首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We examined how anticipated changes in CO2 concentration and temperature interacted to alter plant growth, harvest characteristics and photosynthesis in two cold-adapted herbaceous perennials, alfalfa ( Medicago sativa L. cv. Arc) and orchard grass ( Dactylis glomerata L. cv. Potomac). Plants were grown at two CO2 concentrations (362 [ambient] and 717 [elevated] μmol mol−1 CO2) and four constant day/night temperatures of 15, 20, 25 and 30°C in controlled environmental chambers. Elevated CO2 significantly increased total plant biomass and protein over a wide range of temperatures in both species. Stimulation of photosynthetic rate, however, was eliminated at the highest growth temperature in M. sativa and relative stimulation of plant biomass and protein at high CO2 declined as temperature increased in both species. Lack of a synergistic effect between temperature and CO2 was unexpected since elevated CO2 reduces the amount of carbon lost via photorespiration and photorespiration increases with temperature. Differences between anticipated stimulatory effects of CO2 and temperature and whole plant single and leaf measurements are discussed. Data from this study suggest that stimulatory effects of atmospheric CO2 on growth and photosynthesis may decline with anticipated increases in global temperature, limiting the degree of carbon storage in these two perennial species.  相似文献   

2.
Soybean ( Glycine max cv. Clark) was grown at both ambient (ca 350 μmol mol−1) and elevated (ca 700 μmol mol−1) CO2 concentration at 5 growth temperatures (constant day/night temperatures of 20, 25, 30, 35 and 40°C) for 17–22 days after sowing to determine the interaction between temperature and CO2 concentration on photosynthesis (measured as A, the rate of CO2 assimilation per unit leaf area) at both the single leaf and whole plant level. Single leaves of soybean demonstrated increasingly greater stimulation of A at elevated CO2 as temperature increased from 25 to 35°C (i.e. optimal growth rates). At 40°C, primary leaves failed to develop and plants eventually died. In contrast, for both whole plant A and total biomass production, increasing temperature resulted in less stimulation by elevated CO2 concentration. For whole plants, increased CO2 stimulated leaf area more as growth temperature increased. Differences between the response of A to elevated CO2 for single leaves and whole plants may be related to increased self-shading experienced by whole plants at elevated CO2 as temperature increased. Results from the present study suggest that self-shading could limit the response of CO2 assimilation rate and the growth response of soybean plants if temperature and CO2 increase concurrently, and illustrate that light may be an important consideration in predicting the relative stimulation of photosynthesis by elevated CO2 at the whole plant level.  相似文献   

3.
Changes in the temperature dependence of the photosynthetic rate depending on growth temperature were investigated for a temperate evergreen tree, Quercus myrsinaefolia . Plants were grown at 250 μ mol quanta m–2 s–1 under two temperature conditions, 15 and 30 °C. The optimal temperature that maximizes the light-saturated rate of photosynthesis at 350 μ L L–1 CO2 was found to be 20–25 and 30–35 °C for leaves grown at 15 and 30 °C, respectively. We focused on two processes, carboxylation and regeneration of ribulose-1,5-bisphosphate (RuBP), which potentially limit photosynthetic rates. Because the former process is known to limit photosynthesis at lower CO2 concentrations while the latter limits it at higher CO2 concentrations, we determined the temperature dependence of the photosynthetic rate at 200 and 1000 μ L L–1 CO2 under saturated light. It was revealed that the temperature dependence of both processes varied depending on the growth temperature. Using a biochemical model, we estimated the capacity of the two processes at various temperatures under ambient CO2 concentration. It was suggested that, in leaves grown at low temperature (15 °C), the photosynthetic rate was limited solely by RuBP carboxylation under any temperature. On the other hand, it was suggested that, in leaves grown at high temperature (30 °C), the photosynthetic rate was limited by RuBP regeneration below 22 °C, but limited by RuBP carboxylation above 22 °C. We concluded that: (1) the changes in the temperature dependence of carboxylation and regeneration of RuBP and (2) the changes in the balance of these two processes altered the temperature dependence of the photosynthetic rate.  相似文献   

4.
The temperature dependence of C3 photosynthesis may be altered by the growth environment. The effects of long-term growth in elevated CO2 on photosynthesis temperature response have been investigated in wheat ( Triticum aestivum L.) grown in controlled chambers with 370 or 700 μmol mol−1 CO2 from sowing through to anthesis. Gas exchange was measured in flag leaves at ear emergence, and the parameters of a biochemical photosynthesis model were determined along with their temperature responses. Elevated CO2 slightly decreased the CO2 compensation point and increased the rate of respiration in the light and ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) Vcmax, although the latter effect was reversed at 15°C. With elevated CO2, Jmax decreased in the 15–25°C temperature range and increased at 30 and 35°C. The temperature response (activation energy) of Vcmax and Jmax increased with growth in elevated CO2. CO2 enrichment decreased the ribulose 1,5-bisphosphate (RuBP)-limited photosynthesis rates at lower temperatures and increased Rubisco- and RuBP-limited rates at higher temperatures. The results show that the photosynthesis temperature response is enhanced by growth in elevated CO2. We conclude that if temperature acclimation and factors such as nutrients or water availability do not modify or negate this enhancement, the effects of future increases in air CO2 on photosynthetic electron transport and Rubisco kinetics may improve the photosynthetic response of wheat to global warming.  相似文献   

5.
Abstract. A model is developed for photosynthesis and photorespiration in C3 plants, using an equation for the multisubslrate ordered reaction of ribulose 1,5-bisphosphalc carboxylase-oxygenase (Farazdaghi & Edwards, 1988). The model examines net CO2 fixation with O2 inhibition, and mutual inhibition when equilibrium exists between carboxylation and oxygenation (at the CO2 compensation point). It is based on the stoichiometry of energy requirements and O2, and CO2 exchange in the cycles, the quantum efficiency for RuBP generation, the maximum capacity for RuBP generation, the carboxylation efficiency with respect to [CO2], and the oxygenation efficiency with respect to [O2]. With increasing concentrations of CO2 above the CO2 compensation point, decreasing quantum flux density, or decreasing O2, simulations show that the rate of photorespiration progressively decreases. The two components of O2 inhibition of photosynthesis change disproportionately with increasing CO2 concentration. According to the model, the energy utilized during photosynthesis at the CO2 compensation point is about half that under atmospheric conditions.  相似文献   

6.
Seedlings of two tree species from the Atlantic lowlands of Costa Rica, Ochroma la-gopus Swartz, a fast-growing pioneer species, and Pentaclethra macroloba (Willd.) Kuntze, a slower-growing climax species, were grown under enriched atmospheric CO2 in controlled environment chambers. Carbon dioxide concentrations were maintained at 350 and 675 μl 1−1 under photosynthetic photon flux densities of 500 μol m−2 s−1 and temperatures of 26°C day and 20°C night. Total biomass of both species increased significantly in the elevated CO2 treatment; the increase in biomass was greatest for the pioneer species, O. lagopus . Both species had greater leaf areas and specific leaf weights with increased atmospheric CO2. However, the ratio of non-pho-tosynthetic tissue to leaf area also increased in both species leading to decreased leaf area ratios. Plants of both species grown at 675 μl 1−1 CO2 had lower chlorophyll contents and photosynthesis on a leaf area basis than those grown at 350 μl 1−1. Reductions in net photosynthesis occurred despite increased internal CO2 concentrations in the CO2-enriched treatment. Stomatal conductances of both species decreased with CO2-enrichment resulting in significant increases in water use efficiency.  相似文献   

7.
The total resistances to CO2 uptake by Sticta latifrons Rich, and Pseudocyphellaria amphisticta Kremp. were separated into transport and carboxylation components by calculation after transformation of net photosynthesis rate against CO2 concentration curves into a linear form. The use of this technique circumvented the problem of measuring the internal CO2 concentration of the lichen thalli. Both species exhibited an increase in transport resistance at high thallus water contents and an increase in both transport and carboxylation resistances at low water contents. At low and intermediate water contents internal transport resistances were larger than carboxylation resistances when measured at limiting CO2 concentrations. However, at ambient CO2 concentrations carboxylation processes were the dominant factors limiting photosynthesis at all, except the high, water contents.  相似文献   

8.
Plants grown in an environment of elevated CO2 and temperature often show reduced CO2 assimilation capacity, providing evidence of photosynthetic downregulation. The aim of this study was to analyse the downregulation of photosynthesis in elevated CO2 (700 µmol mol−1) in nodulated alfalfa plants grown at different temperatures (ambient and ambient + 4°C) and water availability regimes in temperature gradient tunnels. When the measurements were taken in growth conditions, a combination of elevated CO2 and temperature enhanced the photosynthetic rate; however, when they were carried out at the same CO2 concentration (350 and 700 µmol mol−1), elevated CO2 induced photosynthetic downregulation, regardless of temperature and drought. Intercellular CO2 concentration measurements revealed that photosynthetic acclimation could not be accounted for by stomatal limitations. Downregulation of plants grown in elevated CO2 was a consequence of decreased carboxylation efficiency as a result of reduced rubisco activity and protein content; in plants grown at ambient temperature, downregulation was also induced by decreased quantum efficiency. The decrease in rubisco activity was associated with carbohydrate accumulation and depleted nitrogen availability. The root nodules were not sufficiently effective to balance the source–sink relation in elevated CO2 treatments and to provide the required nitrogen to counteract photosynthetic acclimation.  相似文献   

9.
Abstract. A simulation of the quantitative influence of altitude on photosynthetic CO2 uptake capability (AP) included the effects of predicted changes (1) in air temperature (lapse rate) and (2) leaf temperature, (3) ambient pressure and CO2 concentration, and (4) the diffusion coefficient for CO2 in air. When a dry lapse rate (0.01°C m−1) in air temperature was simulated, significant declines (up to 14%) in AP were predicted from sea level to 4km altitude. A moist lapse rate of 0.003°C m−1 resulted in less than a 4% decrease in AP over the same altitude range. When natural leaf temperatures (predicted from heat balance analyses) were simulated, AP was significantly greater (∼20%) than when leaf temperatures were considered equal to air temperature for all lapse conditions. There was virtually no change in AP with altitude when predicted leaf temperatures and moist lapse conditions were simulated. There was a significant (∼10%) increase in AP with altitude when leaf temperature was held constant at 30°C (regardless of altitude) under moist lapse conditions. Future studies evaluating the effects of elevation on photosynthesis could benefit from the above considerations of the effects of natural leaf temperature regimes and prevailing lapse conditions on CO2 uptake potential.  相似文献   

10.
Plant responses to elevated CO2 can be modified by many environmental factors, but very little attention has been paid to the interaction between CO2 and changes in vapour pressure deficit (VPD). Thirty-day-old alfalfa plants ( Medicago sativa L. cv. Aragón), which were inoculated with Sinorhizobium meliloti 102F78 strain, were grown for 1 month in controlled environment chambers at 25/15°C, 14 h photoperiod, and 600 µmol m−2 s−1 photosynthetic photon flux (PPF), using a factorial combination of CO2 concentration (400 µmol mol−1 or 700 µmol mol−1) and vapour pressure deficit (0.48 kPa or 1.74 kPa, which corresponded to relative humidities of 85% and 45% at 25°C, respectively). Elevated CO2 strongly stimulated plant growth under high VPD conditions, but this beneficial effect was not observed under low VPD. Under low VPD, elevated CO2 also did not enhance plant photosynthesis, and plant water stress was greatest for plants grown at elevated CO2 and low VPD. Moreover, plants grown under elevated CO2 and low VPD had a lower leaf soluble protein and photosynthetic activity (photosynthetic rate and carboxylation efficiency) than plants grown under elevated CO2 and high VPD. Elevated CO2 significantly increased leaf adaxial and abaxial temperatures. Because the effects of elevated CO2 were dependent on vapour pressure deficit, VPD needs to be controlled in experiments studying the effect of elevated CO2 as well as considered in the extrapolations of results to a warmer, high-CO2 world.  相似文献   

11.
Abstract. Cyperus longus L. , which has a widespread but disjunct distribution throughout Europe and extends northwards into Britain, was found to be a C4 species based upon its Kranz leaf anatomy, low CO2 compensation point and the labelling of malate as an early product of 14CO2 fixation. The photosynthetic characteristics of C. longus are similar to many other C4 species with a high maximum rate of photosynthesis (> 1.5 mg CO2 m −2 s −1) and a relatively high temperature optimum (30–35°C), but unlike many C4 species the rate of photosynthesis does not decline rapidly below the optimum temperature and a substantial rate (0.6 mgCO2 m−2s−1)occursat 15°C. Leaf extension is very slow at 15°C and shows a curvilinear response to temperatures between 15 and 25°C. Leaves extend at a rate of almost 4 cm d−1 at 25°C.  相似文献   

12.
We investigated the thermal acclimation of photosynthesis and respiration in black spruce seedlings [ Picea mariana (Mill.) B.S.P.] grown at 22/14 °C [low temperature (LT)] or 30/22 °C [high temperature (HT)] day/night temperatures. Net CO2 assimilation rates ( A net) were greater in LT than in HT seedlings below 30 °C, but were greater in HT seedlings above 30 °C. Dark and day respiration rates were similar between treatments at the respective growth temperatures. When respiration was factored out of the photosynthesis response to temperature, the resulting gross CO2 assimilation rates ( A gross) was lower in HT than in LT seedlings below 30 °C, but was similar above 30 °C. The reduced A gross of HT seedlings was associated with lower needle nitrogen content, lower ribulose 1·5-bisphosphate carboxylase/oxygenase (Rubisco) maximum carboxylation rates ( V cmax) and lower maximum electron transport rates ( J max). Growth treatment did not affect V cmax :  J max. Modelling of the CO2 response of photosynthesis indicated that LT seedlings at 40 °C might have been limited by heat lability of Rubisco activase, but that in HT seedlings, Rubisco capacity was limiting. In sum, thermal acclimation of A net was largely caused by reduced respiration and lower nitrogen investments in needles from HT seedlings. At 40 °C, photosynthesis in LT seedlings might be limited by Rubisco activase capacity, while in HT seedlings, acclimation removed this limitation.  相似文献   

13.
Effects of environmental conditions influencing photosynthesis and photorespiration on senescence and net protein degradation were investigated in segments from the first leaf of young wheat ( Triticum aestivum L. cv. Arina) plants. The segments were floated on H2O at 25, 30 or 35°C in continuous light (PAR: 50 or 150 µmol m−2 s−1) in ambient air and in CO2‐depleted air. Stromal enzymes, including phosphoglycolate phosphatase, glutamine synthetase, ferredoxin‐dependent glutamate synthase, phosphoribulokinase, and the peroxisomal enzyme, glycolate oxidase, were detected by SDS‐PAGE followed by immunoblotting with specific antibodies. In general, the net degradation of proteins and chlorophylls was delayed in CO2‐depleted air. However, little effect of CO2 on protein degradation was observed at 25°C under the lower level of irradiance. The senescence retardation by the removal of CO2 was most pronounced at 30°C and at the higher irradiance. The stromal enzymes declined in a coordinated manner. Immunoreactive fragments from the degraded polypeptides were in most cases not detectable. However, an insolubilized fragment of glycolate oxidase accumulated in vivo, especially at 25°C in the presence of CO2. Detection of this fragment was minimal after incubation at 30°C and completely absent on blots from segments kept at 35°C. In CO2‐depleted air, the fragment was only weakly detectable after incubation at 25°C. The results from these investigations indicate that environmental conditions that influence photosynthesis may interfere with senescence and protein catabolism in wheat leaves.  相似文献   

14.
Abstract. A mechanistic model of photosynthesis is developed based on the characteristics of ribulose 1,5-bisphosphate (RuBP) carboxylase and the assimilation of CO2 as an ordered reaction with RuBP binding before CO2. An equation is derived which considers the effects of light (for regeneration of RuBP) and CO2. Taking values for the maximum turnover of RuBP carboxylase at substrate saturation, the maximum carboxylation efficiency (maximum increase in rate per increase in CO2 concentration) and the minimum quantum requirement for the C3 pathway, photosynthesis in the absence of photorespiration is simulated. In the model, at varying concentrations of CO2, the efficiency of light utilization approaches a maximum value as photon flux density decreases. Similarly, with a given maximum carboxyation capacity, at varying photon flux densities the carboxylation efficiency approaches a constant maximum value (equal to V max/ K m CO2) as CO2 is decreased. However, a decrease in the state of activation of RuBP carboxylase under low light results in a lower carboxylation efficiency. Limits on the rate of photosynthesis, as the maximum capacity for regeneration of RuBP is reduced relative to carboxylation potential, or as the maximum capacity of the carboxylase varies, are considered.  相似文献   

15.
Abstract. There have been seven studies of canopy photosynthesis of plants grown in elevated atmospheric CO2: three of seed crops, two of forage crops and two of native plant ecosystems. Growth in elevated CO2 increased canopy photosynthesis in all cases. The relative effect of CO2 was correlated with increasing temperature: the least stimulation occurred in tundra vegetation grown at an average temperature near 10°C and the greatest in rice grown at 43°C. In soybean, effects of CO2 were greater during leaf expansion and pod fill than at other stages of crop maturation. In the longest running experiment with elevated CO2 treatment to date, monospecific stands of a C3 sedge, Scirpus olneyi (Grey), and a C4 grass, Spartina patens (Ait.) Muhl., have been exposed to twice normal ambient CO2 concentrations for four growing seasons, in open top chambers on a Chesapeake Bay salt marsh. Net ecosystem CO2 exchange per unit green biomass (NCEb) increased by an average of 48% throughout the growing season of 1988, the second year of treatment. Elevated CO2 increased net ecosystem carbon assimilation by 88% in the Scirpus olneyi community and 40% in the Spartina patens community.  相似文献   

16.
Ananas comosus L. (Merr.) (pineapple) was grown at three day/night temperatures and 350 (ambient) and 700 (elevated) μ mol mol–1 CO2 to examine the interactive effects of these factors on leaf gas exchange and stable carbon isotope discrimination ( Δ ,‰). All data were collected on the youngest mature leaf for 24 h every 6 weeks. CO2 uptake (mmol m–2 d–1) at ambient and elevated CO2, respectively, were 306 and 352 at 30/20 °C, 175 and 346 at 30/25 °C and 187 and 343 at 35/25 °C. CO2 enrichment enhanced CO2 uptake substantially in the day in all environments. Uptake at night at elevated CO2, relative to that at ambient CO2, was unchanged at 30/20 °C, but was 80% higher at 30/25 °C and 44% higher at 35/25 °C suggesting that phosphoenolpyruvate carboxylase was not CO2-saturated at ambient CO2 levels and a 25 °C night temperature. Photosynthetic water use efficiency (WUE) was higher at elevated than at ambient CO2. Leaf Δ -values were higher at elevated than at ambient CO2 due to relatively higher assimilation in the light. Leaf Δ was significantly and linearly related to the fraction of total CO2 assimilated at night. The data suggest that a simultaneous increase in CO2 level and temperature associated with global warming would enhance carbon assimilation, increase WUE, and reduce the temperature dependence of CO2 uptake by A. comosus .  相似文献   

17.
Relationship between photosystem II activity and CO2 fixation in leaves   总被引:9,自引:2,他引:7  
There is now potential to estimate photosystem II (PSII) activity in vivo from chlorophyll fluorescence measurements and thus gauge PSII activity per CO2 fixed. A measure of the quantum yield of photosystem II, ΦII (electron/photon absorbed by PSII), can be obtained in leaves under steady-state conditions in the light using a modulated fluorescence system. The rate of electron transport from PSII equals ΦII times incident light intensity times the fraction of incident light absorbed by PSII. In C4 plants, there is a linear relationship between PSII activity and CO2 fixation, since there are no other major sinks for electrons; thus measurements of quantum yield of PSII may be used to estimate rates of photosynthesis in C4 species. In C3 plants, both CO2 fixation and photorespiration are major sinks for electrons from PSII (a minimum of 4 electrons are required per CO2, or per O2 reacting with RuBP). The rates of PSII activity associated with photosynthesis in C3 plants, based on estimates of the rates of carboxylation (vo) and oxygenation (vo) at various levels of CO2 and O2, largely account for the PSII activity determined from fluorescence measurements. Thus, in C3 plants, the partitioning of electron flow between photosynthesis and photorespiration can be evaluated from analysis of fluorescence and CO2 fixation.  相似文献   

18.
We tested the hypothesis that acclimation of foliar dark respiration to CO2 concentration and temperature is associated with adjustments in leaf structure and chemistry. Populus tremuloides Michx. , Betula papyrifera Marsh. , Larix laricina (Du Roi) K. Koch , Pinus banksiana Lamb., and Picea mariana (Mill.) B.S.P. were grown from seed in combined CO2 (370 or 580 μ mol mol–1) and temperature treatments (18/12, 24/18, or 30/24 °C). Temperature and CO2 effects were predominately independent. Specific respiration rates partially acclimated to warmer thermal environments through downward adjustment in the intercept, but not Q 10 of the temperature–response functions. Temperature acclimation of respiration was larger for conifers than broad-leaved species and was associated with pronounced reductions in leaf nitrogen concentrations in conifers at higher growth temperatures. Short-term increases in CO2 concentration did not inhibit respiration. Growth in the elevated CO2 concentration reduced leaf nitrogen and increased non-structural carbohydrate concentrations. However, for a given nitrogen concentration, respiration was higher in leaves grown in the elevated CO2 concentration, as rates increased with increasing carbohydrates. Across species and treatments, respiration rates were a function of both leaf nitrogen and carbohydrate concentrations ( R 2 = 0·71, P < 0·0001). Long-term acclimation of foliar dark respiration to temperature and CO2 concentration is largely associated with changes in nitrogen and carbohydrate concentrations.  相似文献   

19.
Carob seedlings ( Ceratonia siliqua L. cv. Mulata), fed with nitrate or ammonium, were grown in growth chambers containing two levels of CO2 (360 or 800 μl l−1), three root temperatures (15, 20 or 25°C), and the same shoot temperature (20/24°C, night/day temperature). The response of the plants to CO2 enrichment was affected by environmental factors such as the type of inorganic nitrogen in the medium and root temperature. Increasing root temperature enhanced photosynthesis rate more in the presence of nitrate than in the presence of ammonium. Differences in photosynthetic products were also observed between nitrate- and ammonium-fed carob seedlings. Nitrate-grown plants showed an enhanced content of sucrose, while ammonium led to enhanced storage of starch. Increase in root temperature caused an increase in dry mass of the plants of similar proportions in both nitrogen sources. The enhancement of the rates of photosynthesis by CO2 enrichment was proportionally much larger than the resulting increases in dry mass production when nitrate was the nitrogen source. Ammonium was the preferred nitrogen source for carob at both ambient and high CO2 concentrations. The level of photosynthesis of a plant is limited not only by atmospheric CO2 concentration but also by the nutritional and environmental conditions of the root.  相似文献   

20.
The effect of drought on CO2 assimilation and leaf conductance was studied in three northern hardwood species: Quercus rubra L., Acer rubrum L. and Populus grandidentata Michx. Leaf gas exchange characteristics at two CO2 levels (320 and 620 μl I−1) and temperatures from 20 to 35°C were measured at the end of a dry period and shortly after 10 cm of rainfall. The effects of drought varied with species, temperature and CO2 level. Calculated values of internal CO2 concentration showed little or no decline during drought. Differences in assimilation, before vs after the rains, were most apparent at the higher CO2 level. These latter two observations indicate nonstomatal disruption of CO2 assimilation during the dry period. In P. grandidentata there was a substantial interaction between drought and temperature, with a resultant shift in the temperature for maximum assimilation to lower temperatures during drought. During drought, internal CO2 concentrations increased sharply in all three species under the combined conditions of high temperatures and the higher CO2 level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号