首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
We have examined the kinetics of nucleotide binding to actomyosin VI by monitoring the fluorescence of pyrene-labeled actin filaments. ATP binds single-headed myosin VI following a two-step reaction mechanism with formation of a low affinity collision complex (1/K(1)' = 5.6 mm) followed by isomerization (k(+2)' = 176 s-1) to a state with weak actin affinity. The rates and affinity for ADP binding were measured by kinetic competition with ATP. This approach allows a broader range of ADP concentrations to be examined than with fluorescent nucleotide analogs, permitting the identification and characterization of transiently populated intermediates in the pathway. ADP binding to actomyosin VI, as with ATP binding, occurs via a two-step mechanism. The association rate constant for ADP binding is approximately five times greater than for ATP binding because of a higher affinity in the collision complex (1/K(5b)' = 2.2 mm) and faster isomerization rate constant (k(+5a)' = 366 s(-1)). By equilibrium titration, both heads of a myosin VI dimer bind actin strongly in rigor and with bound ADP. In the presence of ATP, conditions that favor processive stepping, myosin VI does not dwell with both heads strongly bound to actin, indicating that the second head inhibits strong binding of the lead head to actin. With both heads bound strongly, ATP binding is accelerated 2.5-fold, and ADP binding is accelerated >10-fold without affecting the rate of ADP release. We conclude that the heads of myosin VI communicate allosterically and accelerate nucleotide binding, but not dissociation, when both are bound strongly to actin.  相似文献   

2.
Kovács M  Tóth J  Nyitray L  Sellers JR 《Biochemistry》2004,43(14):4219-4226
The enzymatic and motor function of smooth muscle and nonmuscle myosin II is activated by phosphorylation of the regulatory light chains located in the head portion of myosin. Dimerization of the heads, which is brought about by the coiled-coil tail region, is essential for regulation since single-headed fragments are active regardless of the state of phosphorylation. Utilizing the fluorescence signal on binding of myosin to pyrene-labeled actin filaments, we investigated the interplay of actin and nucleotide binding to thiophosphorylated and unphosphorylated recombinant nonmuscle IIA heavy meromyosin constructs. We show that both heads of either thiophosphorylated or unphosphorylated heavy meromyosin bind very strongly to actin (K(d) < 10 nM) in the presence or absence of ADP. The heads have high and indistinguishable affinities for ADP (K(d) around 1 microM) when bound to actin. These findings are in line with the previously observed unusually loose coupling between nucleotide and actin binding to nonmuscle myosin IIA subfragment-1 (Kovács et al. (2003) J. Biol. Chem. 278, 38132.). Furthermore, they imply that the structure of the two heads in the ternary actomyosin-ADP complex is symmetrical and that the asymmetrical structure observed in the presence of ATP and the absence of actin in previous investigations (Wendt et al. (2001) Proc. Natl. Acad. Sci. U.S.A. 98, 4361) is likely to represent an ATPase intermediate that precedes the actomyosin-ADP state.  相似文献   

3.
Smooth muscle myosin II undergoes an additional movement of the regulatory domain with ADP release that is not seen with fast skeletal muscle myosin II. In this study, we have examined the interactions of smooth muscle myosin subfragment 1 with ADP to see if this additional movement corresponds to an identifiable state change. These studies indicate that for this myosin:ADP, both the catalytic site and the actin-binding site can each assume one of two conformations. Relatively loose coupling between these two binding sites leads to three discrete actin-associated ADP states. Following an initial, weakly bound state, binding of myosin:ADP to actin shifts the equilibrium toward a mixture of two states that each bind actin strongly but differ in the conformation of their catalytic sites. By contrast, fast myosins, including Dictyostelium myosin II, have reciprocal coupling between the actin- and ADP-binding sites, so that either actin or nucleotide, but not both, can be tightly bound. This uncoupling, which generates a second strongly bound actomyosin ADP state in smooth muscle, would prolong the fraction of the ATPase cycle time that this actomyosin spends in a force-generating conformation and may be central to explaining the physiologic differences between this and other myosins.  相似文献   

4.
Xu S  Gu J  Belknap B  White H  Yu LC 《Biophysical journal》2006,91(9):3370-3382
When myosin is attached to actin in a muscle cell, various structures in the filaments are formed. The two strongly bound states (A*M*ADP and A*M) and the weakly bound A*M*ATP states are reasonably well understood. The orientation of the strongly bound myosin heads is uniform ("stereospecific" attachment), and the attached heads exhibit little spatial fluctuation. In the prehydrolysis weakly bound A*M*ATP state, the orientations of the attached myosin heads assume a wide range of azimuthal and axial angles, indicating considerable flexibility in the myosin head. The structure of the other weakly bound state, A*M*ADP*P(i), however, is poorly understood. This state is thought to be the critical pre-power-stroke state, poised to make the transition to the strongly binding, force-generating states, and hence it is of particular interest for understanding the mechanism of contraction. However, because of the low affinity between myosin and actin in the A*M*ADP*P(i) state, the structure of this state has eluded determination both in isolated form and in muscle cells. With the knowledge recently gained in the structures of the weakly binding M*ATP, M*ADP*P(i) states and the weakly attached A*M*ATP state in muscle fibers, it is now feasible to delineate the in vivo structure of the attached state of A*M*ADP*P(i). The series of experiments presented in this article were carried out under relaxing conditions at 25 degrees C, where approximately 95% of the myosin heads in the skinned rabbit psoas muscle contain the hydrolysis products. The affinity for actin is enhanced by adding polyethylene glycol (PEG) or by lowering the ionic strength in the bathing solution. Solution kinetics and binding constants were determined in the presence and in the absence of PEG. When the binding between actin and myosin was increased, both the myosin layer lines and the actin layer lines increased in intensity, but the intensity profiles did not change. The configuration (mode) of attachment in the A*M*ADP*P(i) state is thus unique among the intermediate attached states of the cross-bridge ATP hydrolysis cycle. One of the simplest explanations is that both myosin filaments and actin filaments are stabilized (e.g., undergo reduced spatial fluctuations) by the attachment. The alignment of the myosin heads in the thick filaments and the alignment of the actin monomers in the thin filaments are improved as a result. The compact atomic structure of M*ADP*P(i) with strongly coupled domains may contribute to the unique attachment configuration: the "primed" myosin heads may function as "transient struts" when attached to the thin filaments.  相似文献   

5.
The mechanism of calcium regulation of scallop myosin is not understood, although it is known that both myosin heads are required. We have explored possible interactions between the heads of heavy meromyosin (HMM) in the presence and absence of calcium and nucleotides by sedimentation and electron microscope studies. The ATPase activity of the HMM preparation was activated over tenfold by calcium, indicating that the preparation contained mostly regulated molecules. In the presence of ADP or ATP analogs, calcium increased the asymmetry of the HMM molecule as judged by its slower sedimentation velocity compared with that in EGTA. In the absence of nucleotide the asymmetry was high even in EGTA. The shift in sedimentation occurred with a sharp midpoint at a calcium level of about 0.5 microM. Sedimentation of subfragment 1 was not dependent on calcium or on nucleotides. Modeling accounted for the observed sedimentation behavior by assuming that both HMM heads bent toward the tail in the absence of calcium, while in its presence the heads had random positions. The sedimentation pattern showed a single peak at all calcium concentrations, indicating equilibration between the two forms with a t(1/2) less than 70 seconds. Electron micrographs of crosslinked, rotary shadowed specimens indicated that 81 % of HMM molecules in the presence of nucleotide had both heads pointing back towards the tail in the absence of calcium, as compared with 41 % in its presence. This is consistent with the sedimentation data. We conclude that in the "off" state, scallop myosin heads interact with each other, forming a rigid structure with low ATPase activity. When molecules are switched "on" by binding of calcium, communication between the heads is lost, allowing them to flex randomly about the junction with the tail; this could facilitate their interaction with actin in contracting muscle.  相似文献   

6.
We have performed a detailed biochemical kinetic and spectroscopic study on a recombinant myosin X head construct to establish a quantitative model of the enzymatic mechanism of this membrane-bound myosin. Our model shows that during steady-state ATP hydrolysis, myosin X exhibits a duty ratio (i.e. the fraction of the cycle time spent strongly bound to actin) of around 16%, but most of the remaining myosin heads are also actin-attached even at moderate actin concentrations in the so-called "weak" actin-binding states. Contrary to the high duty ratio motors myosin V and VI, the ADP release rate constant from actomyosin X is around five times greater than the maximal steady-state ATPase activity, and the kinetic partitioning between different weak actin-binding states is a major contributor to the rate limitation of the enzymatic cycle. Two different ADP states of myosin X are populated in the absence of actin, one of which shows very similar kinetic properties to actomyosin.ADP. The nucleotide-free complex of myosin X with actin shows unique spectral and biochemical characteristics, indicating a special mode of actomyosin interaction.  相似文献   

7.
Myosin II, like many molecular motors, is a two-headed dimer held together by a coiled-coil rod. The stability of the (S2) rod has implications for head-head interactions, force generation, and possibly regulation. Whether S2 uncoils has been controversial. To test the stability of S2, we constructed a series of "zippered" dimeric smooth muscle myosin II compounds, containing a high-melting temperature 32-amino acid GCN4 leucine zipper in the S2 rod beginning 0, 1, 2, or 15 heptads from the head-rod junction. We then assessed the ability of these and wild-type myosin to bind strongly via two heads to an actin filament by measuring the fluorescence quenching of pyrene-labeled actin induced by myosin binding. Such two-headed binding is expected to exert a large strain that tends to uncoil S2, and hence provide a robust test of S2 stability. We find that wild-type and zippered heavy meromyosin (HMM) are able to bind by both heads to actin under both nucleotide-free and saturating ADP conditions. In addition, we compared the actin affinity and rates for the 0- and 15-zippered HMMs in the phosphorylated "on" state and found them to be very similar. These results strongly suggest that S2 uncoiling is not necessary for two-headed binding of myosin to actin, presumably due to a compliant point in the myosin head(s). We conclude that S2 likely remains intact during the catalytic cycle.  相似文献   

8.
Calcium activates the ATPase activity of tissue-purified myosin V, but not that of shorter expressed constructs. Here, we resolve this discrepancy by comparing an expressed full-length myosin V (dFull) to three shorter constructs. Only dFull has low ATPase activity in EGTA, and significantly higher activity in calcium. Based on hydrodynamic data and electron microscopic images, the inhibited state is due to a compact conformation that is possible only with the whole molecule. The paradoxical finding that dFull moved actin in EGTA suggests that binding of the molecule to the substratum turns it on, perhaps mimicking cargo activation. Calcium slows, but does not stop the rate of actin movement if excess calmodulin (CaM) is present. Without excess CaM, calcium binding to the high affinity sites dissociates CaM and stops motility. We propose that a folded-to-extended conformational change that is controlled by calcium and CaM, and probably by cargo binding itself, regulates myosin V's ability to transport cargo in the cell.  相似文献   

9.
Shih WM  Gryczynski Z  Lakowicz JR  Spudich JA 《Cell》2000,102(5):683-694
The molecular motor myosin is proposed to bind to actin and swing its light-chain binding region through a large angle to produce an approximately 10 nm step in motion coupled to changes in the nucleotide state at the active site. To date, however, direct dynamic measurements have largely failed to show changes of that magnitude. Here, we use a cysteine engineering approach to create a high resolution, FRET-based sensor that reports a large, approximately 70 degree nucleotide-dependent angle change of the light-chain binding region. The combination of steady-state and time-resolved fluorescence resonance energy transfer measurements unexpectedly reveals two distinct prestroke states. The measurements also show that bound Mg.ADP.Pi, and not bound Mg.ATP, induces the myosin to adopt the prestroke states.  相似文献   

10.
The [Mg(2+)] dependence of ADP binding to myosin V and actomyosin V was measured from the fluorescence of mantADP. Time courses of MgmantADP dissociation from myosin V and actomyosin V are biphasic with fast observed rate constants that depend on the [Mg(2+)] and slow observed rate constants that are [Mg(2+)]-independent. Two myosin V-MgADP states that are in reversible equilibrium, one that exchanges nucleotide and cation slowly (strong binding) and one that exchanges nucleotide and cation rapidly (weak binding), account for the data. The two myosin V-MgADP states are of comparable energies, as indicated by the relatively equimolar partitioning at saturating magnesium. Actin binding lowers the affinity for bound Mg(2+) 2-fold but shifts the isomerization equilibrium approximately 6-fold to the weak ADP binding state, lowering the affinity and accelerating the overall rate of MgADP release. Actin does not weaken the affinity or accelerate the release of cation-free ADP, indicating that actin and ADP binding linkage is magnesium-dependent. Myosin V and myosin V-ADP binding to actin was assayed from the quenching of pyrene actin fluorescence. Time courses of myosin V-ADP binding and release are biphasic, consistent with the existence of two (weak and strong) quenched pyrene actomyosin V-ADP conformations. We favor a sequential mechanism for actomyosin V dissociation with a transition from strong to weak actin-binding conformations preceding dissociation. The data provide evidence for multiple myosin-ADP and actomyosin-ADP states and establish a kinetic and thermodynamic framework for defining the magnesium-dependent coupling between the actin and nucleotide binding sites of myosin.  相似文献   

11.
De La Cruz EM  Wells AL  Sweeney HL  Ostap EM 《Biochemistry》2000,39(46):14196-14202
Recent studies on myosin V report a number of kinetic differences that may be attributed to the different heavy chain (chicken vs mouse) and light chain (essential light chains vs calmodulin) isoforms used. Understanding the extent to which individual light chain isoforms contribute to the kinetic behavior of myosin V is of critical importance, since it is unclear which light chains are bound to myosin V in cells. In addition, all studies to date have used alpha-skeletal muscle actin, whereas myosin V is in nonmuscle cells expressing beta- and gamma-actin. Therefore, we characterized the actin and light chain dependence of single-headed myosin V kinetics. The maximum actin-activated steady-state ATPase rate (V(max)) of a myosin V construct consisting of the motor domain and first light chain binding domain is the same when either of two essential light chain isoforms or calmodulin is bound. However, with bound calmodulin, the K(ATPase) is significantly higher and there is a reduction in the rate and equilibrium constants for ATP hydrolysis, indicating that the essential light chain favors formation of the M. ADP.P(i) state. No kinetic parameters of myosin V are strongly influenced by the actin isoform. ADP release from the actin-myosin complex is the rate-limiting step in the ATPase cycle with all actin and light chain isoforms. We postulate that although there are significant light-chain-dependent alterations in the kinetics that could affect myosin V processivity in in vitro assays, these differences likely are minimized under physiological conditions.  相似文献   

12.
How myosin VI coordinates its heads during processive movement   总被引:3,自引:0,他引:3       下载免费PDF全文
A processive molecular motor must coordinate the enzymatic state of its two catalytic domains in order to prevent premature detachment from its track. For myosin V, internal strain produced when both heads of are attached to an actin track prevents completion of the lever arm swing of the lead head and blocks ADP release. However, this mechanism cannot work for myosin VI, since its lever arm positions are reversed. Here, we demonstrate that myosin VI gating is achieved instead by blocking ATP binding to the lead head once it has released its ADP. The structural basis for this unique gating mechanism involves an insert near the nucleotide binding pocket that is found only in class VI myosin. Reverse strain greatly favors binding of ADP to the lead head, which makes it possible for myosin VI to function as a processive transporter as well as an actin-based anchor. While this mechanism is unlike that of any other myosin superfamily member, it bears remarkable similarities to that of another processive motor from a different superfamily--kinesin I.  相似文献   

13.
C L Berger  D D Thomas 《Biochemistry》1991,30(46):11036-11045
We have used saturation-transfer electron paramagnetic resonance (ST-EPR) to detect the microsecond rotational motions of spin-labeled myosin subfragment one (MSL-S1) bound to actin in the presence of the ATP analogues AMPPNP (5'-adenylylimido diphosphate) and ATP gamma S [adenosine 5'-O-(3-thiotriphosphate)], which are believed to trap myosin in strongly and weakly bound intermediate states of the actomyosin ATPase cycle, respectively. Sedimentation binding measurements were used to determine the fraction of myosin heads bound to actin under ST-EPR conditions and the fraction of heads containing bound nucleotide. ST-EPR spectra were then corrected to obtain the spectrum corresponding to the ternary complex (actin.MSL-S1.nucleotide). The ST-EPR spectrum of MSL-S1.AMPPNP bound to actin is identical to that obtained in the absence of nucleotide (rigor complex), indicating no rotational motion of MSL-S1 relative to actin on the microsecond time scale. However, MSL-S1-ATP gamma S bound to actin is rotationally mobile, with an effective rotational correlation time (tau r) of 17 +/- 2 microseconds. This motion is similar to that observed previously for actin-bound MSL-S1 during the steady-state hydrolysis of ATP [Berger et al. (1989) Proc. Natl. Acad. Sci. U.S.A. 86, 8753-8757]. We conclude that, in solution, the weakly bound actin-attached states of the myosin ATPase cycle undergo microsecond rotational motions, while the strongly bound intermediates do not, and that these motions are likely to be involved in the molecular mechanism of muscle contraction.  相似文献   

14.
Chara corallina class XI myosin is by far the fastest molecular motor. To investigate the molecular mechanism of this fast movement, we performed a kinetic analysis of a recombinant motor domain of Chara myosin. We estimated the time spent in the strongly bound state with actin by measuring rate constants of ADP dissociation from actin.motor domain complex and ATP-induced dissociation of the motor domain from actin. The rate constant of ADP dissociation from acto-motor domain was >2800 s(-1), and the rate constant of ATP-induced dissociation of the motor domain from actin at physiological ATP concentration was 2200 s(-1). From these data, the time spent in the strongly bound state with actin was estimated to be <0.82 ms. This value is the shortest among known values for various myosins and yields the duty ratio of <0.3 with a V(max) value of the actin-activated ATPase activity of 390 s(-1). The addition of the long neck domain of myosin Va to the Chara motor domain largely increased the velocity of the motility without increasing the ATP hydrolysis cycle rate, consistent with the swinging lever model. In addition, this study reveals some striking kinetic features of Chara myosin that are suited for the fast movement: a dramatic acceleration of ADP release by actin (1000-fold) and extremely fast ATP binding rate.  相似文献   

15.
Prochniewicz E  Walseth TF  Thomas DD 《Biochemistry》2004,43(33):10642-10652
We have used optical spectroscopy (transient phosphorescence anisotropy, TPA, and fluorescence resonance energy transfer, FRET) to detect the effects of weakly bound myosin S1 on actin during the actomyosin ATPase cycle. The changes in actin were reported by (a) a phosphorescent probe (ErIA) attached to Cys 374 and (b) a FRET donor-acceptor pair, IAEDANS attached to Cys 374 and a nucleotide analogue (TNPADP) in the nucleotide-binding cleft. Strong interactions were detected in the absence of ATP, and weak interactions were detected in the presence of ATP or its slowly hydrolyzed analogue ATP-gamma-S, under conditions where a significant fraction of weakly bound acto-S1 complex was present and the rate of nucleotide hydrolysis was low enough to enable steady-state measurements. The results show that actin in the weakly bound complex with S1 assumes a new structural state in which (a) the actin filament has microsecond rotational dynamics intermediate between that of free actin and the strongly bound complex and (b) S1-induced changes are not propagated along the actin filament, in contrast to the highly cooperative changes due to the strongly bound complex. We propose that the transition on the acto-myosin interface from weak to strong binding is accompanied by transitions in the structural dynamics of actin parallel to transitions in the dynamics of interacting myosin heads.  相似文献   

16.
The effect of ADP and phosphorylation upon the actin binding properties of heavy meromyosin was investigated using three fluorescence methods that monitor the number of heavy meromyosin heads that bind to pyrene-actin: (i) amplitudes of ATP-induced dissociation, (ii) amplitudes of ADP-induced dissociation of the pyrene-actin-heavy meromyosin complex, and (iii) amplitudes of the association of heavy meromyosin with pyrene-actin. Both heads bound to pyrene-actin, irrespective of regulatory light chain phosphorylation or the presence of ADP. This behavior was found for native regulated heavy meromyosin prepared by proteolytic digestion of chicken gizzard myosin with between 5 and 95% heavy chain cleavage at the actin-binding loop, showing that two-head binding is a property of heavy meromyosin with uncleaved heavy chains. These data are in contrast to a previous study using an uncleaved expressed preparation (Berger, C. E., Fagnant, P. M., Heizmann, S., Trybus, K. M., and Geeves, M. A. (2001) J. Biol. Chem. 276, 23240-23245), which showed that one head of the unphosphorylated heavy meromyosin-ADP complex bound to actin and that the partner head either did not bind or bound weakly. Possible explanations for the differences between the two studies are discussed. We have shown that unphosphorylated heavy meromyosin appears to adopt a special state in the presence of ADP based upon analysis of actin-heavy meromyosin association rate constants. Data were consistent with one head binding rapidly and the second head binding more slowly in the presence of ADP. Both heads bound to actin at the same rate for all other states.  相似文献   

17.
Melanocytes that lack the GTPase Rab27a (ashen) are disabled in myosin Va-dependent melanosome capture because the association of the myosin with the melanosome surface depends on the presence of this resident melanosomal membrane protein. One interpretation of these observations is that Rab27a functions wholly or in part as the melanosome receptor for myosin Va (Myo5a). Herein, we show that the ability of the myosin Va tail domain to localize to the melanosome and generate a myosin Va null (dilute) phenotype in wild-type melanocytes is absolutely dependent on the presence of exon F, one of two alternatively spliced exons present in the tail of the melanocyte-spliced isoform of myosin Va but not the brain-spliced isoform. Exon D, the other melanocyte-specific tail exon, is not required. Similarly, the ability of full-length myosin Va to colocalize with melanosomes and to rescue their distribution in dilute melanocytes requires exon F but not exon D. These results predict that an interaction between myosin Va and Rab27a should be exon F dependent. Consistent with this, Rab27a present in detergent lysates of melanocytes binds to beads coated with purified, full-length melanocyte myosin Va and melanocyte myosin Va lacking exon D, but not to beads coated with melanocyte myosin Va lacking exon F or brain myosin Va. Moreover, the preparation of melanocyte lysates in the presence of GDP rather than guanosine-5'-O-(3-thio)triphosphate reduces the amount of Rab27a bound to melanocyte myosin Va-coated beads by approximately fourfold. Finally, pure Rab27a does not bind to myosin Va-coated beads, suggesting that these two proteins interact indirectly. Together, these results argue that Rab27a is an essential component of a protein complex that serves as the melanosome receptor for myosin Va, suggest that this complex contains at least one additional protein capable of bridging the indirect interaction between Rab27a and myosin Va, and imply that the recruitment of myosin Va to the melanosome surface in vivo should be regulated by factors controlling the nucleotide state of Rab27a.  相似文献   

18.
We have used electron paramagnetic resonance to study the orientation of myosin heads in the presence of nucleotides and nucleotide analogs, to induce equilibrium states that mimic intermediates in the actomyosin ATPase cycle. We obtained electron paramagnetic resonance spectra of an indane dione spin label (InVSL) bound to Cys 707 (SH1) of the myosin head, in skinned rabbit psoas muscle fibers. This probe is rigidly immobilized on the catalytic domain of the head, and the principal axis of the probe is aligned nearly parallel to the fiber axis in rigor (no nucleotide), making it directly sensitive to axial rotation of the head. On ADP addition, all of the heads remained strongly bound to actin, but the spectral hyperfine splitting increased by 0.55 +/- 0.02 G, corresponding to a small but significant axial rotation of 7 degrees. Adenosine 5'-(adenylylim-idodiphosphate) (AMPPNP) or pyrophosphate reduced the actomyosin affinity and introduced a highly disordered population of heads similar to that observed in relaxation. For the remaining oriented population, pyrophosphate induced no significant change relative to rigor, but AMPPNP induced a slight but probably significant rotation (2.2 degrees +/- 1.6 degrees), in the direction opposite that induced by ADP. Adenosine 5'-O-(3-thiotriphosphate) (ATP gamma S) relaxed the muscle fiber, completely dissociated the heads from actin, and produced disorder similar to that in relaxation by ATP. ATP gamma S plus Ca induced a weak-binding state with most of the actin-bound heads disordered. Vanadate had negligible effect in the presence of ADP, but in isometric contraction vanadate substantially reduced both force and the fraction of oriented heads. These results are consistent with a model in which myosin heads are disordered early in the power stroke (weak-binding states) and rigidly oriented later in the power stroke (strong-binding states), whereas transitions among the strong-binding states induce only slight changes in the axial orientation of the catalytic domain.  相似文献   

19.
Mechanism of blebbistatin inhibition of myosin II   总被引:1,自引:0,他引:1  
Blebbistatin is a recently discovered small molecule inhibitor showing high affinity and selectivity toward myosin II. Here we report a detailed investigation of its mechanism of inhibition. Blebbistatin does not compete with nucleotide binding to the skeletal muscle myosin subfragment-1. The inhibitor preferentially binds to the ATPase intermediate with ADP and phosphate bound at the active site, and it slows down phosphate release. Blebbistatin interferes neither with binding of myosin to actin nor with ATP-induced actomyosin dissociation. Instead, it blocks the myosin heads in a products complex with low actin affinity. Blind docking molecular simulations indicate that the productive blebbistatin-binding site of the myosin head is within the aqueous cavity between the nucleotide pocket and the cleft of the actin-binding interface. The property that blebbistatin blocks myosin II in an actin-detached state makes the compound useful both in muscle physiology and in exploring the cellular function of cytoplasmic myosin II isoforms, whereas the stabilization of a specific myosin intermediate confers a great potential in structural studies.  相似文献   

20.
It is known that melanophilin is a myosin Va-targeting molecule that links myosin Va and the cargo vesicles in cells. Here we found that melanophilin directly activates the actin-activated ATPase activity of myosin Va and thus its motor activity. The actin-activated ATPase activity of the melanocyte-type myosin Va having exon-F was significantly activated by melanophilin by 4-fold. Although Rab27a binds to myosin Va/melanophilin complex, it did not affect the melanophilin-induced activation of myosin Va. Deletion of the C-terminal actin binding domain and N-terminal Rab binding domain of melanophilin resulted in no change in the activation of the ATPase by melanophilin, indicating that the myosin Va binding domain (MBD) is sufficient for the activation of myosin Va. Among MBDs, the interaction of MBD-2 with exon-F of myosin Va is critical for the binding of myosin Va and melanophilin, whereas MBD-1 interacting with the globular tail of myosin Va plays a more significant role in the activation of myosin Va ATPase activity. This is the first demonstration that the binding of the cargo molecule directly activates myosin motor activity. The present finding raises the idea that myosin motors are switched upon their binding to the cargo molecules, thus avoiding the waste of ATP consumption.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号