首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Journal of Physiology》1998,92(3-4):191-194
The 3D structure of a complex of the anti-Alzheimer drug, E2020, also known as Aricep®, with Torpedo californica acetylcholinesterase is reported. The X-ray structure, at 2.5 Å resolution, shows that the elongated E2020 molecule spans the entire length of the active-site gorge of the enzyme. It thus interacts with both the ‘anionic’ subsite, at the bottom of the gorge, and with the peripheral anionic site, near its entrance, via aromatic stacking interactions with conserved aromatic residues. It does not interact directly with either the catalytic triad or with the ‘oxyanion hole’. Although E2020 is a chiral molecule, and both the S and R enantiomers have similar affinity for the enzyme, only the R enantiomer is bound within the active-site gorge when the racemate is soaked into the crystal. The selectivity of E2020 for acetylcholinesterase, relative to butyrylcholinesterase, can be ascribed primarily to its interactions with Trp279 and Phe330, which are absent in the latter.  相似文献   

2.
We have crystallized Drosophila melanogaster acetylcholinesterase and solved the structure of the native enzyme and of its complexes with two potent reversible inhibitors, 1,2,3,4-tetrahydro-N-(phenylmethyl)-9-acridinamine and 1,2,3,4-tetrahydro-N-(3-iodophenyl-methyl)-9-acridinamine--all three at 2.7 A resolution. The refined structure of D. melanogaster acetylcholinesterase is similar to that of vertebrate acetylcholinesterases, for example, human, mouse, and fish, in its overall fold, charge distribution, and deep active-site gorge, but some of the surface loops deviate by up to 8 A from their position in the vertebrate structures, and the C-terminal helix is shifted substantially. The active-site gorge of the insect enzyme is significantly narrower than that of Torpedo californica AChE, and its trajectory is shifted several angstroms. The volume of the lower part of the gorge of the insect enzyme is approximately 50% of that of the vertebrate enzyme. Upon binding of either of the two inhibitors, nine aromatic side chains within the active-site gorge change their conformation so as to interact with the inhibitors. Some differences in activity and specificity between the insect and vertebrate enzymes can be explained by comparison of their three-dimensional structures.  相似文献   

3.
We recently reported on a non-neuronal secreted acetylcholinesterase (AChE B) from the nematode parasite Nippostrongylus brasiliensis. Here we describe the primary structure and enzymatic properties of a second secreted variant, termed AChE C after the designation of native AChE isoforms from this parasite. As for the former enzyme, AChE C is truncated at the carboxyl terminus in comparison with the Torpedo AChE, and three of the 14 aromatic residues that line the active site gorge are substituted by nonaromatic residues, corresponding to Tyr70 (Ser), Trp279 (Asn) and Phe288 (Met). A recombinant form of AChE C was highly expressed by Pichia pastoris. The enzyme was monomeric and hydrophilic, and displayed a marked preference for acetylthiocholine as substrate. A double mutation (W302F/W345F, corresponding to positions 290 and 331 in Torpedo) rendered the enzyme 10-fold less sensitive to excess substrate inhibition and two times less susceptible to the bis quaternary inhibitor BW284C51, but did not radically affect substrate specificity or sensitivity to the 'peripheral site' inhibitor propidium iodide. In contrast, a triple mutant (M300G/W302F/W345F) efficiently hydrolysed propionylthiocholine and butyrylthiocholine in addition to acetylthiocholine, while remaining insensitive to the butyrylcholinesterase-specific inhibitor iso-OMPA and displaying a similar profile of excess substrate inhibition as the double mutant. These data highlight a conserved pattern of active site architecture for nematode secreted AChEs characterized to date, and provide an explanation for the substrate specificity that might otherwise appear inconsistent with the primary structure in comparison to other invertebrate AChEs.  相似文献   

4.
Acetylcholinesterase is a critical enzyme that regulates neurotransmission by catalyzing the breakdown of neurotransmitter acetylcholine in synapses of the nervous system. It is an important target for therapeutic drugs that treat Alzheimer’s disease. Since, the degree of flexibility of the side chains of the residues in the active-site gorge of Acetylcholinesterase is diverse it results in different bound ligand conformations. The side-chain conformations of Ser293, Tyr341, Leu76, and Val73 are flexible, while the side-chain conformations of Tyr72, Tyr 124, Ser125, Phe295, and Arg296 appear to be fixed. In this study, multi-conformation dynamic pharmacophore models from the donepezyl-binding pocket based on highly populated structures chosen from molecular dynamics simulations were used for screening compounds that can properly bind acetylcholinesterase. Based on these structures, three pharmacophore models were generated. Consequently, 14 hits were retrieved as final candidates by utilizing virtual screening of ZINC database and molecular docking.  相似文献   

5.
Buried water molecules and the water molecules in the active-site gorge are analyzed for five crystal structures of acetylcholinesterase from Torpedo californica in the resolution range 2.2-2.5 A (native enzyme, and four inhibitor complexes). A total of 45 buried hydration sites are identified, which are populated with between 36 and 41 water molecules. About half of the buried water is located in a distinct region neighboring the active-site gorge. Most of the buried water molecules are very well conserved among the five structures, and have low displacement parameters, B, of magnitudes similar to those of the main-chain atoms of the central beta-sheet structure. The active-site gorge of the native enzyme is filled with over 20 water molecules, which have poor hydrogen-bond coordination with an average of 2.9 polar contacts per water molecule. Upon ligand binding, distinct groups of these water molecules are displaced, whereas the others remain in positions similar to those that they occupy in the native enzyme. Possible roles of the buried water molecules are discussed, including their possible action as a lubricant to allow large-amplitude fluctuations of the loop structures forming the gorge wall. Such fluctuations are required to facilitate traffic of substrate, products and water molecules to and from the active-site. Because of their poor coordination, the gorge water molecules can be considered as "activated" as compared to bulk water. This should allow their easy displacement by incoming substrate. The relatively loose packing of the gorge water molecules leaves numerous small voids, and more efficient space-filling by substrates and inhibitors may be a major driving force of ligand binding.  相似文献   

6.
Natural and synthetic carbamates act as pseudo-irreversible inhibitors of AChE (acetylcholinesterase) as well as BChE (butyrylcholinesterase), two enzymes involved in neuronal function as well as in the development and progression of AD (Alzheimer's disease). The AChE mode of action is characterized by a rapid carbamoylation of the active-site Ser(200) with release of a leaving group followed by a slow regeneration of enzyme action due to subsequent decarbamoylation. The experimental AD therapeutic bisnorcymserine, a synthetic carbamate, shows an interesting activity and selectivity for BChE, and its clinical development is currently being pursued. We undertook detailed kinetic studies on the activity of the carbamate bisnorcymserine with Tc (Torpedo californica) AChE and, on the basis of the results, crystallized the complex between TcAChE and bisnorcymserine. The X-ray crystal structure showed only the leaving group, bisnoreseroline, trapped at the bottom of the aromatic enzyme gorge. Specifically, bisnoreseroline interacts in a non-covalent way with Ser(200) and His(440), disrupting the existing interactions within the catalytic triad, and it stacks with Trp(84) at the bottom of the gorge, giving rise to an unprecedented hydrogen-bonding contact. These interactions point to a dominant reversible inhibition mechanism attributable to the leaving group, bisnoreseroline, as revealed by kinetic analysis.  相似文献   

7.
BACKGROUND: Several cholinesterase inhibitors are either being utilized for symptomatic treatment of Alzheimer's disease or are in advanced clinical trials. E2020, marketed as Aricept, is a member of a large family of N-benzylpiperidine-based acetylcholinesterase (AChE) inhibitors developed, synthesized and evaluated by the Eisai Company in Japan. These inhibitors were designed on the basis of QSAR studies, prior to elucidation of the three-dimensional structure of Torpedo californica AChE (TcAChE). It significantly enhances performance in animal models of cholinergic hypofunction and has a high affinity for AChE, binding to both electric eel and mouse AChE in the nanomolar range. RESULTS: Our experimental structure of the E2020-TcAChE complex pinpoints specific interactions responsible for the high affinity and selectivity demonstrated previously. It shows that E2020 has a unique orientation along the active-site gorge, extending from the anionic subsite of the active site, at the bottom, to the peripheral anionic site, at the top, via aromatic stacking interactions with conserved aromatic acid residues. E2020 does not, however, interact directly with either the catalytic triad or the 'oxyanion hole', but only indirectly via solvent molecules. CONCLUSIONS: Our study shows, a posteriori, that the design of E2020 took advantage of several important features of the active-site gorge of AChE to produce a drug with both high affinity for AChE and a high degree of selectivity for AChE versus butyrylcholinesterase (BChE). It also delineates voids within the gorge that are not occupied by E2020 and could provide sites for potential modification of E2020 to produce drugs with improved pharmacological profiles.  相似文献   

8.
The active site of acetylcholinesterase (AChE) from Torpedo californica is located 20 A from the enzyme surface at the bottom of a narrow gorge. To understand the role of this gorge in the function of AChE, we have studied simulations of its molecular dynamics. When simulations were conducted with pure water filling the gorge, residues in the vicinity of the active site deviated quickly and markedly from the crystal structure. Further study of the original crystallographic data suggests that a bis-quaternary decamethonium (DECA) ion, acquired during enzyme purification, residues in the gorge. There is additional electron density within the gorge that may represent small bound cations. When DECA and 2 cations are placed within the gorge, the simulation and the crystal structure are dramatically reconciled. The small cations, more so than DECA, appear to stabilize part of the gorge wall through electrostatic interactions. This part of the gorge wall is relatively thin and may regulate substrate, product, and water movement through the active site.  相似文献   

9.
Acetylcholinesterase (AChE) terminates nerve-impulse transmission at cholinergic synapses by rapid hydrolysis of the neurotransmitter, acetylcholine. Substrate traffic in AChE involves at least two binding sites, the catalytic and peripheral anionic sites, which have been suggested to be allosterically related and involved in substrate inhibition. Here, we present the crystal structures of Torpedo californica AChE complexed with the substrate acetylthiocholine, the product thiocholine and a nonhydrolysable substrate analogue. These structures provide a series of static snapshots of the substrate en route to the active site and identify, for the first time, binding of substrate and product at both the peripheral and active sites. Furthermore, they provide structural insight into substrate inhibition in AChE at two different substrate concentrations. Our structural data indicate that substrate inhibition at moderate substrate concentration is due to choline exit being hindered by a substrate molecule bound at the peripheral site. At the higher concentration, substrate inhibition arises from prevention of exit of acetate due to binding of two substrate molecules within the active-site gorge.  相似文献   

10.
Given by χ torsional angles, rotamers describe the side-chain conformations of amino acid residues in a protein based on the rotational isomers (hence the word rotamer). Constructed rotamer libraries, based on either protein crystal structures or dynamics studies, are the tools for classifying rotamers (torsional angles) in a way that reflect their frequency in nature. Rotamer libraries are routinely used in structure modeling and evaluation. In this perspective article, we would like to encourage researchers to apply rotamer analyses beyond their traditional use. Molecular dynamics (MD) of proteins highlight the in silico behavior of molecules in solution and thus can identify favorable side-chain conformations. In this article, we used simple computational tools to study rotamer dynamics (RD) in MD simulations. First, we isolated each frame in the MD trajectories in separate Protein Data Bank files via the cpptraj module in AMBER. Then, we extracted torsional angles via the Bio3D module in R language. The classification of torsional angles was also done in R according to the penultimate rotamer library. RD analysis is useful for various applications such as protein folding, study of rotamer-rotamer relationship in protein-protein interaction, real-time correlation between secondary structures and rotamers, study of flexibility of side chains in binding site for molecular docking preparations, use of RD as guide in functional analysis and study of structural changes caused by mutations, providing parameters for improving coarse-grained MD accuracy and speed, and many others. Major challenges facing RD to emerge as a new scientific field involve the validation of results via easy, inexpensive wet-lab methods. This realm is yet to be explored.  相似文献   

11.
We investigated the role of W140 in the folding of Staphylococcal nuclease. For this purpose, we constructed the 19 possible substitution mutations at residue 140. Only three mutants, W140F, W140H, and W140Y, adopted native-like structures under physiological conditions and showed native-like enzymatic activities. In contrast, the other 16 mutants took on compact unfolded structures under physiological conditions and the enzymatic activities of these mutants were decreased to approximately 70% of wild-type levels. These 16 mutants maintained substrate-induced foldability. These results strongly indicate that the side-chain information encoded by residue 140 is essential to maintain a stable native structure, and that this residue must be an aromatic side chain. The order of thermal stability was wild type > W140H > W140F = W140Y. Therefore, the five-membered nitrogen-containing ring of the indole is thought to bear the essential information. In the crystal structure of staphylococcal nuclease, the five-membered ring is at the local center of the C-terminal cluster through hydrophobic interactions. This cluster plays a key role in the interaction connecting the C-terminal region and the N-terminal beta-core. Mutants other than W140H, W140F, and W140Y lost the ability to form the local core, which caused the loss of the long-range interactions between the C-terminal and N-terminal regions. Inhibitor or substrate binding to these mutants compensates for the lack of long-range interactions generated by W140.  相似文献   

12.
A series of hitherto unreported pyrido-pyrimidine-2-ones/pyrimidine-2-thiones were synthesized under microwave assisted solvent free reaction conditions in excellent yields and evaluated in vitro for their acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) enzymes inhibitory activity. Among the pyridopyrimidine derivatives, 7e and 7l displayed 2.5- and 1.5-fold higher enzyme inhibitory activities against AChE as compared to standard drug, galanthamine, with IC50 of 0.80 and 1.37 μM, respectively. Interestingly, all the compounds except 6k, 7j and 7k displayed higher inhibitory potential against BChE enzyme in comparison to standard with IC50 ranging from 1.18 to 18.90 μM. Molecular modeling simulations of 7e and 7l was performed using three-dimensional structure of Torpedo californica AChE (TcAChE) and human butyrylcholinesterase (hBChE) enzymes to disclose binding interaction and orientation of these molecule into the active site gorge of respective receptors.  相似文献   

13.
Hydrolysis of acetylcholine catalyzed by acetylcholinesterase (AChE), one of the most efficient enzymes in nature, occurs at the base of a deep and narrow active center gorge. At the entrance of the gorge, the peripheral anionic site provides a binding locus for allosteric ligands, including substrates. To date, no structural information on substrate entry to the active center from the peripheral site of AChE or its subsequent egress has been reported. Complementary crystal structures of mouse AChE and an inactive mouse AChE mutant with a substituted catalytic serine (S203A), in various complexes with four substrates (acetylcholine, acetylthiocholine, succinyldicholine, and butyrylthiocholine), two non-hydrolyzable substrate analogues (m-(N,N,N-trimethylammonio)-trifluoroacetophenone and 4-ketoamyltrimethylammonium), and one reaction product (choline) were solved in the 2.05-2.65-A resolution range. These structures, supported by binding and inhibition data obtained on the same complexes, reveal the successive positions and orientations of the substrates bound to the peripheral site and proceeding within the gorge toward the active site, the conformations of the presumed transition state for acylation and the acyl-enzyme intermediate, and the positions and orientations of the dissociating and egressing products. Moreover, the structures of the AChE mutant in complexes with acetylthiocholine and succinyldicholine reveal additional substrate binding sites on the enzyme surface, distal to the gorge entry. Hence, we provide a comprehensive set of structural snapshots of the steps leading to the intermediates of catalysis and the potential regulation by substrate binding to various allosteric sites at the enzyme surface.  相似文献   

14.
The origins of enzyme specificity are well established. However, the molecular details underlying the ability of a single active site to promiscuously bind different substrates and catalyze different reactions remain largely unknown. To better understand the molecular basis of enzyme promiscuity, we studied the mammalian serum paraoxonase 1 (PON1) whose native substrates are lipophilic lactones. We describe the crystal structures of PON1 at a catalytically relevant pH and of its complex with a lactone analogue. The various PON1 structures and the analysis of active-site mutants guided the generation of docking models of the various substrates and their reaction intermediates. The models suggest that promiscuity is driven by coincidental overlaps between the reactive intermediate for the native lactonase reaction and the ground and/or intermediate states of the promiscuous reactions. This overlap is also enabled by different active-site conformations: the lactonase activity utilizes one active-site conformation whereas the promiscuous phosphotriesterase activity utilizes another. The hydrolysis of phosphotriesters, and of the aromatic lactone dihydrocoumarin, is also driven by an alternative catalytic mode that uses only a subset of the active-site residues utilized for lactone hydrolysis. Indeed, PON1's active site shows a remarkable level of networking and versatility whereby multiple residues share the same task and individual active-site residues perform multiple tasks (e.g., binding the catalytic calcium and activating the hydrolytic water). Overall, the coexistence of multiple conformations and alternative catalytic modes within the same active site underlines PON1's promiscuity and evolutionary potential.  相似文献   

15.
Crystal structures of acetylcholinesterase complexed with ligands are compared with side-chain conformations accessed by native acetylcholinesterase in molecular dynamics (MD) simulations. Several crystallographic conformations of a key residue in a specific binding site are accessed in a simulation of native acetylcholinesterase, although not seen in rotomer plots. Conformational changes upon ligand binding thus involve preexisting equilibrium dynamics. Consequently, rational drug design could benefit significantly from conformations monitored by MD simulations of native targets.  相似文献   

16.
Amphioxus (Branchiostoma floridae) cholinesterase 2 (ChE2) hydrolyzes acetylthiocholine (AsCh) almost exclusively. We constructed a homology model of ChE2 on the basis of Torpedo californica acetylcholinesterase (AChE) and found that the acyl pocket of the enzyme resembles that of Drosophila melanogaster AChE, which is proposed to be comprised of Phe330 (Phe290 in T. californica AChE) and Phe440 (Val400), rather than Leu328 (Phe288) and Phe330 (Phe290), as in vertebrate AChE. In ChE2, the homologous amino acids are Phe312 (Phe290) and Phe422 (Val400). To determine if these amino acids define the acyl pocket of ChE2 and its substrate specificity, and to obtain information about the hydrophobic subsite, partially comprised of Tyr352 (Phe330) and Phe353 (Phe331), we performed site-directed mutagenesis and in vitro expression. The aliphatic substitution mutant F312I ChE2 hydrolyzes AsCh preferentially but also butyrylthiocholine (BsCh), and the change in substrate specificity is due primarily to an increase in kcat for BsCh; Km and Kss are also altered. F422L and F422V produce enzymes that hydrolyze BsCh and AsCh equally due to an increase in kcat for BsCh and a decrease in kcat for AsCh. Our data suggest that Phe312 and Phe422 define the acyl pocket. We also screened mutants for changes in sensitivity to various inhibitors. Y352A increases the sensitivity of ChE2 to the bulky inhibitor ethopropazine. Y352A decreases inhibition by BW284c51, consistent with its role as part of the choline-binding site. Aliphatic replacement mutations produce enzymes that are more sensitive to inhibition by iso-OMPA, presumably by increasing access to the active site serine. Y352A, F353A and F353V make ChE2 considerably more resistant to inhibition by eserine and neostigmine, suggesting that binding of these aromatic inhibitors is mediated by π–π or cation–π interactions at the hydrophobic site. Our results also provide information about the aromatic trapping of the active site histidine and the inactivation of ChE2 by sulfhydryl reagents.  相似文献   

17.
The crystal structures of the Vbeta17+ beta chains of two human T cell receptors (TCRs), originally derived from the synovial fluid (SF4) and tissue (C5-1) of a patient with rheumatoid arthritis (RA), have been determined in native (SF4) and mutant (C5-1(F104-->Y/C187-->S)) forms, respectively. These TCR beta chains form homo-dimers in solution and in crystals. Structural comparison reveals that the main-chain conformations in the CDR regions of the C5-1 and SF4 Vbeta17 closely resemble those of a Vbeta17 JM22 in a bound form; however, the CDR3 region shows different conformations among these three Vbeta17 structures. At the side-chain level, conformational differences were observed at the CDR2 regions between our two ligand-free forms and the bound JM22 form. Other significant differences were observed at the Vbeta regions 8-12, 40-44, and 82-88 between C5-1/SF4 and JM22 Vbeta17, implying that there is considerable variability in the structures of very similar beta chains. Structural alignments also reveal a considerable variation in the Vbeta-Cbeta associations, and this may affect ligand recognition. The crystal structures also provide insights into the structure basis of T cell recognition of Mycoplasma arthritidis mitogen (MAM), a superantigen that may be implicated in the development of human RA. Structural comparisons of the Vbeta domains of known TCR structures indicate that there are significant similarities among Vbeta regions that are MAM-reactive, whereas there appear to be significant structural differences among those Vbeta regions that lack MAM-reactivity. It further reveals that CDR2 and framework region (FR) 3 are likely to account for the binding of TCR to MAM.  相似文献   

18.
Molecular Dynamics (MD) simulations were carried out for human acetylcholinesterase (hAChE) and its complex with Axillaridine–A, in order to dynamically explore the active site of the protein and the behaviour of the ligand at the peripheral binding site. Simulation of the enzyme alone showed that the active site of AChE is located at the bottom of a deep and narrow cavity whose surface is lined with rings of aromatic residues while Tyr72 is almost perpendicular to the Trp286, which is responsible for stable π -π interactions. The complexation of AChE with Axillaridine-A, results in the reduction of gorge size due to interaction between the ligand and the active site residues. The gorge size was determined by the distance between the center of mass of Glu81 and Trp286. As far as the geometry of the active site is concerned, the presence of ligand in the active site alters its specific conformation, as revealed by stable hydrogen bondings established between amino acids. With the increasing interaction between ligand and the active amino acids, size of the active site of the complex decreases with respect to time. Axillaridine-A, forms stable π -π interactions with the aromatic ring of Tyr124 that results in inhibition of catalytic activity of the enzyme. This π -π interaction keeps the substrate stable at the edge of the catalytic gorge by inhibiting its catalytic activity. The MD results clearly provide an explanation for the binding pattern of bulky steroidal alkaloids at the active site of AChE.  相似文献   

19.
The X-ray crystal structures of Y305F trichodiene synthase and its complex with coproduct inorganic pyrophosphate (PP(i)) and of Y305F and D100E trichodiene synthases in ternary complexes with PP(i) and aza analogues of the bisabolyl carbocation intermediate are reported. The Y305F substitution in the basic D(302)RRYR motif does not cause large changes in the overall structure in comparison with the wild-type enzyme in either the uncomplexed enzyme or its complex with PP(i). However, the loss of the Y305F-PP(i) hydrogen bond appears to be compensated by a very slight shift in the position of the side chain of R304. The putative bisabolyl carbocation mimic, R-azabisabolene, binds in a conformation and orientation that does not appear to mimic that of the actual carbocation intermediate, suggesting that the avid inhibition by R- and S-azabisabolenes arises more from favorable electrostatic interactions with PP(i) rather than any special resemblance to a reaction intermediate. Greater enclosed active-site volumes result from the Y305F and D100E mutations that appear to confer greater variability in ligand-binding conformations and orientations, which results in the formation of aberrant cyclization products. Because the binding conformations and orientations of R-azabisabolene to Y305F and D100E trichodiene synthases do not correspond to binding conformations required for product formation and because the binding conformations and orientations of diverse substrate and carbocation analogues to other cyclases such as 5-epi-aristolochene synthase and bornyl diphosphate synthase generally do not correspond to catalytically productive complexes, we conclude that the formation of transient carbocation intermediates in terpene cyclization reactions is generally under kinetic rather than thermodynamic control.  相似文献   

20.
We have determined the picosecond fluorescence of the four aromatic amino acid residues (W28, W31, Y49, and Y70) in wild-type Escherichia coli thioredoxin (wt Trx) and a mutant Trx with W31 replaced by phenylalanine, Trx-W28-W31F. The internal motions of the four aromatic side chains were also analyzed. We examined the possibility of using internal energy transfer from tyrosine to tryptophan as a measure of long-range distances. The major features of the lifetime distribution of tryptophan fluorescence were unchanged in the W31F mutation, indicating that the environment of W28 is similar in both wt Trx and Trx-W28-W31F. However, the mutation of W31F changed the mobility of W28, situated close to the active-site disulfide/dithiol, but not the mobility of two tyrosines, Y49 and Y70, situated on the other side of the molecule. The mobility of the two tyrosine residues increased upon reduction of the active-site disulfide, indicating a looser structure with reduction. This increased motion could also be seen from molecular dynamics simulations. The change in energy transfer rates, as judged by tyrosine fluorescence lifetimes, was in agreement with energy transfer rates calculated from the molecular dynamics simulations. The anisotropy of tryptophan and tyrosine fluorescence could be separated in three parts: (I) overall rotation of the protein (10(-9)s), (II) internal mobility of side chains (10(-10)s), and (III) a very fast relaxation (10(-12)s). We can only experimentally detect this very fast relaxation when the internal motion is not present.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号