首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Optimal density of spring rape (Brassica napus L.) crop stand was determined by plant photosynthetic characteristics at the beginning of flowering. As crop density increased from 100 to 350 plants/m2, leaf surface index (LSI) of the crop was found to increase by 18.2–80.2%, and LSI decreased by 38.8–67.3% as compared with the sparsest crop (50–100 plants/m2). LSI depended on the rate of incident PAR reaching 0.5 and 0.25 heights of the crop stand and to the soil surface. When crop density increased from 100 to 350 plants/m2, the photosynthetic potential (PP) of the crop increased 1.8 times as compared with the sparsest crop. PP of the densest rape crop stand was 3 times lower than in the sparsest crop. When the crop density increased from 100 to 250 plants/m2, the daily increment in biomass calculated per leaf surface unit increased by 27.0% as compared with the sparsest crop and depended on LSI. When leaf area decreased, the daily increment in biomass calculated per leaf surface unit declined; in the densest stand, this characteristic was by 58.3% lower than in the sparsest crop. Rape productivity at the flowering stage depended on the crop density, LSI of plants, rate of PAR reaching 0.5 and 0.25 heights of the crop stand and to the soil surface, PP, and the daily increment in biomass calculated per leaf surface unit. Crop productivity at the flowering stage and the rape seed yield were associated by a significant parabolic relationship. When crop density increased from 100 to 350 plants/m2, seed yield per plant considerably decreased (by 33.1–78.5%) as compared with the sparsest crop. The greatest influence on seed yield per plant was exerted by LSI and the daily increment in biomass calculated per leaf surface unit. When crop density increased to 250–300 plants/m2, the seed yield considerably rose (by 28.6–58.8%) as compared with the sparsest crop; when this index reached 300–350 plants/m2, the seed yield decreased because plant growth was suppressed, with the productivity reduced. The results thus obtained suggest that the photometric characteristics of spring rape were at optimum at crop density of 100–250 plants/m2. The agroclimatic conditions of Lithuania ensure potential for rapid accumulation of total biomass and high seed yield.  相似文献   

2.
It was found that the cellular Na+-concentration (C) of Lodderomyces elongisporus D is depended on the extracellular K+-concentration (C). The relationship can be described by an equation in the form The function of the natrium ion seem to be to support the utilisation rate of potassium ion at lower extracellular K+-concentration.  相似文献   

3.
D M Gray  C W Gray  R L Ratliff  D A Smith 《Biopolymers》1974,13(11):2265-2272
The buoyant densities of natural and synthetic DNA's can be accurately interrelated if second-neighbor influences are taken into account. We derive the following expressions, based partly on the buoyant densities of six synthetic DNA's, for the buoyant densities ρ (g/cm3) of DNA's having random sequences. In CsCl, and in Cs2SO4, . In these equations, HG is the mole fraction of G : C base pairs in the DNA and the buoyant densities are calculated relative to densities for E. coli DNA of 1.703 and 1.426 (g/cm3) in CsCl and Cs2SO4, respectively.  相似文献   

4.
Age and growth of pearly razorfish Xyrichtys novacula (Labridae) were determined in specimens caught on sandy bottoms by surrounding nets and lines (depth range 5–30 m) between January 2000 and December 2002. The study location was in the central Mediterranean Sea. For this purpose the annual growth increments (annuli) in sagittae were analysed. A total of 470 individuals of X. novacula, ranging from 49 to 200 mm TL (total length), were examined. Conversion between total length and standard length was calculated and represented by the relationship: . Edge analysis on otoliths was carried out to validate seasonality deposition. Seven age‐classes were determined from 0+ to 6+. The linear relationship between maximum otolith length (OL) and TL was summarized in the equation . The estimated parameters of the von Bertalanffy growth function were L = 175.05 mm, k = 0.80 year?1, t0 =?0.73 years and the growth performance index calculated as (Φ = 2.39). The length–weight relationship W = 0.0139 TL2.9326 described an isometric growth for the species in this area.  相似文献   

5.
The dependency of the velocity of biological processes from the temperature is described by the “Law of absolute velocity of biological processes”, which has only the individual parameters energy of activation ΔE, and the universal constant C. The law holds for all biological processes and is expressed by the equation: where C is: .  相似文献   

6.
The alcoholic fermentation of grape juice by a wine yeast was studied batchwise at pH 3.6 and 4.05 to develop kinetic equations relating cell concentration, N, to product concentration, P. In the exponential growth phase where A, B, and C are constants, and μ is the specific growth rate. In the stationary phase, where the cell population is constant, was found to apply. This equation, which incorporates a stoichiometric constant, Pm, predicted correctly the operation of a continuous fermentor at pH 3.6 and at 4.05. To study more fully the effect of alcohol concentration on yeast growth, a continuous fermentor was used in which the grape juice feed was supplemented with pure alcohol. At pH 3.6 the specific growth rate varied as, There was no growth inhibition below an alcohol concentration of 2.6 g./100 cc., but inhibition was complete above 6.85 g./100 cc. This is a modified form of the relation suggested by Hinshelwood.1 The data suggest that growth in batch culture was limited not only by alcohol but also by some other factor, probably a nutritional deficiency.  相似文献   

7.
Growth,yield, and yield components of ethephon-treated corn   总被引:3,自引:0,他引:3  
Field studies were conducted during 1985 and 1986 to study the effect of stage and rate of ethephon application on growth, combine-harvested yield, and yield components of three corn (Zea mays L.) hybrids at two densities. Ethephon was applied at four rates from 0 to 560g ha–1 at three growth stages: tassel elongation (TE 3mm), TE + 6d, and Ear elongation (EE 3mm). The greatest rate of ethephon decreased lodging by 85% in 1985 and 93% in 1986. Reduction in yield at the greatest rate of ethephon was 6% and 2% of the control in 1985 and 1986, respectively. Brace-root rating in 1986 was increased 20%, when comparing the greatest application rate with the control. In the same year, weight per seed was reduced 2%, which was equivalent to the percentage yield reduction. Plant and ear heights generally decreased in a linear fashion with increasing rate of ethephon. The growth stage at the time of ethephon application significantly altered all variables except grain moisture. Grain yield, seed weight, and lodging decreased as ethephon application was delayed. Decrease in seed weight probably caused the yield decrease with delayed application. Stages of application interacted with rate such that ear height was reduced less as ethephon application was delayed. The greatest rate of ethephon applied at the beginning of EE resulted in the best lodging control. However, reduction in lodging did not result in higher yield. Also, ethephon applied at the TE stage mainly affected elongation of internodes below the ear; at the EE stage, elongation of internodes above the ear was affected.  相似文献   

8.
Belkheir  Ali M.  Zhou  Xiaomin  Smith  Donald L. 《Plant and Soil》2001,229(1):41-46
The sub-tropical legume, soybean [Glycine max (L.) Merr.], has lower grain yields at low temperatures, mainly due to reduced nitrogen fixation. The isoflavone genistein has been identified as one of the major compounds in soybean seed and root extracts responsible for inducing the expression of the B. japonicum nod genes. A 2-year field study was conducted in 1997 and 1998 with 11 soybean cultivars recommended for Québec, and representing a range of yield potentials and maturity groups. The objective of this study was to assess the variability among soybean cultivar maturity groups in terms of response to genistein application under Canadian short season and cool-spring conditions. The experiments were organized in a randomized complete block design with three replications. The two genistein treatments included B. japonicum inoculant pre-incubated with 20 m genistein and B. japonicum inoculant only. The inoculants were applied into the furrow at the time of planting. The results of this study showed that genistein pre-incubated B. japonicum increased soybean grain yield and protein content over two years. In 1998, pod number per plant–1 and seed number plant–1 were also clearly increased. When 20 m genistein was applied in 1998, cultivars in the late maturity group had 28 and 70% more shoot and total protein content, respectively, than the early maturity groups with or without genistein, or the late maturity without genistein, in 1998. There was no interaction between genistein application and soybean cultivar in this study, indicating that both early and late maturing cultivars responded similarly to genistein pretreated inocula. Pre-incubation of B. japonicum with genistein can increase N2 fixation potential in short season areas. Key words: Soybean, cultivars, genistein, yield, and yield components  相似文献   

9.
Leaf morphology in the upper canopy of trees tends to be different from that lower down. The effect of long‐term water stress on leaf growth and morphology was studied in seedlings of Metasequoia glyptostroboides to understand how tree height might affect leaf morphology in larger trees. Tree height increases water stress on growing leaves through increased hydraulic resistance to water flow and increased gravitational potential, hence we assume that water stress imposed by soil dehydration will have an effect equivalent to stress induced by height. Seedlings were subjected to well‐watered and two constant levels of long‐term water stress treatments. Drought treatment significantly reduced final needle count, area and mass per area (leaf mass area, LMA) and increased needle density. Needles from water‐stressed plants had lower maximum volumetric elastic modulus (εmax), osmotic potential at full turgor ( and at zero turgor ( than those from well‐watered plants. Palisade and spongy mesophyll cell size and upper epidermal cell size decreased significantly in drought treatments. Needle relative growth rate, needle length and cell sizes were linear functions of the daily average water potential at the time of leaf growth (r2 0.88–0.999). We conclude that water stress alone does mimic the direction and magnitude of changes in leaf morphology observed in tall trees. The results are discussed in terms of various models for leaf growth rate.  相似文献   

10.
Oxygen uptake () and critical oxygen tension (Pcrit) were measured in resting perch Perca fluviatilis that were either fasting or digesting. Digestion caused to double (from 61 to 117 mg O2 kg?1h?1) and was associated with a rise in Pcrit (from 3·4 to 4·9 kPa), showing that the animal's digestive state must be considered when assessing the effect of hypoxia in natural conditions, and when defining optimal oxygen conditions in aquaculture.  相似文献   

11.
Azotobacter vinelandii was grown diazotrophically in sucrose-limited chemostat cultures at either 12, 48, 108, 144 or 192 M dissolved oxygen. Steady state protein levels and growth yield coefficients (Y) on sucrose increased with increasing dilution rate (D). Specific rate of sucrose consumption (q) increased in direct proportion to D. Maintenance coefficients (m) extrapolated from plots of q versus D, as well as from plots of 1/Y versus 1/D exhibited a nonlinear relationship to the dissolved oxygen concentration. Constant maximal theoretical growth yield coefficients (Y G) of 77.7 g cells per mol of sucrose consumed were extrapolated irrespective of differences in ambient oxygen concentration. For comparison, glucose-, as well as acetate-limited cultures were grown at 108 M oxygen. Fairly identical m- and Y G-values, when based on mol of substrate-carbon with glucose and sucrose grown cells, indicated that both substrates were used with the same efficiency. However, acetate-limited cultures showed significantly lower m- and, at comparable, D, higher Y-values than cultures limited by either sucrose or glucose. Substrate concentrations (K s) required for half-maximal growth rates on sucrose were not constant, they increased when the ambient oxygen concentration was raised and, at a given oxygen concentration, when D was decreased. Since biomass levels varied in linear proportion to K s these results are interpreted in terms of variable substrate uptake activity of the culture.Abbreviations D dilution rate - K s substrate concentration required for half maximal growth rate - m maintenance coefficient - q specific rate of substrate consumption - Y growth yield coefficient - Y G maximum theoretical growth yield coefficient  相似文献   

12.
The green micro-algae Chlamydomonas reinhardtiiand Dunaliella tertiolecta were cultivated undermedium-duration square-wave light/dark cycles with acycle time of 15 s. These cycles were used to simulatethe light regime experienced by micro-algae inexternally-illuminated (sunlight) air-lift loopbioreactors with internal draft tube. Biomass yieldin relation to light energy was determined as gprotein per mol of photons (400–700 nm). Between 600and 1200 mol m-2 s-1 the yield at a10/5 s light/dark cycle was equal to the yield atcontinuous illumination. Consequently, provided thatthe liquid circulation time is 15 s, a considerabledark zone seems to be allowed in the interior ofair-lift loop photobioreactors (33% v/v) without lossof light utilization efficiency. However, at a 5/10 slight/dark cycle, corresponding to a 67% v/v darkzone, biomass yield decreased. Furthermore, bothalgae, C. reinhardtii and D. tertiolecta,responded similarly to these cycles with respect tobiomass yield. This was interesting because they werereported to exhibit a different photoacclimationstrategy. Finally, it was demonstrated that D.tertiolecta was much more efficient at low (average)photon flux densities (57–370 mol m-2s-1) than at high PFDs (> 600 mol m-2s-1) and it was shown that D. tertiolectawas cultivated at a sub-optimal temperature (20 °C).  相似文献   

13.
1. A tracer release study was conducted in a macrophyte‐rich stream, the River Lilleaa in Denmark. The objectives of the study were to compare uptake rates per unit area of by primary producers and consumers in macrophyte and non‐macrophyte habitats, estimate whole‐stream uptake rates of and compare this to other stream types, and identify the pathways and estimate the rate at which enters the food web in macrophyte and non‐macrophyte habitats. 2. Macrophyte habitats had four times higher primary uptake rates and an equal uptake rate by primary consumers per unit habitat area as compared to non‐macrophyte habitats. These rates represent the lower limit of potential macrophyte effects because the rates will be highly dependent on macrophyte bed height and mean bed height in the River Lilleaa was low compared to typical bed heights in many lowland streams. Epiphytes accounted for 30% of primary uptake in macrophyte habitats, illustrating a strong indirect effect of macrophytes as habitat for epiphytes. N flux per unit habitat area from primary uptake compartments to primary consumers was four times lower in macrophyte habitats compared to non‐macrophyte habitats, reflecting much greater biomass accrual in macrophyte habitats. Thus, we did not find higher N flux from macrophyte habitats to primary consumers compared to non‐macrophyte habitats. 3. Whole‐stream uptake rate was 447 mgN m?2 day?1. On a habitat‐weighted basis, fine benthic organic matter (FBOM) accounted for 72% of the whole‐stream uptake rate, and macrophytes and epiphytes accounted for 19 and 8%, respectively. 4. We had expected a priori relatively high whole‐stream N uptake in our study stream compared to other stream types mainly due to generally high biomass and the macrophyte’s role as habitat for autotrophic and heterotrophic organisms, but our results did not confirm this. In comparison with other release study streams, we conclude that nutrient concentration is the overall controlling factor for N uptake rates across streams, mostly as a result of high biomass of primary uptake compartments in streams with high nutrient concentrations in general and not in macrophyte streams in particular. 5. Our results indicate that macrophytes play an important role in the longer‐term retention of N and thus a decrease in net downstream transport during the growing season compared to streams without macrophytes, through direct and indirect effects on the stream reach. Direct effects are high uptake efficiency, low turnover rate (partly due to no direct feeding on macrophytes) and high longevity. An indirect effect is increased sedimentation of FBOM in macrophytes compared to non‐macrophyte habitats and streams which possibly also increase denitrification. Increased retention with macrophyte presence would decrease downstream transport during the growing season and thus the N loading on downstream ecosystems.  相似文献   

14.
Information of fine-root biomass and production is critical for quantifying the productivity and carbon cycle of forest ecosystems, and yet our ability to obtain this information especially at a large spatial scale (e.g., regional to global) is extremely limited. Several studies attempted to relate fine-root biomass and production with various aboveground variables that can be measured more easily so that fine-root biomass and production could be estimated at a large spatial scale, but found the correlations were generally weak or non-existed at the stand level. In this study, we tested a new approach: instead of using the conventional way of analysing fine-root biomass at the stand level, we analysed fine-root data at the tree level. Fine-root biomass of overstory trees in stand was first separated from that of understory and standardized to a common fine-root definition of < 2 mm or < 5 mm diameter. Afterwards, we calculated fine-root biomass per tree for a representative tree size of mean basal area for each stand. Statistically significant correlations between the fine-root biomass per tree and the diameter at the ground surface were found for all four boreal and cool temperate spruce, pine, fir and broadleaf forest types, and so allometric equations were developed for each group using a total of n = 212 measurements. The stand-level fine-root biomass of trees estimated using the allometric equations agrees well with the measurements, with r 2 values of 0.64 and 0.57 (n = 171), respectively, for fine-roots < 2 mmand < 5 mm diameter. This study further estimated fine-root production as the product of fine-root turnover rate and fine-root biomass, and determined the turnover rate as a function of fine-root biomass, stand age, and mean annual temperature. The estimates of tree fine-root production agree well with reported values, with r 2 value of 0.53 for < 2 mm and 0.54 for < 5 mm diameter (n = 162) at the stand level.  相似文献   

15.
Summary This paper reports results of a study of root growth, duration of the division cycle, and cell size for different intervals of root length, associated with different phases of growth, namely, from the onset of growth to the achievement of a steady state characterized by a constant rate of growth. The material is roots of Allium cepa.Steady-state kinetics of growth are achieved only when all components of growth reach a constant value. Although the cell flow remains constant from a root length of 8 mm onwards, the steady condition is only observed when the final size of the epidermal cells reaches its maximum and constant value (at about 12 mm of root length).The equation G=24×10-5 \NL is proposed to analyze the growth of Allium roots in its components. G is the growth rate (mm/24 hr), N the number of cells per column in the meristematic ribs, the rate of the cell cycle (the reciprocal of its duration x100), and L the average final size of the epidermal cells (in ).  相似文献   

16.
A thermotolerant yeast species of Lodderomyces elongisporus EH 60 was isolated and physiologically characterized. This yeast possesses a high specific growth rate with μmax = 0.61 h?1. The dependence of the specific growth rate and cell yield on temperature, dilution rate, sucrose concentration and pH-value is investigated. Sucrose concentrations greater than 10 g/l inhibit the growth velocity. The specific growth rate μ can be calculated by a simple combination equation in the form: . The total optimum values for a sucrose-based continuous growth process with regard to the optimum cell yeild are: YS = 0.50 g DM/g S. Topt. = 38,6 °C and Dopt. = 0,35 h?1. The function YS = f(D, T) is represented by a total model.  相似文献   

17.
Summary The ability ofCandida guillermondii to produce xylitol from xylose and to ferment individual non xylose hemicellulosic derived sugars was investigated in microaerobic conditions. Xylose was converted into xylitol with a yield of 0,63 g/g and ethanol was produced in negligible amounts. The strain did not convert glucose, mannose and galactose into their corresponding polyols but only into ethanol and cell mass. By contrast, fermentation of arabinose lead to the formation of arabitol. On D-xylose medium,Candida guillermondii exhibited high yield and rate of xylitol production when the initial sugar concentration exceeded 110 g/l. A final xylitol concentration of 221 g/l was obtained from 300 g/l D-xylose with a yield of 82,6% of theoretical and an average specific rate of 0,19 g/g.h.Nomenclature Qp average volumetric productivity of xylitol (g xylitol/l per hour) - qp average specific productivity of xylitol (g xylitol/g of cells per hour) - So initial xylose concentration (g/l) - tf incubation time (hours) - YP/S xylitol yield (g of xylitol produced/g of xylose utilized) - YE/S ethanol yield (g of ethanol produced/g of substrate utilized) - YX/S cells yield (g of cells/g of substrate utilized) - specific growth rate coefficient (h–1) - max maximum specific growth rate coefficient (h–1)  相似文献   

18.
According to the semelparity hypothesis, iteroparous insects should provide either no maternal care or less care than related semelparous species. We present field data on reproductive output and maternal care in the Southeast Asian treehopper Pyrgauchenia tristaniopsis (Mt. Kinabalu, Borneo) relevant to a preliminary assessment of the hypothesis. In a mark‐recapture experiment, more females than expected under semelparity were found to have oviposited a second clutch (37%). Female longevity was a of 75 d. Both these estimates were highly conservative. Oviposition was successive resulting in a of 46 eggs per clutch. Females provided care for eggs only, occasionally scraping their legs along the sides of the clutch apparently attempting to deter Brachygrammatella sp. egg parasitoids (Trichogrammatidae). Females straddled their clutch for a of 27 d, i.e. until 8 d after the beginning of first instar hatching. First instars hatched successively over a period of 11 d. When a female deserted her clutch, it contained about 37% yet unhatched eggs. Egg‐guarding effectively reduced egg mortality: the earlier a female was experimentally removed from her clutch the higher the egg mortality. Displacement experiments demonstrated that egg‐guarding is a behaviour actively maintained despite disturbances and specifically directed towards the egg clutch but not to the feeding site. We interpret our findings as being in accordance with the weaker claim of the semelparity hypothesis, i.e. the iteroparous P. tristaniopsis provided less maternal care than semelparous membracid species. Continued female feeding is discussed as a mechanism to display some level of care despite iteroparity.  相似文献   

19.
A simulation model was written to compute the time-kinetics of turgor pressure, P, change in Chara corallina during cell pressure probe experiments. The model allowed for the contribution of a membrane plus zero, one, or two unstirred layers of any desired thickness. The hypothesis that a cell with an unstirred layer is a composite membrane that will follow the same kind of kinetics with or without unstirred layers was tested. Typical ‘osmotic pulse’ experiments yield biphasic curves with minimum or maximum pressures, Pmin(max), at time tmin(max) and a solute exponential decay with halftime . These observed data were then used to compute composite membrane properties, namely the parameters Lp = the hydraulic conductance, σ = reflection coefficient and Ps = solute permeability using theoretical equations. Using the simulation model, it was possible to fit an experimental data set to the same values of Pmin(max), tmin(max) and incorporating different, likely values of unstirred layer thickness, where each thickness requires a unique set of plasmalemma membrane values of Lp, σ and Ps. We conclude that it is not possible to compute plasmalemma membrane properties from cell pressure probe experiments without independent knowledge of the unstirred layer thickness.  相似文献   

20.
Miscanthus × giganteus is a C4 perennial grass that shows great potential as a high‐yielding biomass crop. Scant research has been published that reports M. × giganteus growth and biomass yields in different environments in the United States. This study investigated the establishment success, plant growth, and dry biomass yield of M. × giganteus during its first three seasons at four locations (Urbana, IL; Lexington, KY; Mead, NE; Adelphia, NJ) in the United States. Three nitrogen rates (0, 60, and 120 kg ha?1) were applied at each location each year. Good survival of M. × giganteus during its first winter was observed at KY, NE, and NJ (79–100%), and poor survival at IL (25%), due to late planting and cold winter temperatures. Site soil conditions, and growing‐season precipitation and temperature had the greatest impact on dry biomass yield between season 2 (2009) and season 3 (2010). Ideal 2010 weather conditions at NE resulted in significant yield increases (< 0.0001) of 15.6–27.4 Mg ha?1 from 2009 to 2010. Small yield increases in KY of 17.1 Mg ha?1 in 2009 to 19.0 Mg ha?1 in 2010 could be attributed to excessive spring rain and hot dry conditions late in the growing season. Average M. ×giganteus biomass yields in NJ decreased from 16.9 to 9.7 Mg ha?1 between 2009 and 2010 and were related to hot dry weather, and poor soil conditions. Season 3 yields were positively correlated with end‐of‐season plant height () and tiller density (). Nitrogen fertilization had no significant effect on plant height, tiller density, or dry biomass yield at any of the sites during 2009 or 2010.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号