] Ang II has a different affinity for AT(1) and AT(2) receptors in ovine tissues. The Kds of 125I[Sar(1)Ile(8)] Ang II for "pure" populations of AT(1) and AT(2) receptors were 1.2 and 0.3 nM, respectively, i.e. affinity was four-fold higher for AT(2) receptors. We corrected the measured proportions of the receptor subtypes using their fractional occupancies. In tissues which contained at least 10% of each receptor subtype, the corrected proportions were significantly altered (P<0.05), even in some tissues, to the extent of being reversed.  相似文献   

6.
Two pentapeptides, Ac-Tyr-Ile-His-Pro-Phe/Ile, were synthesized and shown to have angiotensin II AT2 receptor affinity and agonistic activity. Based on these peptides, a new series of 13 pseudopeptides was synthesized via introduction of five different turn scaffolds replacing the Tyr-Ile amino acid residues. Pharmacological evaluation disclosed subnanomolar affinities for some of these compounds at the AT2 receptor. Substitution of Phe by Ile in this series of ligands enhanced the AT2 receptor affinity of all compounds. These results suggest that the C-terminal amino acid residues can be elaborated on to enhance the AT2 receptor affinity in truncated Ang II analogues.  相似文献   

7.
Significant angiotensin (Ang) (1-7) production occurs in kidney and effects on renal function have been observed. The present study was undertaken to investigate binding characteristics of the heptapeptide to Ang II receptors present in rat renal cortex. [125I]-Ang II binding to rat glomeruli membranes was analyzed in the presence of increasing concentrations of Ang II, Ang-(1-7), DUP 753 and PD 123319. Linearity of the Scatchard plot of the [125I]-Ang II specific binding to rat glomeruli membranes indicated a single population of receptors, with a Kd value of 0.7 +/- 0.1 nM and a Bmax of 198 +/- 0.04 fmol/mg protein. DUP 753, an specific AT1 receptor antagonist, totally displaced the specific binding of [125I]-radiolabelled hormone with a Ki of 15.8 +/- 0.9 nM, while no changes were observed in the presence of the selective AT2 receptor antagonist, PD 123319. The specific [125I]-Ang II binding to rat glomerular membranes was displaced by Ang-(1-7) with high affinity (Ki = 8.0 +/- 3.2 nM). We conclude that radioligand binding assays in the presence of selective Ang II antagonists DUP 753 and PD 123319 suggest the unique presence of AT1, receptors in rat glomeruli and a possible role in the control of the biological renal effects of Ang-(1-7).  相似文献   

8.
Angiotensin II receptor subtypes AT1 and AT2 are proteins with seven transmembrane domain (TMD) topology and share 34% homology. It was shown that His256, located in the sixth TMD of the AT1 receptor, is needed for the agonist activation by the Phe8 side chain of angiotensin II, although replacing this residue with arginine or glutamine did not significantly alter the affinity binding of the receptor. We hypothesized that the His273 located in the sixth transmembrane domain of the AT2 receptor may play a similar role in the functions of the AT2 receptor, although this residue was not identified as a conserved residue in the initial homology comparisions. Therefore, we replaced His273 of the AT2 receptor with arginine or glutamine and analyzed the ligand-binding properties of the mutant receptors using Xenopus oocytes as an expression system. Our results suggested that the AT2 receptor mutants His273Arg and His273 Glu have lost their affinity to [125I-Sar1-Ile8]Ang II, a peptidic ligand that binds both the AT1 and AT2 receptors and to 125I-CGP42112A, a peptidic ligand that binds specifically to the AT2 receptor. Thus, His273 located in the sixth TMD of the AT2 receptor seems to play an important role in determining the binding properties of this receptor. Moreover, these results along with our previous observation that the Lys215 located in the 5th TMD of the AT2 receptor is essential for its high affinity binding to [125I-Sar1-Ile8]Ang II indicate that key amino acids located in the 5th and 6th TMDs of the AT2 receptor are needed for high affinity binding of the AT2 to its ligands.  相似文献   

9.
Previously, we showed that uterine arteries from late gestation pregnant ewes infused intravenously with angiotensin II (Ang II) for 24 h, displayed heightened responsiveness to Ang II in vitro. Furthermore, we found that a small population of ewes with a "preeclampsia-like" disorder also displayed this. Therefore, we have investigated the density and affinity of Ang II receptor subtypes in the uterine arteries from these groups. Ang II receptor binding was measured using 125I [Sar1Ile8] Ang II. Proportions of AT1 and AT2 receptors were determined by inhibiting 125I [Sar1Ile8] Ang II with losartan (AT1 antagonist) or PD 123319 (AT2 antagonist). Uterine arteries from 24-h Ang II-infused ewes had a lower proportion of AT2 receptors (56.2+/-2.3%) than control (saline-infused) ewes (84.1+/-1.0%; P<0.05). The density of AT2 receptors was reduced (P<0.05) while the density of AT1 receptors was not different. Thus, 24-h infusions of Ang II selectively down-regulated AT2 receptors in the uterine artery, resulting in heightened Ang II reactivity. By contrast, the binding properties of Ang II receptor subtypes in uterine arteries from ewes with the "preeclampsia-like" disorder were not different from control ewes.  相似文献   

10.
The murine neuroblastoma N1E-115 cell line contains binding sites for the angiotensin II (Ang II) receptor antagonist 125I-[Sarc1,Ile8]-Ang II (125I-SARILE). Binding of 125I-SARILE to N1E-115 membranes was rapid, reversible, and specific for Ang II-related peptides. The rank order potency of 125I-SARILE binding was the following: [Sarc1]-Ang II = [Sarc1,Ile8]-Ang II greater than Ang II greater than Ang III = [Sarc1,Thr8]-Ang II much greater than Ang I. Scatchard analysis of membranes prepared from confluent monolayers revealed a homogenous population of high affinity (KD = 383 +/- 60 pM) binding sites with a Bmax of 25.4 +/- 1.6 fmol/mg of protein. Moreover, the density, but not the affinity, of the binding sites increased as the cells progressed from logarithmic to stationary growth in culture. Finally, agonist, but not antagonist, binding to N1E-115 cells was regulated by guanine nucleotides. Collectively, these results suggest that the murine neuroblastoma N1E-115 cell line may provide a useful model in which to investigate the signal transduction mechanisms utilized by neuronal Ang II receptors.  相似文献   

11.
High affinity 125I-angiotensin II (Ang II) binding sites were characterized in the canine pancreas. Total binding increased with protein concentration and equilibrium was reached within 60-90 min at 22 degrees C. Specific binding was saturable and averaged 70% of total. Scatchard analysis of binding yielded a KD of 0.48 +/- 0.18 nM with a Bmax of 32.8 +/- 6.5 fmol/mg protein (mean +/- SEM, n = 6). The addition of the reducing agent dithiothreitol increased specific binding two-fold. The rank order of displacement of 125I-Ang II binding by native angiotensin peptides was Ang II greater than or equal to Ang III greater than AngI greater than Ang(1-7) much greater than Ang(1-6). The use of the specific Ang II antagonists CGP 42112A, PD 123177, and DuP 753 revealed that the pancreas expresses two receptor subtypes. The majority of Ang II binding sites in the pancreas could be classified as type 2 (AT2), although type 1 (AT1) sites were also detected. In vitro autoradiography revealed binding sites localized over islet cells, acinar and duct cells, as well as the pancreatic vasculature. In addition, the autoradiographic studies confirmed the predominance of the AT2 receptor subtype throughout the pancreas.  相似文献   

12.
The phenolic side chain of Tyr(4) present in Ang II is proposed to interact with the side chain of Arg 167 of the AT1 receptor. To determine the contribution of the analogous Arg182 in the ligand-binding properties of the AT2, we replaced the Arg182 with Glu and Ala, and analyzed the ligand-binding properties. Our results suggest that replacing Arg182 with either Glu or Ala abolished the ability of the AT2 receptor to bind the nonspecific peptidic ligands, (125)I-Ang II and [(125)I-Sar(1)-Ile(8)]Ang II, as well as the AT2 receptor-specific peptidic ligand (125)I-CGP42112A. We have shown previously that replacing the positively charged side chain of Lys215 with the negatively charged side chain of Glu in the fifth TMD did not alter the high affinity binding of (125)I-CGP42112A to the AT2 receptor. However, ligand-binding properties of the Arg182Glu mutant suggest that positively charged side chain of Arg182 located in the junction of second ECL and the fourth TMD is critical for high affinity binding of all three peptidic ligands to the AT2 receptor.  相似文献   

13.
Lee C  Hwang SA  Jang SH  Chung HS  Bhat MB  Karnik SS 《FEBS letters》2007,581(13):2517-2522
The angiotensin II type I (AT(1)) receptor mediates regulation of blood pressure and water-electrolyte balance by Ang II. Substitution of Gly for Asn(111) of the AT(1) receptor constitutively activates the receptor leading to Gq-coupled IP(3) production independent of Ang II binding. The Ang II-activated conformation of the AT1(N111G) receptor was proposed to be similar to that of the wild-type AT(1) receptor, although, various aspects of the Ang II-induced conformation of this constitutively active mutant receptor have not been systematically studied. Here, we provide evidence that the conformation of the active state of the wild-type and the constitutively active AT(1) receptors are different. Upon Ang II binding an activated conformation of the wild-type AT(1) receptor activates G protein and recruits beta-arrestin. In contrast, the agonist-bound AT1(N111G) mutant receptor preferentially couples to Gq and is inadequate in beta-arrestin recruitment.  相似文献   

14.
Kumar V  Knowle D  Gavini N  Pulakat L 《FEBS letters》2002,532(3):379-386
Increase in the intracellular inositol triphosphate (IP3) levels in Xenopus oocytes in response to expression and activation of rat angiotensin II (Ang II) receptor AT1 was inhibited by co-expression of rat AT2 receptor. To identify which region of the AT2 was involved in this inhibition, ability of three AT2 mutants to abolish this inhibition was analyzed. Deletion of the C-terminus of the AT2 did not abolish this inhibition. Replacing Ile249 in the third intracellular loop (3rd ICL) of the AT2 with proline, corresponding amino acid in the AT1, in the mutant M6, resulted in slightly reduced affinity to [125I]Ang II (K(d)=0.259 nM), however, did not abolish the inhibition. In contrast, replacing eight more amino acids in the 3rd ICL of the AT2 (at positions 241-244, 250-251 and 255-256) with that of the AT1 in the mutant M8, not only increased the affinity of the AT2 receptor to [125I]Ang II (K(d)=0.038 nM) but also abolished AT2-mediated inhibition. Interestingly, activation of the M8 by Ang II binding also resulted in increase in the intracellular IP(3) levels in oocytes. These results imply that the region of the 3rd ICL of AT2 spanning amino acids 241-256 is sufficient for the AT2-mediated inhibition of AT1-stimulated IP3 generation. Moreover, these nine mutations are also sufficient to render the AT2 with the ability to activate phospholipase C.  相似文献   

15.
The endogenous angiotensin II (Ang II) and the synthetic AT(2) selective agonist 4-aminoPhe(6)-Ang II respond very differently to identical cyclizations. Cyclizations of Ang II by thioacetalization, involving the 3 and 5 amino acid residue side chains, provided ligands with almost equipotent binding affinities to Ang II at the AT(2) receptor. In contrast, the same cyclization procedures applied on the AT(2) selective 4-aminoPhe(6)-Ang II delivered significantly less potent AT(2) receptor ligands, although the AT(2)/AT(1) selectivity was still very high. The fact that different structure-activity relationships are observed after imposing conformational restrictions on Ang II and 4-aminoPhe(6)-Ang II, respectively, suggests that the peptides, despite large similarities might adopt quite different backbone conformations when binding to the AT(2) receptor.  相似文献   

16.
Analogues of the Type I angiotensin (ANG) antagonist, [Sar1,Ile8]ANG II, in which the N-terminal dipeptide was modified were synthesized by the solid phase method and purified by reversed-phase HPLC. Antagonist potencies (pA2) of the peptides were determined on the rat isolated uterus using ANG II as the agonist. Substitution of the Arg residue occupying position 2 of [Sar1,Ile8]ANG II (pA2 8.1) by Gly, Ala, Nle, Phe, Pro or Sar reduced the antagonist potency to pA2 = 7.0, 6.8, 6.7, 6.8, 5.8 and 5.3, respectively. Deletion of the N-terminal Sar residue in these same peptides gave pA2 = 6.8, 5.7, 5.5, 5.9, 6.1 and 7.5, respectively. The characteristically long duration of action of [Sar1,Ile8] was absent for all of these analogues including (des1, Sar2, Ile8]ANG II. These findings demonstrate that the antagonist potencies of Type I angiotensin antagonists for smooth muscle receptors, and also the long duration of action, are dependent on the location of positive charges within the peptide and on the conformation of the molecule in determining favorable electrostatic interactions with the receptor. A model is proposed in which the two positively charged loci on the angiotensin molecule (N-terminus and Arg) interact with two corresponding anionic binding sites on the smooth muscle receptor. The possibility that the prolonged duration of action of [Sar1, Ile8]ANG II results from binding to a different site on the angiotensin receptor from that occupied by ANG II is discussed in relation to the present findings.  相似文献   

17.
We have shown previously that the octapeptide angiotensin II (Ang II) activates the AT1 receptor through an induced-fit mechanism (Noda, K., Feng, Y. H., Liu, X. P., Saad, Y., Husain, A., and Karnik, S. S. (1996) Biochemistry 35, 16435-16442). In this activation process, interactions between Tyr4 and Phe8 of Ang II with Asn111 and His256 of the AT1 receptor, respectively, are essential for agonism. Here we show that aromaticity, primarily, and size, secondarily, of the Tyr4 side chain are important in activating the receptor. Activation analysis of AT1 receptor position 111 mutants by various Ang II position 4 analogues suggests that an amino-aromatic bonding interaction operates between the residue Asn111 of the AT1 receptor and Tyr4 of Ang II. Degree and potency of AT1 receptor activation by Ang II can be recreated by a reciprocal exchange of aromatic and amide groups between positions 4 and 111 of Ang II and the AT1 receptor, respectively. In several other bonding combinations, set up between Ang II position 4 analogues and receptor mutants, the gain of affinity is not accompanied by gain of function. Activation analysis of position 256 receptor mutants by Ang II position 8 analogues suggests that aromaticity of Phe8 and His256 side chains is crucial for receptor activation; however, a stacked rather than an amino-aromatic interaction appears to operate at this switch locus. Interaction between these residues, unlike the Tyr4:Asn111 interaction, plays an insignificant role in ligand docking.  相似文献   

18.
Angiotensin IV (Ang IV) exerts profound effects on memory and learning, a phenomenon ascribed to its binding to a specific AT4 receptor. However the AT4 receptor has recently been identified as the insulin-regulated aminopeptidase (IRAP). In this study, we demonstrate that AT4 receptor ligands, including Ang IV, Nle1-Ang IV, divalinal-Ang IV, and the structurally unrelated LVV-hemorphin-7, are all potent inhibitors of IRAP catalytic activity, as assessed by cleavage of leu-beta-naphthylamide by recombinant human IRAP. Both Ang IV and divalinal-Ang IV display competitive kinetics, indicating that AT4 ligands mediate their effects by binding to the catalytic site of IRAP. The AT4 ligands also displaced [125I]-Nle1-Ang IV or [125I]-divalinal1-Ang IV from IRAP-HEK293T membranes with high affinity, which was up to 200-fold greater than in the catalytic assay; this difference was not consistent among the peptides, and could not be ascribed to ligand degradation. Although some AT4 ligands were subject to minor cleavage by HEK293T membranes, none were substrates for IRAP. Of a range of peptides tested, only vasopressin, oxytocin, and met-enkephalin were rapidly cleaved by IRAP. We propose that the physiological effects of AT4 ligands result, in part, from inhibition of IRAP cleavage of neuropeptides involved in memory processing.  相似文献   

19.
A high performance liquid chromatography (HPLC) method is described for the separation of angiotensin (Ang) peptides and their subsequent quantification by radioimmunoassay in plasma and cerebrospinal fluid (CSF). The use of the ion-pair solvent heptafluorobutyric acid in gradient HPLC achieves baseline resolution of Ang I, Ang II, and the C-terminal fragments des-[Asp1]-Ang I, des-[Asp1]-Ang II, des-[Asp1,Arg2]-Ang II and des-[Asp1,Arg2,Val3]-Ang II in approximately 25 min. Recovery of synthetic Ang standards after phenylsilica extraction and HPLC separation was greater than 70% for each peptide in both plasma and CSF. Ang I and Ang II were shown to be the major immunoreactive Ang components in plasma, and Ang II, des-[Asp1,Arg2]-Ang II and des-[Asp1,Arg2,Val3]-Ang II in CSF.  相似文献   

20.
The renin-angiotensin system (RAS) and the kallikrein-kinin system (KKS) each encompasses a large number of molecules, with several participating in both systems. The RAS generates a family of bioactive angiotensin peptides with varying biological activities. These include angiotensin-(1-8) (Ang II), angiotensin-(2-8) (Ang III), angiotensin-(3-8) (Ang IV), and angiotensin-(1-7) [Ang-(1-7)]. Ang II and Ang III act on type 1 (AT(1)) and type 2 (AT(2)) angiotensin receptors, whereas, Ang IV and Ang-(1-7) act on their own receptors. The KKS also generates a family of bioactive peptides with varying biological activities. These include hydroxylated and non-hydroxylated bradykinin and kallidin peptides and their carboxypeptidase metabolites des-Arg(9)-bradykinin and des-Arg(10)-kallidin. Whereas bradykinin and kallidin act mainly via the type 2 bradykinin (B(2)) receptor, des-Arg(9)-bradykinin and des-Arg(10)-kallidin act mainly via the type 1 bradykinin (B(1)) receptor. The AT(1) receptor forms heterodimers with the AT(2) and B(2) receptors and there is cross talk between the AT(1) and epidermal growth factor receptors. The B(2) receptor also interacts with angiotensin converting enzyme and nitric oxide synthase. Both angiotensin and kinin peptides are metabolised by many different peptidases that are important determinants of the activities of the RAS and KKS, and several of which participate in both systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号