首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Quantitative analysis in Förster resonance energy transfer (FRET) experiments in live cells for protein interaction studies is still a challenging issue. In a two-component system (FRET and no FRET donor species), fitting of fluorescence lifetime imaging microscopy (FLIM) data gives the fraction of donor molecules involved in FRET (fD) and the intrinsic transfer efficiency. But when fast FLIM acquisitions are used to monitor dynamic changes in protein-protein interactions at high spatial and temporal resolutions in living cells, photon statistics and time resolution are limited. In this case, fitting procedures are not reliable, even for single lifetime donors. We introduce the new concept of a minimal fraction of donor molecules involved in FRET (mfD), coming from the mathematical minimization of fD. We find particular advantage in the use of mfD because it can be obtained without fitting procedures and it is derived directly from FLIM data. mfD constitutes an interesting quantitative parameter for live cell studies because it is related to the minimal relative concentration of interacting proteins. For multi-lifetime donors, the process of fitting complex fluorescence decays to find at least four reliable lifetimes is a near impossible task. Here, mfD extension for multi-lifetime donors is the only quantitative determinant. We applied this methodology for imaging the interaction between the bromodomains of TAFII250 and acetylated histones H4 in living cells at high resolution. We show the existence of discrete acetylated chromatin domains where the minimal fraction of bromodomain interacting with acetylated H4 oscillates from 0.26 to 0.36 and whose size is smaller than half of one micron cube. We demonstrate that mfD by itself is a useful tool to investigate quantitatively protein interactions in live cells, especially when using fast FRET-FLIM acquisition times.  相似文献   

2.
New imaging methodologies in quantitative fluorescence microscopy and nanoscopy have been developed in the last few years and are beginning to be extensively applied to biological problems, such as the localization and quantification of protein interactions. Fluorescence resonance energy transfer (FRET) detected by fluorescence lifetime imaging microscopy (FLIM) is currently employed not only in biophysics or chemistry but also in bio-medicine, thanks to new advancements in technology and also new developments in data treatment. FRET–FLIM can be a very useful tool to ascertain protein interactions occurring in single living cells. In this review, we stress the importance of increasing the acquisition speed when working in vivo employing Time-Domain FLIM. The development of the new mathematical-based non-fitting methods allows the determining of the fraction of interacting donor without the requirement of high count statistics, and thus allows the performing of high speed acquisitions in FRET–FLIM to still be quantitative.  相似文献   

3.
The fluorescent-protein based fluorescence resonance energy transfer (FRET) approach is a powerful method for quantifying protein-protein interactions in living cells, especially when combined with fluorescence lifetime imaging microscopy (FLIM). To compare the performance of different FRET couples for FRET-FLIM experiments, we first tested enhanced green fluorescent protein (EGFP) linked to different red acceptors (mRFP1-EGFP, mStrawberry-EGFP, HaloTag (TMR)-EGFP, and mCherry-EGFP). We obtained a fraction of donor engaged in FRET (fD) that was far from the ideal case of one, using different mathematical models assuming a double species model (i.e., discrete double exponential fixing the donor lifetime and double exponential stretched for the FRET lifetime). We show that the relatively low fD percentages obtained with these models may be due to spectroscopic heterogeneity of the acceptor population, which is partially caused by different maturation rates for the donor and the acceptor. In an attempt to improve the amount of donor protein engaged in FRET, we tested mTFP1 as a donor coupled to mOrange and EYFP, respectively. mTFP1 turned out to be at least as good as EGFP for donor FRET-FLIM experiments because 1), its lifetime remained constant during light-induced fluorescent changes; 2), its fluorescence decay profile was best fitted with a single exponential model; and 3), no photoconversion was detected. The fD value when combined with EYFP as an acceptor was the highest of all tandems tested (0.7). Moreover, in the context of fast acquisitions, we obtained a minimal fD (mfD) for mTFP1-EYFP that was almost two times greater than that for mCherry-EGFP (0.65 vs. 0.35). Finally, we compared EGFP and mTFP1 in a biological situation in which the fusion proteins were highly immobile, and EGFP and mTFP1 were linked to the histone H4 (EGFP-H4 and mTFP1-H4) in fast FLIM acquisitions. In this particular case, the fluorescence intensity was more stable for EGFP-H4 than for mTFP1-H4. Nevertheless, we show that mTFP1/EYFP stands alone as the best FRET-FLIM couple in terms of fD analysis.  相似文献   

4.
Protein-protein interactions can be studied in vitro, e.g. with bacterial or yeast two-hybrid systems or surface plasmon resonance. In contrast to in vitro techniques, in vivo studies of protein-protein interactions allow examination of spatial and temporal behavior of such interactions in their native environment. One approach to study protein-protein interactions in vivo is via Förster Resonance Energy Transfer (FRET). Here, FRET efficiency of selected FRET-pairs was studied at the single cell level using sensitized emission and Frequency Domain-Fluorescence Lifetime Imaging Microscopy (FD-FLIM). For FRET-FLIM, a prototype Modulated Electron-Multiplied FLIM system was used, which is, to the best of our knowledge, the first account of Frequency Domain FLIM to analyze FRET in single bacterial cells. To perform FRET-FLIM, we first determined and benchmarked the best fluorescent protein-pair for FRET in Bacillus subtilis using a novel BglBrick-compatible integration vector. We show that GFP-tagRFP is an excellent donor-acceptor pair for B. subtilis in vivo FRET studies. As a proof of concept, selected donor and acceptor fluorescent proteins were fused using a linker that contained a tobacco etch virus (TEV)-protease recognition sequence. Induction of TEV-protease results in loss of FRET efficiency and increase in fluorescence lifetime. The loss of FRET efficiency after TEV induction can be followed in time in single cells via time-lapse microscopy. This work will facilitate future studies of in vivo dynamics of protein complexes in single B. subtilis cells.  相似文献   

5.
In this paper we report the results of measurements performed by FLIM on the photoreceptor of Euglenagracilis. This organelle consists of optically bistable proteins, characterized by two thermally stable isomeric forms: A498, non fluorescent and B462, fluorescent.Our data indicate that the primary photoevent of Euglena photoreception upon photon absorption consists of two contemporaneous different phenomena: an intramolecular photo-switch (i.e., A498 becomes B462), and a intermolecular and unidirectional Forster-type energy transfer. During the FRET process, the fluorescent B462 form acts as donor for the non-fluorescent A498 form of the protein nearby, which acts as acceptor. We hypothesize that in nature these phenomena follow each other with a domino progression along the orderly organized and closely packed proteins in the photoreceptor layer(s), modulating the isomeric composition of the photoreceptive protein pool. This mechanism guarantees that few photons are sufficient to produce a signal detectable by the cell.  相似文献   

6.
Conversion of native proteins into amyloid fibrils is irreversible and therefore it is difficult to study the interdependence of conformational stability and fibrillation by thermodynamic analyses. Here we approached this problem by fusing amyloidogenic poly-alanine segments derived from the N-terminal domain of the nuclear poly (A) binding protein PABPN1 with a well studied, reversibly unfolding protein, CspB from Bacillus subtilis. Earlier studies had indicated that CspB could maintain its folded structure in fibrils, when it was separated from the amyloidogenic segment by a long linker. When CspB is directly fused with the amyloidogenic segment, it unfolds because its N-terminal chain region becomes integrated into the fibrillar core, as shown by protease mapping experiments. Spacers of either 3 or 16 residues between CspB and the amyloidogenic segment were not sufficient to prevent this loss of CspB structure. Since the low thermodynamic stability of CspB (ΔG D = 12.4 kJ/mol) might be responsible for unfolding and integration of CspB into fibrils, fusions with a CspB mutant with enhanced thermodynamic stability (ΔG D = 26.9 kJ/mol) were studied. This strongly stabilized CspB remained folded and prevented fibril formation in all fusions. Our data show that the conformational stability of a linked, independently structured protein domain can control fibril formation.  相似文献   

7.
S Hashimoto 《PloS one》2012,7(8):e41962
Soil greenhouse gas fluxes (particularly CO2, CH4, and N2O) play important roles in climate change. However, despite the importance of these soil greenhouse gases, the number of reports on global soil greenhouse gas fluxes is limited. Here, new estimates are presented for global soil CO2 emission (total soil respiration), CH4 uptake, and N2O emission fluxes, using a simple data-oriented model. The estimated global fluxes for CO2 emission, CH4 uptake, and N2O emission were 78 Pg C yr−1 (Monte Carlo 95% confidence interval, 64–95 Pg C yr−1), 18 Tg C yr−1 (11–23 Tg C yr−1), and 4.4 Tg N yr−1 (1.4–11.1 Tg N yr−1), respectively. Tropical regions were the largest contributor of all of the gases, particularly the CO2 and N2O fluxes. The soil CO2 and N2O fluxes had more pronounced seasonal patterns than the soil CH4 flux. The collected estimates, including both the previous and the present estimates, demonstrate that the means of the best estimates from each study were 79 Pg C yr−1 (291 Pg CO2 yr−1; coefficient of variation, CV = 13%, N = 6) for CO2, 21 Tg C yr−1 (29 Tg CH4 yr−1; CV = 24%, N = 24) for CH4, and 7.8 Tg N yr−1 (12.2 Tg N2O yr−1; CV = 38%, N = 11) for N2O. For N2O, the mean of the estimates that was calculated by excluding the earliest two estimates was 6.6 Tg N yr−1 (10.4 Tg N2O yr−1; CV = 22%, N = 9). The reported estimates vary and have large degrees of uncertainty but their overall magnitudes are in general agreement. To further minimize the uncertainty of soil greenhouse gas flux estimates, it is necessary to build global databases and identify key processes in describing global soil greenhouse gas fluxes.  相似文献   

8.
9.

Background

Despite the broad use of FRET techniques, available methods for analyzing protein-protein interaction are subject to high labor and lack of systematic analysis. We propose an open source software allowing the quantitative analysis of fluorescence lifetime imaging (FLIM) while integrating the steady-state fluorescence intensity information for protein-protein interaction studies.

Findings

Our developed open source software is dedicated to fluorescence lifetime imaging microscopy (FLIM) data obtained from Becker & Hickl SPC-830. FLIM-FRET analyzer includes: a user-friendly interface enabling automated intensity-based segmentation into single cells, time-resolved fluorescence data fitting to lifetime value for each segmented objects, batch capability, and data representation with donor lifetime versus acceptor/donor intensity quantification as a measure of protein-protein interactions.

Conclusions

The FLIM-FRET analyzer software is a flexible application for lifetime-based FRET analysis. The application, the C#. NET source code, and detailed documentation are freely available at the following URL: http://FLIM-analyzer.ip-korea.org.
  相似文献   

10.
Amyotrophic lateral sclerosis (ALS) is a neuromuscular disease characterized by motor neuron death in the central nervous system. Vitamin D supplementation increases antioxidant activity, reduces inflammation and improves motor neuron survival. We have previously demonstrated that vitamin D3 supplementation at 10× the adequate intake improves functional outcomes in a mouse model of ALS.

Objective

To determine whether vitamin D deficiency influences functional and disease outcomes in a mouse model of ALS.

Methods

At age 25 d, 102 G93A mice (56 M, 46 F) were divided into two vitamin D3 groups: 1) adequate (AI; 1 IU D3/g feed) and 2) deficient (DEF; 0.025 IU D3/g feed). At age 113 d, tibialis anterior (TA), quadriceps (quads) and brain were harvested from 42 mice (22 M and 20 F), whereas the remaining 60 mice (34 M and 26 F) were followed to endpoint.

Results

During disease progression, DEF mice had 25% (P = 0.022) lower paw grip endurance AUC and 19% (P = 0.017) lower motor performance AUC vs. AI mice. Prior to disease onset (CS 2), DEF mice had 36% (P = 0.016) lower clinical score (CS) vs. AI mice. DEF mice reached CS 2 six days later vs. AI mice (P = 0.004), confirmed by a logrank test which revealed that DEF mice reached CS 2 at a 43% slower rate vs. AI mice (HR = 0.57; 95% CI: 0.38, 1.74; P = 0.002). Body weight-adjusted TA (AI: r = 0.662, P = 0.001; DEF: r = 0.622, P = 0.006) and quads (AI: r = 0.661, P = 0.001; DEF: r = 0.768; P<0.001) weights were strongly correlated with age at CS 2.

Conclusion

Vitamin D3 deficiency improves early disease severity and delays disease onset, but reduces performance in functional outcomes following disease onset, in the high-copy G93A mouse.  相似文献   

11.
Numerous unimolecular, genetically-encoded Förster Resonance Energy Transfer (FRET) probes for monitoring biochemical activities in live cells have been developed over the past decade. As these probes allow for collection of high frequency, spatially resolved data on signaling events in live cells and tissues, they are an attractive technology for obtaining data to develop quantitative, mathematical models of spatiotemporal signaling dynamics. However, to be useful for such purposes the observed FRET from such probes should be related to a biological quantity of interest through a defined mathematical relationship, which is straightforward when this relationship is linear, and can be difficult otherwise. First, we show that only in rare circumstances is the observed FRET linearly proportional to a biochemical activity. Therefore in most cases FRET measurements should only be compared either to explicitly modeled probes or to concentrations of products of the biochemical activity, but not to activities themselves. Importantly, we find that FRET measured by standard intensity-based, ratiometric methods is inherently non-linear with respect to the fraction of probes undergoing FRET. Alternatively, we find that quantifying FRET either via (1) fluorescence lifetime imaging (FLIM) or (2) ratiometric methods where the donor emission intensity is divided by the directly-excited acceptor emission intensity (denoted Ralt) is linear with respect to the fraction of probes undergoing FRET. This linearity property allows one to calculate the fraction of active probes based on the FRET measurement. Thus, our results suggest that either FLIM or ratiometric methods based on Ralt are the preferred techniques for obtaining quantitative data from FRET probe experiments for mathematical modeling purposes.  相似文献   

12.

Background

Annual movements of tri-colored bats (Perimyotis subflavus) are poorly understood. While this species has been considered a regional migrant, some evidence suggests that it may undertake annual latitudinal migrations, similar to other long distance North American migratory bat species.

Methodology/Principal Findings

We investigated migration in P. subflavus by conducting stable hydrogen isotope analyses of 184 museum specimen fur samples and comparing these results (δDfur) to published interpolated δD values of collection site growing season precipitation (δDprecip). Results suggest that the male molt period occurred between June 23 and October 16 and 33% of males collected during the presumed non-molt period were south of their location of fur growth. For the same time period, 16% of females were south of their location of fur growth and in general, had not travelled as far as migratory males. There were strong correlations between δDfur from the presumed molt period and both growing season δDprecip (males – r 2 = 0.86; p<0.01; females – r 2 = 0.75; p<0.01), and latitude of collection (males – r 2 = 0.85; p<0.01; females – r 2 = 0.73; p<0.01). Most migrants were collected at the northern (>40°N; males and females) and southern (<35°N; males only) extents of the species'' range.

Conclusions/Significance

These results indicate a different pattern of migration for this species than previously documented, suggesting that some P. subflavus engage in annual latitudinal migrations and that migratory tendency varies with latitude and between sexes. We suggest that this species'' hibernation ecology makes it particularly susceptible to long winters, making migration from the northern extent of the species'' range to more southern hibernacula preferable for some individuals. Fur δD values for some of the northern individuals may indicate an increase in the currently accepted northern range of this species. Sex-biased differences in migration may be the result of differences in reproductive pressures.  相似文献   

13.
Protein localization in living cells and tissues using FRET and FLIM   总被引:8,自引:0,他引:8  
Interacting proteins assemble into molecular machines that control cellular homeostasis in living cells. While the in vitro screening methods have the advantage of providing direct access to the genetic information encoding unknown protein partners, they do not allow direct access to interactions of these protein partners in their natural environment inside the living cell. Using wide-field, confocal, or two-photon (2p) fluorescence resonance energy transfer (FRET) microscopy, this information can be obtained from living cells and tissues with nanometer resolution. One of the important conditions for FRET to occur is the overlap of the emission spectrum of the donor with the absorption spectrum of the acceptor. As a result of spectral overlap, the FRET signal is always contaminated by donor emission into the acceptor channel and by the excitation of acceptor molecules by the donor excitation wavelength. Mathematical algorithms are required to correct the spectral bleed-through signal in wide-field, confocal, and two-photon FRET microscopy. In contrast, spectral bleed-through is not an issue in FRET/FLIM imaging because only the donor fluorophore lifetime is measured; also, fluorescence lifetime imaging microscopy (FLIM) measurements are independent of excitation intensity or fluorophore concentration. The combination of FRET and FLIM provides high spatial (nanometer) and temporal (nanosecond) resolution when compared to intensity-based FRET imaging. In this paper, we describe various FRET microscopy techniques and its application to protein-protein interactions.  相似文献   

14.
Fluorescence lifetime imaging (FLIM) is widely applied to obtain quantitative information from fluorescence signals, particularly using Förster Resonant Energy Transfer (FRET) measurements to map, for example, protein-protein interactions. Extracting FRET efficiencies or population fractions typically entails fitting data to complex fluorescence decay models but such experiments are frequently photon constrained, particularly for live cell or in vivo imaging, and this leads to unacceptable errors when analysing data on a pixel-wise basis. Lifetimes and population fractions may, however, be more robustly extracted using global analysis to simultaneously fit the fluorescence decay data of all pixels in an image or dataset to a multi-exponential model under the assumption that the lifetime components are invariant across the image (dataset). This approach is often considered to be prohibitively slow and/or computationally expensive but we present here a computationally efficient global analysis algorithm for the analysis of time-correlated single photon counting (TCSPC) or time-gated FLIM data based on variable projection. It makes efficient use of both computer processor and memory resources, requiring less than a minute to analyse time series and multiwell plate datasets with hundreds of FLIM images on standard personal computers. This lifetime analysis takes account of repetitive excitation, including fluorescence photons excited by earlier pulses contributing to the fit, and is able to accommodate time-varying backgrounds and instrument response functions. We demonstrate that this global approach allows us to readily fit time-resolved fluorescence data to complex models including a four-exponential model of a FRET system, for which the FRET efficiencies of the two species of a bi-exponential donor are linked, and polarisation-resolved lifetime data, where a fluorescence intensity and bi-exponential anisotropy decay model is applied to the analysis of live cell homo-FRET data. A software package implementing this algorithm, FLIMfit, is available under an open source licence through the Open Microscopy Environment.  相似文献   

15.
Settlement ponds are used to treat aquaculture discharge water by removing nutrients through physical (settling) and biological (microbial transformation) processes. Nutrient removal through settling has been quantified, however, the occurrence of, and potential for microbial nitrogen (N) removal is largely unknown in these systems. Therefore, isotope tracer techniques were used to measure potential rates of denitrification and anaerobic ammonium oxidation (anammox) in the sediment of settlement ponds in tropical aquaculture systems. Dinitrogen gas (N2) was produced in all ponds, although potential rates were low (0–7.07 nmol N cm−3 h−1) relative to other aquatic systems. Denitrification was the main driver of N2 production, with anammox only detected in two of the four ponds. No correlations were detected between the measured sediment variables (total organic carbon, total nitrogen, iron, manganese, sulphur and phosphorous) and denitrification or anammox. Furthermore, denitrification was not carbon limited as the addition of particulate organic matter (paired t-Test; P = 0.350, n = 3) or methanol (paired t-Test; P = 0.744, n = 3) did not stimulate production of N2. A simple mass balance model showed that only 2.5% of added fixed N was removed in the studied settlement ponds through the denitrification and anammox processes. It is recommended that settlement ponds be used in conjunction with additional technologies (i.e. constructed wetlands or biological reactors) to enhance N2 production and N removal from aquaculture wastewater.  相似文献   

16.

Background

Polar bears (Ursus maritimus) of the Beaufort Sea enter hyperphagia in spring and gain fat reserves to survive periods of low prey availability. We collected information on seals killed by polar bears (n = 650) and hunting attempts on ringed seal (Pusa hispida) lairs (n = 1396) observed from a helicopter during polar bear mark-recapture studies in the eastern Beaufort Sea in spring in 1985–2011. We investigated how temporal shifts in ringed seal reproduction affect kill composition and the intraspecific vulnerabilities of ringed seals to polar bear predation.

Principal Findings

Polar bears primarily preyed on ringed seals (90.2%) while bearded seals (Erignathus barbatus) only comprised 9.8% of the kills, but 33% of the biomass. Adults comprised 43.6% (150/344) of the ringed seals killed, while their pups comprised 38.4% (132/344). Juvenile ringed seals were killed at the lowest proportion, comprising 18.0% (62/344) of the ringed seal kills. The proportion of ringed seal pups was highest between 2007–2011, in association with high ringed seal productivity. Half of the adult ringed seal kills were ≥21 years (60/121), and kill rates of adults increased following the peak of parturition. Determination of sex from DNA revealed that polar bears killed adult male and adult female ringed seals equally (0.50, n = 78). The number of hunting attempts at ringed seal subnivean lair sites was positively correlated with the number of pup kills (r2 = 0.30, P = 0.04), but was not correlated with the number of adult kills (P = 0.37).

Conclusions/Significance

Results are consistent with decadal trends in ringed seal productivity, with low numbers of pups killed by polar bears in spring in years of low pup productivity, and conversely when pup productivity was high. Vulnerability of adult ringed seals to predation increased in relation to reproductive activities and age, but not gender.  相似文献   

17.
Each year, hundreds of thousands of domesticated farmed Atlantic salmon escape into the wild. In Norway, which is the world’s largest commercial producer, many native Atlantic salmon populations have experienced large numbers of escapees on the spawning grounds for the past 15–30 years. In order to study the potential genetic impact, we conducted a spatio-temporal analysis of 3049 fish from 21 populations throughout Norway, sampled in the period 1970–2010. Based upon the analysis of 22 microsatellites, individual admixture, FST and increased allelic richness revealed temporal genetic changes in six of the populations. These changes were highly significant in four of them. For example, 76% and 100% of the fish comprising the contemporary samples for the rivers Vosso and Opo were excluded from their respective historical samples at P = 0.001. Based upon several genetic parameters, including simulations, genetic drift was excluded as the primary cause of the observed genetic changes. In the remaining 15 populations, some of which had also been exposed to high numbers of escapees, clear genetic changes were not detected. Significant population genetic structuring was observed among the 21 populations in the historical (global FST = 0.038) and contemporary data sets (global FST = 0.030), although significantly reduced with time (P = 0.008). This reduction was especially distinct when looking at the six populations displaying temporal changes (global FST dropped from 0.058 to 0.039, P = 0.006). We draw two main conclusions: 1. The majority of the historical population genetic structure throughout Norway still appears to be retained, suggesting a low to modest overall success of farmed escapees in the wild; 2. Genetic introgression of farmed escapees in native salmon populations has been strongly population-dependent, and it appears to be linked with the density of the native population.  相似文献   

18.
Quantification of the intracellular equilibrium dissociation constant of the interaction, Kd, is challenging due to the variability of the relative concentrations of the interacting proteins in the cell. Fluorescence lifetime imaging microscopy (FLIM) of the donor provides an accurate measurement of the molecular fraction of donor involved in FRET, but the fraction of bound acceptor is also needed to reliably estimate Kd. We present a method that exploits the spectroscopic properties of the widely used eGFP – mCherry FRET pair to rigorously determine the intracellular Kd based on imaging the fluorescence lifetime of only the donor (single‐channel FLIM). We have assessed the effect of incomplete labelling and determined its range of application for different Kd using Monte Carlo simulations. We have demonstrated this method estimating the intracellular Kd for the homodimerisaton of the oncogenic protein 3‐phosphoinositide‐dependent kinase 1 (PDK1) in different cell lines and conditions, revealing a competitive mechanism for its regulation. The measured intracellular Kd was validated against in‐vitro data. This method provides an accurate and generic tool to quantify protein interactions in situ.

  相似文献   


19.
The ERAP1 gene encodes an aminopeptidase involved in antigen processing. A functional polymorphism in the gene (rs30187, Arg528Lys) associates with susceptibility to ankylosying spondylitis (AS), whereas a SNP in the interacting ERAP2 gene increases susceptibility to another inflammatory autoimmune disorder, Crohn''s disease (CD). We analysed rs30187 in 572 Italian patients with CD and in 517 subjects suffering from multiple sclerosis (MS); for each cohort, an independent sex- and age-matched control group was genotyped. The frequency of the 528Arg allele was significantly higher in both disease cohorts compared to the respective control population (for CD, OR = 1.20 95%CI: 1.01–1.43, p = 0.036; for RRMS, OR = 1.26; 95%CI: 1.04–1.51, p = 0.01). Meta-analysis with the Wellcome Trust Cases Control Consortium GWAS data confirmed the association with MS (pmeta = 0.005), but not with CD. In AS, the rs30187 variant has a predisposing effect only in an HLA-B27 allelic background. It remains to be evaluated whether interaction between ERAP1 and distinct HLA class I alleles also affects the predisposition to MS, and explains the failure to provide definitive evidence for a role of rs30187 in CD. Results herein support the emerging concept that a subset of master-regulatory genes underlay the pathogenesis of autoimmunity.  相似文献   

20.
We located the binding sites of doxorubicin (DOX) and N-(trifluoroacetyl) doxorubicin (FDOX) with bovine serum albumin (BSA) and human serum albumins (HSA) at physiological conditions, using constant protein concentration and various drug contents. FTIR, CD and fluorescence spectroscopic methods as well as molecular modeling were used to analyse drug binding sites, the binding constant and the effect of drug complexation on BSA and HSA stability and conformations. Structural analysis showed that doxorubicin and N-(trifluoroacetyl) doxorubicin bind strongly to BSA and HSA via hydrophilic and hydrophobic contacts with overall binding constants of K DOX-BSA = 7.8 (±0.7)×103 M−1, K FDOX-BSA = 4.8 (±0.5)×103 M−1 and K DOX-HSA = 1.1 (±0.3)×104 M−1, K FDOX-HSA = 8.3 (±0.6)×103 M−1. The number of bound drug molecules per protein is 1.5 (DOX-BSA), 1.3 (FDOX-BSA) 1.5 (DOX-HSA), 0.9 (FDOX-HSA) in these drug-protein complexes. Docking studies showed the participation of several amino acids in drug-protein complexation, which stabilized by H-bonding systems. The order of drug-protein binding is DOX-HSA > FDOX-HSA > DOX-BSA > FDOX>BSA. Drug complexation alters protein conformation by a major reduction of α-helix from 63% (free BSA) to 47–44% (drug-complex) and 57% (free HSA) to 51–40% (drug-complex) inducing a partial protein destabilization. Doxorubicin and its derivative can be transported by BSA and HSA in vitro.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号