首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

Plagiochin E (PLE) is an antifungal active macrocyclic bis(bibenzyl) isolated from liverwort Marchantia polymorpha L. To elucidate the mechanism of action, previous studies revealed that the antifungal effect of PLE was associated with the accumulation of ROS, an important regulator of apoptosis in Candida albicans. The present study was designed to find whether PLE caused apoptosis in C. albicans.

Methods

We assayed the cell cycle by flow cytometry using PI staining, observed the ultrastructure by transmission electron microscopy, studied the nuclear fragmentation by DAPI staining, and investigated the exposure of phosphatidylserine at the outer layer of the cytoplasmic membrane by the FITC-annexin V staining. The effect of PLE on expression of CDC28, CLB2, and CLB4 was determined by RT-PCR. Besides, the activity of metacaspase was detected by FITC-VAD-FMK staining, and the release of cytochrome c from mitochondria was also determined. Furthermore, the effect of antioxidant L-cysteine on PLE-induced apoptosis in C. albicans was also investigated.

Results

Cells treated with PLE showed typical markers of apoptosis: G2/M cell cycle arrest, chromatin condensation, nuclear fragmentation, and phosphatidylserine exposure. The expression of CDC28, CLB2, and CLB4 was down-regulated by PLE, which may contribute to PLE-induced G2/M cell cycle arrest. Besides, PLE promoted the cytochrome c release and activated the metacaspase, which resulted in the yeast apoptosis. The addition of L-cysteine prevented PLE-induced nuclear fragmentation, phosphatidylserine exposure, and metacaspase activation, indicating the ROS was an important mediator of PLE-induced apoptosis.

Conclusions

PLE induced apoptosis in C. albicans through a metacaspase-dependent apoptotic pathway.

General significance

In this study, we reported for the first time that PLE induced apoptosis in C. albicans through activating the metacaspase. These results would conduce to elucidate its underlying antifungal mechanism.  相似文献   

2.

Background

While syndecan-2 is usually considered a mesenchymal transmembrane proteoglycan, it can be upregulated in some tumour cells, such as the malignant breast carcinoma cell line, MDA-MB231. Depletion of this syndecan by siRNA, but not other syndecans, has a marked effect on cell morphology, increasing spreading, microfilament bundle and focal adhesion formation, with reduced cell migration.

Methods

A combination of siRNA transfection, immunofluorescence microscopy, phosphoprotein analysis and migration assays was used to determine how syndecan-2 may influence the cytoskeleton.

Results

The altered adhesion upon syndecan-2 depletion was dependent on the RhoGTPases. p190ARhoGAP relocated to the margins of spreading cells, where it codistributed with syndecan-4 and active β1-integrin. This was accompanied by increased RhoGAP tyrosine phosphorylation, indicative of activity and RhoGTPase suppression. Consistent with this, GTP-RhoA was strongly present at the edges of control cells, but lost after syndecan-2 reduction by siRNA treatments. Further, RhoA, but not RhoC was shown to be essential for the anchored phenotype of these breast carcinoma cells that accompanied siRNA-mediated loss of syndecan-2.

Conclusions

Syndecan-2 has a key role in promoting the invasive activity of these cells, in part by regulating the RhoGTPases.

General significance

Syndecan-2, as a cell surface receptor is accessible for targeting to determine whether breast tumour progression is altered. This article is part of a Special Issue entitled Matrix-mediated cell behaviour and properties.  相似文献   

3.
4.

Background

Cancer cells have extremely active metabolism, which supports high proliferation rates. Metabolic profiles of human colon cancer cells have been extensively studied, but comparison with non-tumour counterparts has been neglected.

Methods

Here we compared the metabolic flux redistribution in human colon adenocarcinoma cells (HT29) and the human colon healthy cell line NCM460 in order to identify the main pathways involved in metabolic reprogramming. Moreover, we explore if induction of differentiation in HT29 by trichostatin A (TSA) reverts the metabolic reprogramming to that of NCM460. Cells were incubated with [1,2-13C2]-d-glucose as a tracer, and Mass Isotopomer Distribution Analysis was applied to characterize the changes in the metabolic flux distribution profile of the central carbon metabolism.

Results

We demonstrate that glycolytic rate and pentose phosphate synthesis are 25% lower in NCM460 with respect to HT29 cells. In contrast, Krebs cycle activity in the former was twice that recorded in the latter. Moreover, we show that TSA-induced HT29 cell differentiation reverts the metabolic phenotype to that of healthy NCM460 cells whereas TSA does not affect the metabolism of NCM460 cells.

Conclusions

We conclude that pentose phosphate pathway, glycolysis, and Krebs cycle are key players of colon adenocarcinoma cellular metabolic remodeling and that NCM460 is an appropriate model to evaluate the results of new therapeutic strategies aiming to selectively target metabolic reprogramming.

General significance

Our findings suggest that strategies to counteract robust metabolic adaptation in cancer cells might open up new avenues to design multiple hit and targeted therapies.  相似文献   

5.

Background

Single cell gel electrophoresis, or the comet assay, was devised as a sensitive method for detecting DNA strand breaks, at the level of individual cells. A simple modification, incorporating a digestion of DNA with a lesion-specific endonuclease, makes it possible to measure oxidised bases.

Scope of review

With the inclusion of formamidopyrimidine DNA glycosylase to recognise oxidised purines, or Nth (endonuclease III) to detect oxidised pyrimidines, the comet assay has been used extensively in human biomonitoring to monitor oxidative stress, usually in peripheral blood mononuclear cells.

Major conclusions

There is evidence to suggest that the enzymic approach is more accurate than chromatographic methods, when applied to low background levels of base oxidation. However, there are potential problems of over-estimation (because the enzymes are not completely specific) or under-estimation (failure to detect lesions that are close together). Attempts have been made to improve the inter-laboratory reproducibility of the comet assay.

General significance

In addition to measuring DNA damage, the assay can be used to monitor the cellular or in vitro repair of strand breaks or oxidised bases. It also has applications in assessing the antioxidant status of cells. In its various forms, the comet assay is now an invaluable tool in human biomonitoring and genotoxicity testing. This article is part of a Special Issue entitled Current methods to study reactive oxygen species - pros and cons and biophysics of membrane proteins. Guest Editor: Christine Winterbourn.  相似文献   

6.

Background

Diallyl mono- and polysulfanes from garlic are known to induce an adaptive cell response and the formation of antioxidants in cancer cells. In the case of a severe ER stress and a failure in the response, cancer cells eventually go into apoptosis. Only little is known about the response of normal cells upon treatment.

Methods

Normal ARPE-19 cells were treated with diallyl tetrasulfide to study their cellular response and the results were compared with those of HCT116 cancer cells. Cell viability was checked by an MTT assay and cytofluorimetry. The formation of superoxide radicals, H2O2 and thiols were determined and proteins involved in the ER stress response were also detected by Western blot analysis.

Results

We found that diallyl tetrasulfide induced reactive oxygen species (ROS) in normal cells similar to cancer cells in a time (0 to 60 min) and dose dependent manner (0 to 50 μM). The level of heme oxigenase-1 (HO-1) was up-regulated in both cell types. Initially, we found a decrease in the total thiol level in both cell types but in contrast to cancer cells, normal cells recovered from the decrease in the total thiol concentration within 60 min of treatment.

Conclusions

The recovery of the thiol concentration in normal cells treated with diallyl tetrasulfide seems to be responsible for the failure to induce the ER stress signalling pathway and finally apoptosis in normal cells.

General Significance

The difference in the recovery of the thiol status might be an explanation for the anti-carcinogenic effects of garlic compounds.  相似文献   

7.

Aims

Cellular senescence is an important tumor suppression process in vivo. Tamoxifen is a well-known anti-breast cancer drug; however, its molecular function is poorly understood. Here, we examined whether tamoxifen promotes senescence in breast cancer and colon cancer cells for the first time.

Main methods

Human breast cancer MCF-7, T47D, and MDA-MB-435 and colorectal cancer HCT116 cells were treated with tamoxifen. Cellular senescence was measured by SA-β-gal staining and based on the protein expression of p53 and p21Cip1/WAF1. The production of reactive oxygen species (ROS) was determined by staining with CM-H2DCFDA and dihydroethidium (DHE). CK2 activity was assessed with a specific peptide substrate.

Key findings

Tamoxifen promoted senescence phenotype and ROS generation in MCF-7 and HCT116 cells. The ROS scavenger, N-acetyl-l-cysteine (NAC), and the NADPH oxidase inhibitor, apocynin, almost completely abolished this event. Tamoxifen inhibited the catalytic activity of CK2. Overexpression of CK2α antagonized senescence mediated by tamoxifen, indicating that tamoxifen induced senescence via a CK2-dependent pathway. A well-known CK2 inhibitor, 5,6-dichloro-1-β-d-ribofuranosylbenzimidazole (DRB), also stimulated ROS production and senescence in MCF-7 cells. Finally, experiments using T47D (wild-type p53) and MDA-MB-435 (mutant p53) cell lines suggested that tamoxifen induces p53-independent ROS production as well as p53-dependent senescence in breast cancer cells.

Significance

These results demonstrate that tamoxifen promotes senescence through a ROS–p53–p21Cip1/WAF1 dependent pathway by inhibiting CK2 activity in breast cancer and colon cancer cells.  相似文献   

8.

Background

Microbial antibiotic resistance is a challenging medical problem nowadays. Two scorpion peptides displaying antibiotic activity: hadrurin and vejovine were taken as models for the design of novel shorter peptides with similar activity.

Methods

Using the standard Fmoc-based solid phase synthesis technique of Merrifield twelve peptides (18 to 29 amino acids long) were synthesized, purified and assayed against a variety of multi-drug resistant Gram-negative bacteria from clinical isolates. Hemolytic and antiparasitic activities of the peptides and their possible interactions with eukaryotic cells were verified. Release of the fluorophore calcein from liposomes treated with these peptides was measured.

Results

A peptide with sequence GILKTIKSIASKVANTVQKLKRKAKNAVA), and three analogs: Δ(Α29), Δ(K12-Q18; Ν26−Α29), and K4N Δ(K12-Q18; Ν26−Α29) were shown to inhibit the growth of Gram-negative (E. coli ATCC25922) and Gram-positive bacteria (S. aureus), as well as multi-drug resistant (MDR) clinical isolated. The antibacterial and antiparasitic activities were found with peptides at 0.78 to 25 μM and 5 to 25 μM concentration, respectively. These peptides have low cytotoxic and hemolytic activities at concentrations significantly exceeding their minimum inhibitory concentrations (MICs), showing values between 40 and 900 μM for their EC50, compared to the parent peptides vejovine and hadrurin that at the same concentration of their MICs lysed more than 50% of human erythrocytes cells.

Conclusions

These peptides promise to be good candidates to combat infections caused by Gram-negative bacteria from nosocomial infections.

General significance

Our results confirm that well designed synthetic peptides can be an alternative for solving the lack of effective antibiotics to control bacterial infections.  相似文献   

9.

Background

Metal oxide nanoparticles are well known to generate oxidative stress and deregulate normal cellular activities. Among these, transition metals copper oxide nanoparticles (CuO NPs) are more compelling than others and able to modulate different cellular responses.

Methods

In this work, we have synthesized and characterized CuO NPs by various biophysical methods. These CuO NPs (~ 30 nm) induce autophagy in human breast cancer cell line, MCF7 in a time- and dose-dependent manner. Cellular autophagy was tested by MDC staining, induction of green fluorescent protein-light chain 3 (GFP-LC3B) foci by confocal microscopy, transfection of pBABE-puro mCherry-EGFP-LC3B plasmid and Western blotting of autophagy marker proteins LC3B, beclin1 and ATG5. Further, inhibition of autophagy by 3-MA decreased LD50 doses of CuO NPs. Such cell death was associated with the induction of apoptosis as revealed by FACS analysis, cleavage of PARP, de-phosphorylation of Bad and increased cleavage product of caspase 3. siRNA mediated inhibition of autophagy related gene beclin1 also demonstrated similar results. Finally induction of apoptosis by 3-MA in CuO NP treated cells was observed by TEM.

Results

This study indicates that CuO NPs are a potent inducer of autophagy which may be a cellular defense against the CuO NP mediated toxicity and inhibition of autophagy switches the cellular response into apoptosis.

Conclusions

A combination of CuO NPs with the autophagy inhibitor is essential to induce apoptosis in breast cancer cells.

General significance

CuO NP induced autophagy is a survival strategy of MCF7 cells and inhibition of autophagy renders cellular fate to apoptosis.  相似文献   

10.

Background

Houttuynia cordata Thunb (HCT) is commonly used in Taiwan and other Asian countries as an anti-inflammatory, antibacterial and antiviral herbal medicine. In this study, we investigated the anti-human lung cancer activity and growth inhibition mechanisms of HCT in human lung cancer A549 cells.

Results

In order to investigate effects of HCT on A549 cells, MTT assay was used to evaluate cell viability. Flow cytometry was employed for cell cycle analysis, DAPI staining, and the Comet assay was used for DNA fragmentation and DNA condensation. Western blot analysis was used to analyze cell cycle and apoptotic related protein levels. HCT induced morphological changes including cell shrinkage and rounding. HCT increased the G0/G1 and Sub-G1 cell (apoptosis) populations and HCT increased DNA fragmentation and DNA condensation as revealed by DAPI staining and the Comet assay. HCT induced activation of caspase-8 and caspase-3. Fas/CD95 protein levels were increased in HCT-treated A549 cells. The G0/G1 phase and apoptotic related protein levels of cyclin D1, cyclin A, CDK 4 and CDK 2 were decreased, and p27, caspase-8 and caspase-3 were increased in A549 cells after HCT treatment.

Conclusions

The results demonstrated that HCT-induced G0/G1 phase arrest and Fas/CD95-dependent apoptotic cell death in A549 cells  相似文献   

11.

Background

The main objective of the present study was to investigate chemical composition and possible cyto/genotoxic potential of several medical implant materials commonly used in total hip joint replacement.

Methods

Medical implant metal alloy (Ti6Al4V and CoCrMo) and high density polyethylene particles were analyzed by energy dispersive X-ray spectrometry while toxicological characterization was done on human lymphocytes using multi-biomarker approach.

Results

Energy dispersive X-ray spectrometry showed that none of the elements identified deviate from the chemical composition defined by appropriate ISO standard. Toxicological characterization showed that the tested materials were non-cyto/genotoxic as determined by the comet and cytokinesis-block micronucleus (CBMN) assay. Particle morphology was found (by using scanning electron and optical microscope) as flat, sharp-edged, irregularly shaped fiber-like grains with the mean particle size less than 10 µm; this corresponds to the so-called "submicron wear". The very large surface area per wear volume enables high reactivity with surrounding media and cellular elements.

Conclusions

Although orthopedic implants proved to be non-cyto/genotoxic, in tested concentration (10 μg/ml) there is a constant need for monitoring of patients that have implanted artificial hips or other joints, to minimize the risks of any unwanted health effects.

General significance

The fractal and multifractal analyses, performed in order to evaluate the degree of particle shape effect, showed that the fractal and multifractal terms are related to the "remnant" level of the particles' toxicity especially with the cell viability (trypan blue method) and total number of nucleoplasmic bridges and nuclear buds as CBMN assay parameters.  相似文献   

12.

Background

Ginseng is a traditional Chinese herb that has been used for thousands of years. In the present study, effects and mechanisms of AD-1 were evaluated for its development as a novel anti-lung cancer drug.

Methods

The cytotoxic activity was evaluated by MTT assay. Flow cytometry was employed to detect cell cycle, apoptosis and ROS. Western blot and immunohistochemistry were used to analyze signaling pathways. Lung cancer xenograft models were established by subcutaneous implantation of A549 or H292 cells into nude mice.

Results

AD-1 concentration-dependently reduces lung cancer cell viability without affecting normal human lung epithelial cell viability. In A549 and H292 lung cancer cells, AD-1 induces G0/G1 cell cycle arrest, apoptosis and ROS production. The apoptosis can be attenuated by a ROS scavenger — N-acetylcysteine (NAC). In addition, AD-1 up-regulates the expression of p38 and ERK phosphorylation. Addition of a p38 inhibitor SB203580, suppresses the AD-1-induced decrease in cell viability. Furthermore, genetic silencing of p38 attenuates the expression of p38 and decreases the AD-1-induced apoptosis. Treatment with NAC reduces AD-1-induced p38 phosphorylation, which indicates that ROS generation is involved in the AD-1-induced p38 activation. In mice, oral administration of AD-1 (10–40 mg/kg) dose-dependently inhibited the growth of xenograft tumors without affecting body weight and decreases the expression of VEGF, MMP-9 and CD34 in tumor tissue. TUNEL staining confirms that the tumors from AD-1 treated mice exhibit a markedly higher apoptotic index.

Conclusions and general significance

These data support development of AD-1 as a potential agent for lung cancer therapy.  相似文献   

13.

Background

The glycoproteins on the cell surface are altered during apoptosis and play an important role in phagocytic clearance of apoptotic cells.

Methods

We classified Jurkat cells treated with etoposide as viable and early apoptotic cells, late apoptotic cells or secondary necrotic cells based on propidium iodide staining and scattered grams and estimated the expression levels of glycoproteins on the cell surface.

Results

The cell surface expression levels of intercellular adhesion molecules (ICAM)-2 and -3 on the apoptotic cells were markedly lower, while those of calnexin, calreticulin, and lysosome-associated membrane proteins (LAMP)-1 and -2 were significantly higher compared to non-apoptotic cells. These decreases in ICAM-2 and -3 on the apoptotic cell surface were reduced in the presence of metalloproteinase inhibitors and caspase inhibitors, respectively. Confocal microscopic analysis revealed that calnexin and calreticulin were assembled around fragmented nuclei of blebbed apoptotic cells.

Conclusions

These results suggest that alteration of glycoproteins on the cell surface during apoptosis is associated with shedding and intracellular translocation of glycoproteins.  相似文献   

14.

Background

MicroRNA is a type of non-coding small RNA involved in regulating genes and signaling pathways through incomplete complementation with target genes. Recent research supports key roles of miRNA in the formation and development of human glioma.

Methods

The relative quantity of miR-34a was initially determined in human glioma A172 cells and glioma tissues. Next, we analyzed the impact of miR-34a on A172 cell viability with the MTT assay. The effects of miR-34a overexpression on apoptosis were confirmed with flow cytometry and Hoechst staining experiments. We further defined the target genes of miR-34a using immunofluorescence and Western blot.

Results

MiR-34a expression was significantly reduced in human glioma A172 cells and glioma tissue, compared with normal glial cells and tissue samples. Our MTT data suggest that up-regulation of miR-34a inhibits cell viability while suppression of miR-34a enhances cell viability. Flow cytometry and Hoechst staining results revealed increased rates of apoptosis in A172 human glioma cells overexpressing miR-34a. Using immunofluorescence and Western blot analyses, we identified NOX2 as a target of miR-34a in A172 cells.

Conclusion

MiR-34a serves as a tumor suppressor in human glioma mainly by decreasing NOX2 expression.  相似文献   

15.

Aims

Neuroprotective effects of maysin, which is a flavone glycoside that was isolated from the corn silk (CS, Zea mays L.) of a Korean hybrid corn Kwangpyeongok, against oxidative stress (H2O2)-induced apoptotic cell death of human neuroblastoma SK-N-MC cells were investigated.

Main methods

Maysin cytotoxicity was determined by measuring cell viability using MTT and lactate dehydrogenase (LDH) assays. Intracellular reactive oxygen species (ROS) were measured using a 2,7-dichlorofluorescein diacetate (DCF-DA) assay. Apoptotic cell death was monitored by annexin V-FITC/PI double staining and by a TUNEL assay. Antioxidant enzyme mRNA levels were determined by real-time PCR. The cleavage of poly (ADP-ribose) polymerase (PARP) was measured by western blotting.

Key findings

Maysin pretreatment reduced the cytotoxic effect of H2O2 on SK-N-MC cells, as shown by the increase in cell viability and by reduced LDH release. Maysin pretreatment also dose-dependently reduced the intracellular ROS level and inhibited PARP cleavage. In addition, DNA damage and H2O2-induced apoptotic cell death were significantly attenuated by maysin pretreatment. Moreover, maysin pretreatment (5–50 μg/ml) for 2 h significantly and dose-dependently increased the mRNA levels of antioxidant enzymes (CAT, GPx-1, SOD-1, SOD-2 and HO-1) in H2O2 (200 μM)-insulted cells.

Significance

These results suggest that CS maysin has neuroprotective effects against oxidative stress (H2O2)-induced apoptotic death of human brain SK-N-MC cells through its antioxidative action. This report is the first regarding neuroprotective health benefits of corn silk maysin by its anti-apoptotic action and by triggering the expression of intracellular antioxidant enzyme systems in SK-N-MC cells.  相似文献   

16.

Background

Several anti-diabetes drugs exert beneficial effects against metabolic syndrome by inhibiting mitochondrial function. Although much progress has been made toward understanding the role of mitochondrial function inhibitors in treating metabolic diseases, the potential effects of these inhibitors on mitochondrial respiratory chain complex III remain unclear.

Methods

We investigated the metabolic effects of azoxystrobin (AZOX), a Qo inhibitor of complex III, in a high-fat diet-fed mouse model with insulin resistance in order to elucidate the mechanism by which AZOX improves glucose and lipid metabolism at the metabolic cellular level.

Results

Acute administration of AZOX in mice increased the respiratory exchange ratio. Chronic treatment with AZOX reduced body weight and significantly improved glucose tolerance and insulin sensitivity in high-fat diet-fed mice. AZOX treatment resulted in decreased triacylglycerol accumulation and down-regulated the expression of genes involved in liver lipogenesis. AZOX increased glucose uptake in L6 myotubes and 3T3-L1 adipocytes and inhibited de novo lipogenesis in HepG2 cells. The findings indicate that AZOX-mediated alterations to lipid and glucose metabolism may depend on AMP-activated protein kinase (AMPK) signaling.

Conclusions

AZOX, a Qo inhibitor of mitochondrial respiratory complex III, exerts whole-body beneficial effects on the regulation of glucose and lipid homeostasis in high-fat diet-fed mice.

General significance

These findings provide evidence that a Qo inhibitor of mitochondrial respiratory complex III could represent a novel approach for the treatment of obesity.  相似文献   

17.

Aims

It is well established that the brain is particularly susceptible to oxidative damage due to its high consumption of oxygen. The objective of this study was to investigate the protective effects of a water soluble polyphenol-rich extract of cinnamon and the possible mechanisms, under conditions of oxidative stress-induced by hydrogen peroxide, in rat C6 glioma cells.

Main methods

After 24 h of H2O2 incubation, the secretion and intracellular expression of S100β were determined by immunoprecitation/immunoblotting and immunofluorescence imaging.

Key findings

Cinnamon polyphenols (CP) counteracted the oxidative effects of H2O2 on S100β secretion and expression. CP also enhanced the impaired protein levels of sirtuins 1, 2, and 3, which are deacetylases important in cell survival. H2O2 also induced the overexpression of the proinflammatory factors, TNF-α, phospho-NF-κB p65, as well as of Bcl-xl, Bax and Caspase-3, which are all the members of the Bcl-2 family. CP not only suppressed the expression of these proteins but also attenuated the phosphorylation induced by H2O2. CP also upregulated the decreased Bcl-2 protein levels in H2O2 treated C6 cells. The effects of CP on H2O2-induced downregulation of S100β secretion were blocked by SIRT1 siRNA demonstrating that SIRT1 plays a regulatory role in CP-mediated prevention by H2O2.

Significance

These data demonstrate that Cinnamon polyphenols may exert neuroprotective effects in glial cells by the regulation of Bcl-2 family members and enhancing SIRT1 expression during oxidative stress.  相似文献   

18.

Aims

This study aims to investigate the effect and the mechanisms of notoginsenoside Ft1, a natural compound exclusively found in P. notoginseng, on the proliferation and apoptosis of human neuroblastoma SH-SY5Y cells.

Main methods

CCK-8 assay was used to assess the cell proliferation. Flow cytometry was performed to measure the cell cycle distribution and cell apoptosis. Hoechst 33258 staining was conducted to confirm the morphological changes of apoptotic cells. Protein expression was detected by western blot analysis and caspase 3 activity was measured by colorimetric assay kit.

Key findings

Among the saponins examined, Ft1 showed the best inhibitory effect on cell proliferation of SH-SY5Y cells with IC50 of 45 μM. Ft1 not only arrested the cell cycle at S, G2/M stages, but also promoted cell apoptosis, which was confirmed by Hoechst 33258 staining. Further studies demonstrated that Ft1 up-regulated the protein expressions of cleaved caspase 3, phospho-p53, p21, and cyclin B1, but down-regulated that of Bcl-2. Moreover, Ft1 enhanced the phosphorylation of ERK1/2, JNK and p38 MAPK. However, the phosphorylation of Jak2 and p85 PI3K was reduced by Ft1. Inhibitors of p38 MAPK and ERK1/2 but not JNK abrogated the up-regulated protein expressions of cleaved caspase 3, p21 and down-regulated protein expression of Bcl-2 as well as elevated caspase 3 activity induced by Ft1.

Significance

Ft1 arrested the proliferation and elicited the apoptosis of SH-SY5Y cells possibly via p38 MAPK and ERK1/2 pathways, which indicates the potential therapeutic effect of it on human neuroblastoma.  相似文献   

19.

Aim

Thymoquinone (TQ), the predominant bioactive constituent of black seed oil (Nigella Sativa), has been shown to possess antineoplastic activity against multifarious tumors. However, the meticulous mechanism of TQ on Akt mediated survival pathway is still unrevealed in breast cancer. Here, we investigated TQ's mechanism of action against PI3K/Akt signaling and its downstream targets by modulating proteins translational machinery, leading to apoptosis in cancer cells.

Main methods

MDA-MB-468 and T-47D cells were treated with TQ and evaluated for its anticancer activity through phase distribution and western blot. Modulatory effects of TQ on Akt were affirmed through kinase and drug potential studies.

Key findings

Studies revealed G1 phase arrest till 24 h incubation with TQ while extended exposure showed phase shift to subG1 indicating apoptosis, supported by suppression of cyclin D1, cyclin E and cyclin dependent kinase inhibitor p27 expression. Immunoblot and membrane potential studies revealed mitochondrial impairment behind apoptotic process with upregulation of Bax, cytoplasmic cytochrome c and procaspase-3, PARP cleavage along with Bcl-2, Bcl-xL and survivin downregulation. Moreover, we construed the rationale behind mitochondrial dysfunction by examining the phosphorylation status of PDK1, PTEN, Akt, c-raf, GSK-3β and Bad in TQ treated cells, thus ratifying the involvement of Akt in apoptosis. Further, the consequential effect of Akt inhibition by TQ is proven by translational repression through deregulated phosphorylation of 4E-BP1, eIF4E, S6R and p70S6K.

Significance

Our observations for the first time may provide a new insight for the development of novel therapies for Akt overexpressed breast cancer by TQ.  相似文献   

20.

Introduction

Patient age often limits the therapeutic efforts of the oncologist. The aim of this study was to determine whether chemotherapy is used less frequently in elderly women aged 65-69 years diagnosed with breast cancer, compared to younger women.

Methods

A retrospective study was performed including women greater than 65 years old who had localised breast cancer and were treated at a University Hospital. Patients were classified into two groups, 65-69 years old and ≥ 70 years old. The differences in patient characteristics, tumour characteristics, chemotherapy treatment and chemotherapy-associated toxicity were analysed in both groups.

Results

A total of 164 women, with an average age of 73.7 years, were included in this study. There were no significant differences in the characteristics of the patients or their tumours. However, 75% of women <70 years old were treated with chemotherapy compared to just 34% of the older women (P<.001). The resulting levels of toxicity were similar between age groups.

Conclusions

Women ≥ 70 years old were treated with chemotherapy less frequently, even though the features and tumour characteristics of the women, as well as the toxicity of the treatment, were similar to that in younger women.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号