首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cytoplasmic messenger RNAs of eukaryotic cells are distributed between polysomal and post-polysomal fractions (free) as protein-bound complexes. These studies were designed to determine whether a specific mRNA isolated from different subcellular compartments is complexed with the same family of polypeptides. As a first approach we have examined the proteins associated with mRNA which codes for histone H4. To perform these experiments HeLa cells were exposed to ultraviolet light to cross-link in vivo polypeptides which are closely associated with nucleic acid. To identify the polypeptides associated with mRNA specific for histones a genomic probe for histone H4 mRNA was immobilized on epoxy-cellulose. By hybrid selection specific mRNPs containing histone mRNA were isolated. Our results reveal the existence of a number of polypeptides associated with both polysomal and post-polysomal histone mRNAs. In polysomal histone mRNA two polypeptides of Mr = 49 000 and 52 500 were the major components. In contrast polypeptides of Mr = 43 000 and 57 000 were the major polypeptide components of post-polysomal (or free) histone mRNA. Furthermore, these results also suggest that the polypeptides associated with either polysomal or free H4 histone mRNA represent a subset of proteins found in poly(A)-free fractions or poly(A)-rich mRNA fractions.  相似文献   

2.
Ribonucleoprotein complexes (RNP) sedimenting between 10 and 15 S were isolated from the postpolysomal cytoplasmic fraction of embryonic chicken muscle. These RNP complexes lack mRNA but contain RNA with a sedimentation coefficient of 4.4 S. The 4.4 S RNA did not arise as a product of degradation during the course of the isolation procedure nor did it contain oligo(U)- or poly(A)-rich regions. Furthermore, the 4.4 S RNA-containing RNP complex was easily separable from free mRNPs and, therefore, is not considered as part of the free mRNP complexes. Both the 4.4 S RNA and 10 to 15 S RNP were able to inhibit translation of either "capped" or "uncapped" mRNA in a heterologous cell-free system. This inhibitory effect may result from interference of 4.4 S RNA with an early event in mRNA translation. A large number of polypeptides of Mr = 14,000 to 220,000 were present in the 10 to 15 S RNP. Among these, the most prominent polypeptides were of Mr = 36,000; 48,000; 52,000; 58,000; 65,000; 78,000; 84,000; 96,000; 105,000; 165,000; and 220,000. With the exception of the Mr = 36,000 polypeptide, these major components were also found in the nonpolysomal cytoplasmic mRNA protein complexes (free mRNP).  相似文献   

3.
The binding of rabbit globin mRNA, in-vitro-generated beta-globin mRNA segments, and RNA homopolymers by proteins of rabbit reticulocyte polysomal messenger ribonucleoproteins (mRNP) after SDS gel electrophoresis and electroblotting was examined. The polysomal mRNP proteins have a higher affinity for mRNA than for rRNA and tRNA while having a higher affinity for polypurine than polypyrimidine homopolymers. Binding experiments with synthetic poly(A) and with segments of beta-globin mRNA transcribed from a cDNA in vitro revealed a set of polysomal mRNP proteins which preferentially bind the poly(A)-free beta-globin mRNA. A protein of Mr 90,000 binds specifically the 3'-nontranslated trailer of the poly(A)-free beta-globin mRNA and not the poly(A)-containing globin mRNA. Another set of proteins preferentially binds poly(A). The latter group of proteins contains a prominent species of Mr 72,000, which is most likely the rabbit poly(A)-binding protein. Three polysomal mRNP proteins which bound rabbit globin mRNA did not bind preferentially any of the other RNA probes used.  相似文献   

4.
Cytoplasmic extracts of mouse Taper ascites cells were centrifuged on sucrose gradients to give 0–80 S, monosome, and polysome fractions. CsCl equilibrium density centrifugation of formaldehyde-fixed material from the 0–80 S fraction demonstrated that the messenger RNA in the 0–80 S fraction was in the form of free ribonucleoprotein. The size of the poly(A+)RNA and the size of the poly(A) segments of these molecules were shown to be very similar in both the free mRNP2 and polysome fractions. The labeling kinetics of the free mRNP poly(A+)RNA was similar to that of the polysomal poly(A+)RNA.The free mRNP poly(A+)RNA efficiently stimulated protein synthesis in the wheat germ cell-free system, supporting the view that it was mRNA. Two-dimensional gel electrophoresis was used to analyze the proteins whose synthesis was directed by free mRNP and polysomal poly(A+)RNA. The free mRNP poly(A+)RNA directed the synthesis of a simpler set of abundant protein products than did the polysomal poly(A+)RNA. Most of the free mRNP abundant protein products were also present in the polysomal products, though obvious quantitative differences were evident, indicating that each individual mRNA had its own characteristic distribution between polysomes and the translationally inactive RNP form.  相似文献   

5.
The function of proteins that interact with mRNA   总被引:4,自引:0,他引:4  
Specific proteins are associated with mRNA in the cytoplasm of eukaryotic cells. The complement of associated proteins depends upon whether the mRNA is an integral component of the polysomal complex being translated, or, alternatively, whether it is part of the non-translated free mRNP fraction. By subjecting cells to ultraviolet irradiation in vivo to cross-link proteins to mRNA, mRNP proteins have been shown to be associated with specific regions of the mRNA molecule. Examination of mRNP complexes containing a unique mRNA has suggested that not all mRNA contain the same family of associated RNA binding proteins. The function of mRNA associated proteins may include a role in providing stability for mRNA, and/or in modulating translation. With the recent demonstrations that both free and polysomal mRNPs are associated with the cytoskeletal framework, specific mRNP proteins may play a role in determining the subcellular localization of specific mRNPs.  相似文献   

6.
The poly(A+)RNA of the free mRNP of mouse Taper ascites cell contains a very reduced number of different mRNA sequences compared to the polysome poly(A+)RNA. By the technique of mRNA:cDNA hybridization we have determined that the free mRNP contains approximately 400 different mRNA sequences while the polysomes contain about 9000 different mRNAs. The free mRNP poly(A+)RNA sequences are present in two abundance classes, the abundant free mRNP class containing 15 different mRNA sequences and the less abundant free mRNP class containing 400 different mRNAs. The polysome poly(A+)RNA consists of three abundance classes of 25, 500 and 8500 different mRNA sequences.Despite its intracellular location in RNP structures not directly involved in protein synthesis the poly(A+)RNA purified from the free RNP of these cells was a very effective template for protein synthesis in cell-free systems. Cell-free translation products of free mRNP and polysome poly(A+)RNAs were analyzed by two-dimensional gel electrophoresis. This analysis confirmed the hybridization result that the free mRNP poly(A+)RNA contained fewer sequences than polysomal poly(A+)RNA. The abundant free RNP-mRNA directed protein products were a subset of the polysome mRNA-directed protein products. The numbers of more abundant products of cell-free protein synthesis directed by the free RNP-mRNA and polysomal mRNA were in general agreement with the hybridization estimates of the number of sequences in the abundant classes of these two mRNA populations.  相似文献   

7.
Irradiation of chicken muscle cells with ultraviolet light (254 nm) to cross-link RNA and protein moieties was used to examine the polypeptide complements of cytoplasmic mRNA-protein complexes (mRNP). The polypeptides of translationally active mRNP complexes released from polysomes were compared to the repressed nonpolysomal cytoplasmic (free) mRNP complexes. In general, all of the polypeptides present in free mRNPs were also found in the polysomal mRNPs. In contrast to polysomal mRNPS, polypeptides of Mr 28 000, 32 000, 46 000, 65 000 and 150 000 were either absent or present in relatively smaller quantities in free mRNP complexes. On the other hand, the relative proportion of polypeptides of Mr 130 000 and 43 000 was higher in free mRNPs than in polysomal mRNP complexes. To examine the role of cytoplasmic mRNP complexes in protein synthesis or mRNA metabolism, the changes in these complexes were studied following (a) inhibition of mRNA synthesis and (b) heat-shock treatment to alter the pattern of protein synthesis. Actinomycin D was used to inhibit mRNA synthesis in chick myotubes. The possibility of newly synthesized polypeptides of cytoplasmic mRNP complexes being assembled into these complexes in the absence of mRNA synthesis was examined. These studies showed that the polypeptides of both free and polysomal mRNP complexes can bind to pre-existing mRNAs, therefore suggesting that polypeptides of mRNP complexes can be exchanged with a pool of RNA-binding proteins. In free mRNP complexes, this exchange of polypeptides is significantly slower than in the polysomal mRNP complexes. Heat-shock treatment of chicken myotubes induces the synthesis of three polypeptides of Mr = 81 000, 65 000 and 25 000 (heat-shock polypeptides). Whether this altered pattern of protein synthesis following heat-shock treatment could affect the polypeptide composition of translationally active polysomal mRNPs was examined. The results of these studies show that, compared to normal cells, more newly synthesized polypeptides were assembled into polysomal mRNPs following heat-shock treatment. A [35S]methionine-labeled polypeptide of Mr = 80 000 was detected in mRNPs of heat-shocked cells, but not of normal cells. This polypeptide was, however, detected by AgNO3 staining of the unlabeled polypeptide of mRNP complexes of normal cells. These results, therefore, suggest that the assembly of newly synthesized 80 000-Mr polypeptide to polysomal mRNPs was enhanced following induction of new heat-shock mRNAs. The results of these studies reported here have been discussed in relation to the concept that free mRNP complexes are inefficiently translated in vivo.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

8.
9.
A large fraction of the translationally repressed non-globin messenger RNA in duck erythroblasts is present in non-polyribosomal free mRNP structures which sediment in the 30-40-S range ('35 S'). In 0.5 M KCl, they form core complexes which show a pronounced peak at about 32 S containing mRNA and a discrete spherical RNP particle with a diameter of about 12 nm and the typical morphology of a prosome [H.-P. Schmid et al. (1984) EMBO J. 3, 29-34]. Buoyant density measurements and chromatography on oligo(dT)-cellulose indicate that this particle is bound to mRNA; it can be released from the mRNA by treatment of the free mRNP fraction with SDS. This prosome-like particle inhibits the translation of mRNA in vitro. It is composed primarily of multimers of a single 21-kDa protein and at least one species of RNA of about 80-100 nucleotides. It is resistant to dissociation by 2 M CS2SO4 and 1% SDS; the 21-kDa protein is not attacked by proteinase K unless the particle is extracted with phenol prior to treatment with the protease. The small RNA moiety of the particle hybridizes to the poly(A)-rich mRNA derived from the free mRNPs, as well as to polyribosomal mRNA. These data indicate that prosomes may serve to regulate mRNA translation; they show furthermore that prosome-like particles (about 600 kDa mass) may be built of up to 25 molecules of a single specific protein, rather than of the entire set of about 20 prosomal proteins previously identified.  相似文献   

10.
11.
Starvation induces vegetative microplasmodia of Physarum polycephalum to differentiate into translationally-dormant sclerotia. The existence and the biochemical nature of stored mRNA in sclerotia is examined in this report. The sclerotia contain about 50% of the poly(A)-containing RNA [poly(A)+RNA] complement of microplasmodia as determined by [3H]-poly(U) hybridization. The sclerotial poly(A)+RNA sequences are associated with proteins in a ribonucleoprotein complex [poly(A)+mRNP] which sediments more slowly than the polysomes. Sclerotial poly(A)+RNP sediments more rapidly than poly(A)+RNP derived from the polysomes of microplasmodia despite the occurrence of poly(A)+RNA molecules of a similar size in both particles suggesting the existence of differences in protein composition. Isolation of poly(A)+RNP by oligo (dT)-cellulose chromatography and the analysis of its associated proteins by polyacrylamide gel electrophoresis show that sclerotial poly(A)+RNP contains at least 14 major polypeptides, 11 of which are different in electrophoretic mobility from the polypeptides found in polysomal poly(A)+RNP. Three of the sclerotial poly(A)+RNP polypeptides are associated with the poly(A) sequence (18, 46, and 52 × 103 mol. wt. components), while the remaining eight are presumably bound to non-poly(A) portions of the poly(A)+RNA. Although distinct from polysomal poly(A)+RNP, the sclerotial poly(A)+RNP is similar in sedimentation behavior and protein composition (with two exceptions) to the microplasmodial free cytoplasmic poly(A)+RNP. The results suggest that dormant sclerotia store mRNA sequences in association with a distinct set of proteins and that these proteins are similar to those associated with the free cytoplasmic poly(A)+RNP of vegetative plasmodia.  相似文献   

12.
We tested the hypothesis that histone mRNA turnover is accelerated in the presence of free histone proteins. In an in vitro mRNA decay system, histone mRNA was degraded four- to sixfold faster in reaction mixtures containing core histones and a cytoplasmic S130 fraction than in reaction mixtures lacking these components. The decay rate did not change significantly when histones or S130 was added separately, suggesting either that the histones were modified and thereby activated by S130 or that additional factors besides histones were required. RecA, SSB (single-stranded binding), and histone proteins all formed complexes with histone mRNA, but only histones induced accelerated histone mRNA turnover. Therefore, the effect was not the result of random RNA-protein interactions. Moreover, histone proteins did not induce increased degradation of gamma globin mRNA, c-myc mRNA, or total poly(A)- or poly(A)+ polysomal mRNAs. This autoregulatory mechanism is consistent with the observed accumulation of cytoplasmic histone proteins in cells after DNA synthesis stops, and it can account, in part, for the rapid disappearance of histone mRNA at the end of S phase.  相似文献   

13.
These studies were designed to establish the location of various species of small RNAs within the subcellular cytoplasmic compartments. Four cytoplasmic RNA-containing compartments were examined: (A) cytoskeleton-bound polyribosomal ribonucleoprotein (RNP) complexes, (B) soluble-phase polyribosomal RNP complexes, (C) cytoskeleton-bound free RNP complexes, (D) soluble-phase free RNP complexes. The presence of the small cytoplasmic RNA (scRNA) population and histone H4 and actin mRNAs in each compartment was examined to determine their spatial distribution within the cytoplasm. The 7S signal recognition RNA and the 5S and 5.8S rRNAs were distributed among all four compartments, while 4S tRNAs were localized largely in fraction D. Fraction C contained a group of seven abundant scRNAs, of approximately 105-348 nucleotides in length, which were localized almost entirely within the cytoskeleton-bound free RNP compartment. Actin mRNAs were localized in fraction A, the actively translating cytoskeleton-bound compartment. Actin mRNAs were localized in fraction A, the actively translating cytoskeleton-bound compartment. Following cytochalasin B treatment, actin mRNAs were released into the soluble phase, implicating a dependence on the integrity of actin filaments in its binding. Such treatment also released several of the scRNAs from their cytoskeleton-bound location. In contrast histone H4 mRNAs were much more widely dispersed, being present in all four cytoskeletal compartments. Approximately 60% of the H4 mRNAs, however, were localized within the soluble-phase polyribosomes in fraction B. Cytochalasin B treatment released only the small portion of untranslated histone H4 mRNA associated with the cytoskeleton in fraction C, suggesting that the binding of these H4 mRNAs was dependent in some manner upon the integrity of actin filaments.  相似文献   

14.
15.
16.
The cytoplasm of early sea urchin embryos contains nonribosomal, high molecular weight RNA both associated with ribosomes in polysomes and free of ribosomes in particles termed free RNP. In a 1-hr labeling period, 50% of the newly synthesized RNA enters the pool of ribosome-free RNP particles during the cleavage stages, and this percentage decreases until less than 20% of the new RNA in the mesenchyme blastula stage is found in the free RNP. mRNA from both polysomes and free RNP contain poly(A)(+) and poly(A)(?) species. During the cleavage stages only 8–10% of the RNA from each fraction is polyadenylated; however, in the blastula, 40–50% of the nonhistone polysomal RNA is polyadenylated while only 22–30% of the free RNP RNA is polyadenylated. At any developmental stage, the poly(A)(+)RNA from the free RNA and polysomes have identical sedimentation profiles; this is also the case for the poly(A)(?)RNA except for the absence of the 9 S histone mRNA from the free RNP. Changes in poly(A)(+)RNA content and sedimentation profiles during development occur simultaneously in the free RNP and the polysomes. Kinetic studies of these two RNP populations as well as nuclear RNP show that the bulk of the free RNP are not unusually stable cytoplasmic components. The free RNP decay with a half-life of about 40 min while nuclear RNA and polysomal RNA display half-lives of about 12 and 65 min, respectively. Further, the rate of synthesis of the free RNP is not consistent with their being the only precursors for polysomes. Our estimates of the rates of synthesis for nuclear RNA, polysomes, and free RNP are, respectively, 1.1 × 10?15, 2.2 × 10?16, and 5.0 × 15?17 g/min/nucleus. The data on free RNP is discussed in terms of translational regulation of protein synthesis in the developing sea urchin.  相似文献   

17.
When primary cultures of chicken myoblasts were subjected to incubation at a temperature higher than their normal growing temperature of 36-37 degrees C, the pattern of protein synthesis was altered. This condition of heat shock induced a vigorous production of a number of proteins collectively known as 'heat-shock proteins'. The synthesis of heat-shock proteins was achieved without a significant decrease in the production of a broad spectrum of proteins by muscle cells. The synthesis of three major heat-shock polypeptides with Mr values of 81 000, 65 000 and 25 000 was observed in both mononucleated dividing myoblast cells and terminally differentiated myotubes. Two-dimensional electrophoretic separation of the heat-induced polypeptides synthesized by myogenetic cultures further established that same set of polypeptides with Mr of 65 000 (pI 6.0 and 5.5), 81 000 (pI 6.2) and 25 000 (pI 5.6 and 5.3) were produced in myoblasts and myotubes. The effect of the changes in pattern of protein synthesis on the mRNA and protein moieties of non-polysomal cytoplasmic mRNA-protein complexes (free mRNP) was examined. Free mRNP complexes sedimenting at 20-35 S were isolated from the post-ribosomal supernatant of both normal and heat-shocked myotube cultures by centrifugation in a sucrose gradient. A 10-20S RNA fraction isolated from these complexes stimulated protein synthesis in a cell-free system. The RNA fraction obtained from heat-shocked cells appeared to direct the synthesis of all three major heat-shock proteins. In contrast, synthesis of these polypeptides was not detected when RNA from free mRNP complexes of normal cells was used for translation. The free mRNP complexes of both normal and heat-shocked cells showed a buoyant density of 1.195 g/cm3 in metrizamide gradients. A large number of polypeptides of Mr = 35 000-105 000 were present in the highly purified free mRNP complexes isolated from the metrizamide gradient. Similar sets of polypeptides were found in these complexes from both normal and heat-shocked myotube culture. However, the relative proportion of a 65 000-Mr polypeptide was dramatically increased in the free mRNP complexes of heat-shocked cells. Two-dimensional gel electrophoretic analysis revealed that this polypeptide and the 65 000-Mr heat-shock polypeptide exhibit similar electrophoretic migration properties. These observations suggest that, following heat-shock treatment of chicken myotube cultures, the changes in the pattern of protein synthesis is accompanied by alteration of the mRNA and protein composition of free mRNP complexes.  相似文献   

18.
In muscle cells two populations of mRNA are present in the cytoplasm. The majority of mRNA is associated with ribosomes and active in protein synthesis. A small population of cytoplasmic mRNA occur as free mRNA-protein complex and is not associated with ribosomes. This apparently repressed population of mRNA from rat L6 myoblast cells was used to construct a cDNA library. Radioactively labeled cDNA preparations of polysomal and free (or repressed) mRNA populations showed that at least ten recombinant clones preferentially annealed to the cDNA from repressed mRNA. One of these clones was extensively studied. The DNA from a recombinant plasmid D12 hybridized to a 1.3-kb poly(A)-rich mRNA. In proliferating myoblast cells, the 1.3-kb mRNA was more abundant in the polysomal fraction and mostly free in the non-dividing myotubes. In contrast to this mRNA, 90% of alpha and beta actin mRNAs were translated in both myoblasts and myotubes. Further analysis of distribution of the 1.3-kb RNA in the polysomal (active) and free (repressed) fractions in fusion-arrested postmitotic myotubes suggested that fusion of myoblasts was not necessary for the control of translation of this mRNA. Withdrawal of muscle cells from the cell cycle appeared to be involved in regulating translation of this mRNA. The presence of this mRNA was not, however, limited to muscle cells. This mRNA was also present in the repressed state in rat liver and kidney cells. These results, therefore, suggest that the 1.3-kb mRNA is probably translated during a particular phase of the cell cycle and is not translated in terminally differentiated non-dividing cells. Messenger RNA homologous to the 600-base-pair insert of the recombinant plasmid D12 was isolated by hybrid selection procedure from both polysomal mRNA of myoblasts and free mRNA of myotubes. Translation of the hybrid selected mRNAs from both myoblasts and myotubes in rabbit reticulocyte lysate cell-free system synthesized a 40-kDa polypeptide. These results suggest that the repressed population of 1.3-kb mRNA can be translated in vitro. The hybridization pattern of DNA from the recombinant plasmid D12 with rat genomic DNA suggested that the 1.3-kb mRNA is derived from moderately repetitive rat DNA with a repetition frequency of approximately 100 copies per haploid genome.  相似文献   

19.
20.
A cytoplasmic 10S ribonucleoprotein particle (iRNP), which is isolated from chick embryonic muscle, is a potent inhibitor of mRNA translation in vitro and contains a 4S translation inhibitory RNA species (iRNA). The iRNP particle shows similarity in size to the small nuclear ribonucleoprotein (snRNP) particles. Certain autoimmune disease patients contain antibodies directed against snRNP antigenic determinants. The possibility that iRNP may be related to the small nuclear particles was tested by immunoreactivity with monospecific autoimmune antibodies to six antigenic determinants (Sm, RNP, PM-1, SS-A (Ro), SS-B (La), and Scl-70). By Ouchterlony immunodiffusion assays, the cytoplasmic 10S iRNP did not show any immunoreactivity. Also, a more sensitive hemagglutination inhibition assay for detecting Sm and RNP antigens failed to show reactivity with the 10S iRNP. Thus, the 10S iRNP particles are distinct from the similarly sized snRNP. However, free and polysomal messenger ribonucleoprotein (mRNP) particles and polysomes also isolated from chick embryonic muscle and analyzed by Ouchterlony immunodiffusion and hemagglutination inhibition for the presence of the antigenic determinants showed reactivity to Sm and RNP autoantibodies, but were not antigenic for the other four antibodies. Some of the Sm antigenic peptides of mRNP particles and polysomes were identical to those purified from calf thymus nuclear extract, as judged by Western blot analysis. The association of Sm with free and polysomal mRNP and polysomes suggests that Sm may be involved in some cytoplasmic aspects of mRNA metabolism, in addition to a nuclear function in mRNA processing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号