首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.

We examined the effects of ornithine on the sleep-wake cycle by monitoring the electroencephalo-gram, electromyogram, and locomotor activity of freely moving mice after oral administration of it at lights-off time (18:00). Ornithine (1.0 and 3.0 g/kg of body weight) increased the amount of non-rapid eye movement (non-REM, NREM) sleep for 2 h after its administration, with a peak at 60 min post administration, to 164% and 198%, respectively, of that of the vehicle-administered mice, without changing the amount of REM sleep. The administration of ornithine at a lower dose (0.3 g/kg of body weight) did not increase the amount of NREM sleep compared with the vehicle administration. Ornithine did not affect the power spectrum density of NREM sleep but increased the number of episodes of wakefulness and NREM sleep and that of transitions between wakefulness and NREM sleep, and decreased the mean duration of wake episodes in a dose-dependent manner for 2 h after the oral administration. These results indicate that ornithine increased the amount of NREM sleep without reducing the power spectrum density of NREM sleep.

  相似文献   

2.
Immune signaling is known to regulate sleep. miR-155 is a microRNA that regulates immune responses. We hypothesized that miR-155 would alter sleep regulation. Thus, we investigated the potential effects of miR-155 deletion on sleep-wake behavior in adult female homozygous miR-155 knockout (miR-155KO) mice and littermate controls (WT). Mice were implanted with biotelemetry units and EEG/EMG biopotentials were recorded continuously for three baseline days. miR-155KO mice had decreased bouts of NREM and REM sleep compared with WT mice, but no differences were observed in the length of sleep bouts or total time spent in sleep-wake states. Locomotor activity and subcutaneous temperature did not differ between WT and miR-155KO mice. Following baseline recordings, mice were sleep-deprived during the first six hours of the rest phase (light phase; ZT 0–6) followed by an 18 h recovery period. There were no differences between groups in sleep rebound (% sleep and NREM δ power) after sleep deprivation. Following recovery from sleep deprivation, mice were challenged with a somnogen (viz., lipopolysaccharide (LPS)) one hour prior to the initiation of the dark (active) phase. Biopotentials were continuously recorded for the following 24 h, and miR-155KO mice displayed increased wakefulness and decreased NREM sleep during the dark phase following LPS injection. Additionally, miR-155KO mice had reduced EEG slow-wave responses (0.5–4 Hz) compared to WT mice. Together, our findings indicate that miR-155 deletion attenuates the somnogenic and EEG delta-enhancing effects of LPS.

Abbreviations: ANOVA: analysis of variance; EEG: electroencephalogram; EMG: electromyogram; h: hour; IL-1: interleukin-1; IL-6: interleukin-6; IP: intra-peritoneal; LPS: lipopolysaccharide; miR/miRNA: microRNA; miR-155KO: miR-155 knockout; NREM: non-rapid eye movement; REM: rapid eye movement; TNF: tumor necrosis factor; SWS: slow-wave sleep; WT: wild-type.  相似文献   


3.
The Djungarian hamster (Phodopus sungorus) is a markedly photoperiodic rodent which exhibits daily torpor under short photoperiod. Normative data were obtained on vigilance states, electroencephalogram (EEG) power spectra (0.25–25.0 Hz), and cortical temperature (TCRT) under a 168 h light-dark schedule, in 7 Djungarian hamsters for 2 baseline days, 4 h sleep deprivation (SD) and 20 h recovery.During the baseline days total sleep time amounted to 59% of recording time, 67% in the light period and 43% in the dark period. The 4 h SD induced a small increase in the amount of non-rapid eye movement (NREM) sleep and a marked increase in EEG slow-wave activity (SWA; mean power density 0.75–4.0 Hz) within NREM sleep in the first hours of recovery. TCRT was lower in the light period than in the dark period. It decreased at transitions from either waking or rapid eye movement (REM) sleep to NREM sleep, and increased at the transition from NREM sleep to waking or REM sleep. After SD, TCRT was lower in all vigilance states.In conclusion, the sleep-wake pattern, EEG spectrum, and time course of TCRT in the Djungarian hamster are similar to other nocturnal rodents. Also in the Djungarian hamster the time course of SWA seems to reflect a homeostatically regulated process as was formulated in the two-process model of sleep regulation.Abbreviations EEG electroencephalogram - EMG electromyogram - N NREM sleep - NREM non-rapid eye movement - R REM sleep - REM rapid eye movement - SD sleep deprivation - SWA slow-wave activity - TCRT cortical temperature - TST total sleep time - VS vigilance state - W waking  相似文献   

4.
GABA is the major inhibitory neurotransmitter in the mammalian central nervous system that has been strongly implicated in the regulation of sleep. GABA transporter subtype 1 (GAT1) constructs high affinity reuptake sites for GABA and regulates GABAergic transmission in the brain. However, the role of GAT1 in sleep-wake regulation remains elusive. In the current study, we characterized the spontaneous sleep-wake cycle and responses to sleep deprivation in GAT1 knock-out (KO) mice. GAT1 KO mice exhibited dominant theta-activity and a remarkable reduction of EEG power in low frequencies across all vigilance stages. Under baseline conditions, spontaneous rapid eye movement (REM) sleep of KO mice was elevated both during the light and dark periods, and non-REM (NREM) sleep was reduced during the light period only. KO mice also showed more state transitions from NREM to REM sleep and from REM sleep to wakefulness, as well as more number of REM and NREM sleep bouts than WT mice. During the dark period, KO mice exhibited more REM sleep bouts only. Six hours of sleep deprivation induced rebound increases in NREM and REM sleep in both genotypes. However, slow wave activity, the intensity component of NREM sleep was briefly elevated in WT mice but remained completely unchanged in KO mice, compared with their respective baselines. These results indicate that GAT1 plays a critical role in the regulation of REM sleep and homeostasis of NREM sleep.  相似文献   

5.
Study Objectives: Increased stress responsivity and a longer-lasting glucocorticoid increase are common findings in aging studies. Increased cortisol levels at the circadian nadir also accompany aging. We used 24h free urine cortisol to assess these age changes in healthy seniors. We hypothesized that free cortisol levels would explain individual differences in age-related sleep impairments. Design: The study compared sleep, cortisol, and sleep-cortisol correlations under baseline and “stress” conditions in men and women. Setting: Subjects were studied in the General Clinical Research Center under baseline conditions and a mildly stressful procedure (24h indwelling intravenous catheter placement). Participants: Eighty-eight healthy, nonobese subjects (60 women and 28 men) from a large study of successful aging participated in the study. Mean ages were 70.6 (±6.2) and 72.3 (±5.7) years for women and men, respectively. Measurements: The 24h urines were collected for cortisol assay (radioimmunoassay [RIA]); blood was sampled at three diurnal time points for assay (enzyme-linked immunosorbent assay [ELISA]) of interleukin-1 (IL-1) beta; sleep architecture and sleep electroencephalograms (EEGs) were analyzed (after an adaptation and screening night) on baseline and stress nights via polysomnography and EEG power spectral analysis. Results: Healthy older women and men with higher levels of free cortisol (24h urine level) under a mild stress condition had impaired sleep (lower sleep efficiency; fewer minutes of stages 2, 3, and 4 sleep; more EEG beta activity during non–rapid eye movement sleep [NREM] sleep). Similar results were obtained when stress reactivity measures were used (cortisol and sleep values adjusted for baseline values), but not when baseline values alone were used. Gender differences were apparent: Men had higher levels of free urine cortisol in both baseline and mild stress conditions. Cortisol and sleep correlated most strongly in men; cortisol stress response levels explained 36% of the variance in NREM sleep stress responses. In women, but not men, higher cortisol was also associated with earlier time of arising and less REM sleep. Higher cortisol response to stress was associated with increased circulating levels of IL-1β, explaining 24% of the variance in a subset of women. Conclusion: These results indicate that free cortisol (as indexed by 24h urine values) can index responses to mild stress in healthy senior adults, revealing functional correlations (impaired sleep, earlier times of arising, more EEG beta activity during sleep, more IL-1β) and gender differences. (Chronobiology International, 17(3), 391–404, 2000)  相似文献   

6.
Sleep EEG spectral analysis in a diurnal rodent:Eutamias sibiricus   总被引:2,自引:0,他引:2  
1. Sleep was studied in the diurnal rodent Eutamias sibiricus, chronically implanted with EEG and EMG electrodes. Analysis of the distribution of wakefulness, nonrapid eye movement (NREM) sleep, and rapid eye movement (REM) sleep over the 24 h period (LD 12:12) showed that total sleep time was 27.5% of recording time during the 12 h light period and 74.4% during the 12 h dark period. Spectral analysis of the sleep EEG revealed a progressive decay in delta power density in NREM sleep during darkness. Power density of the higher frequencies increased at the end of darkness. Power density of the higher frequencies decreased and that of the lower frequencies increased during light. 2. Analysis of the distribution of vigilance states under three different photoperiods (LD 18:6; 12:12; 6:18) revealed that changes in daylength mainly resulted in a redistribution of sleep and wakefulness over light and darkness. Under long days the percentage of sleep during light was enhanced. The time course of delta power density in NREM sleep was characterized by a long rising part and a short falling part under long days, while a reversed picture emerged under short days. As a consequence, the power density during days. As a consequence, the power density during light was relatively high under long days. 3. After 24 h sleep deprivation by forced activity, no significant changes in the percentages of wakefulness and NREM were observed, whereas REM sleep was slightly enhanced. EEG power density, however, was significantly increased by ca. 50% in the 1.25-10.0 Hz range in the first 3 h of recovery sleep. This increase gradually decayed over the recovery night. 4. The same 24 h sleep deprivation technique led to a ca. 25% increase in oxygen consumption during recovery nights. While the results of the EEG spectral analysis are compatible with the hypothesis that delta power density reflects the 'intensity' of NREM sleep as enhanced by prior wakefulness and reduced by prior sleep, such enhanced sleep depth after sleep deprivation is not associated with reduced energy expenditure as might be anticipated by some energy conservation hypotheses on sleep function.  相似文献   

7.
Summary Sleep was studied by continuous 24-h recordings in adult male Syrian hamsters, chronically implanted with EEG and EMG electrodes. Three vigilance states were determined using visual scoring and EEG power spectra (0.25–25 Hz) computed for 4-s episodes.The effects of two methods of total sleep deprivation (SD) were examined on vigilance states and the EEG power spectrum. The animals were subjected to 24 h SD by: (1) forced locomotion in a slowly rotating drum, (2) gentle handling whenever the hamsters attempted a sleeping posture. In addition, the hamsters were subjected to SD by handling during the first 3 h of the L period.Sleep predominated in the L period (78.2% of 12 h) and the D period (51.2%). The power spectra of the 3 vigilance states were similar during the L and D period. In NREM sleep, power density values in the low frequency range (0.25–6.0 Hz) exceeded those of REM sleep and W by a maximum factor of 8.3 and 2.8, respectively. At frequencies above 16 Hz, NREM and REM sleep power density values were significantly lower than during W. A progressive decrease in power density for low EEG frequencies (0.25–7 Hz) during NREM sleep was seen in the course of the L period. Power density values of higher frequencies (8–25 Hz) increased at the end of the L period and remained high during the first hours of the D period.The effect of prolonged SD on vigilance states and EEG spectra was similar by both methods and strikingly small compared to similar results in rats. In contrast, 3 h SD induced a large and more prolonged effect. The similarities and differences of sleep and sleep regulation are summarized for the hamster, rat and man.Abbreviations EEG electroencephalogram - LD light dark - REM rapid eye movements - NREM sleep non REM sleep - W waking - SD sleep deprivation - TST total sleep time - L light - D dark  相似文献   

8.
9.
10.
Evidence suggests that IL-1beta is involved in promoting physiological nonrapid eye movement (NREM) sleep. IL-1beta has also been proposed to mediate NREM sleep enhancement induced by bacteria or their components. Mature and biologically active IL-1beta is cleaved from an inactive precursor by a cysteinyl aspartate-specific protease (caspase)-1. This study aimed to test the hypothesis that inhibition in brain of the cleavage of biologically active IL-1beta will reduce in rats both spontaneous NREM sleep and NREM sleep enhancement induced by the peripheral administration of components of the bacterial cell wall. To test this hypothesis, rats were intracerebroventricularly administered the caspase-1 inhibitor Ac-Tyr-Val-Ala-Asp chloromethyl ketone (YVAD; 3, 30, 300, and 1,500 ng) or were pretreated intracerebroventricularly with YVAD (300 ng) and then intraperitoneally injected with the gram-negative bacterial cell wall component LPS (250 microg/kg). Subsequent sleep-wake behavior was determined by standard polygraphic recordings. YVAD administration at the beginning of the light phase of the light-dark cycle significantly reduced time spontaneously spent in NREM sleep during the first 12 postinjection hours. YVAD pretreatment also completely prevented NREM sleep enhancement induced by peripheral LPS administration at the beginning of the dark phase. These results, in agreement with previous evidence, support the involvement of brain IL-1beta in physiological promotion of NREM sleep and in mediating NREM sleep enhancement induced by peripheral immune challenge.  相似文献   

11.
A salient feature of mammalian sleep is the alternation between rapid eye movement (REM) and non-REM (NREM) sleep. However, how these two sleep stages influence each other and thereby regulate the timing of REM sleep episodes is still largely unresolved. Here, we developed a statistical model that specifies the relationship between REM and subsequent NREM sleep to quantify how REM sleep affects the following NREM sleep duration and its electrophysiological features in mice. We show that a lognormal mixture model well describes how the preceding REM sleep duration influences the amount of NREM sleep till the next REM sleep episode. The model supports the existence of two different types of sleep cycles: Short cycles form closely interspaced sequences of REM sleep episodes, whereas during long cycles, REM sleep is first followed by an interval of NREM sleep during which transitions to REM sleep are extremely unlikely. This refractory period is characterized by low power in the theta and sigma range of the electroencephalogram (EEG), low spindle rate and frequent microarousals, and its duration proportionally increases with the preceding REM sleep duration. Using our model, we estimated the propensity for REM sleep at the transition from NREM to REM sleep and found that entering REM sleep with higher propensity resulted in longer REM sleep episodes with reduced EEG power. Compared with the light phase, the buildup of REM sleep propensity was slower during the dark phase. Our data-driven modeling approach uncovered basic principles underlying the timing and duration of REM sleep episodes in mice and provides a flexible framework to describe the ultradian regulation of REM sleep in health and disease.  相似文献   

12.
Sleep homeostasis and circadian rhythmicity interact to determine the timing of behavioral activity. Circadian clock genes contribute to circadian rhythmicity centrally and in the periphery, but some also have roles within sleep regulation. The clock gene Period3 (Per3) has a redundant function within the circadian system and is associated with sleep homeostasis in humans. This study investigated the role of PER3 in sleep/wake activity and sleep homeostasis in mice by recording wheel-running activity under baseline conditions in wild-type (WT; n = 54) and in PER3-deficient (Per3(-/-); n = 53) mice, as well as EEG-assessed sleep before and after 6 h of sleep deprivation in WT (n = 7) and Per3(-/-) (n = 8) mice. Whereas total activity and vigilance states did not differ between the genotypes, the temporal distribution of wheel-running activity, vigilance states, and EEG delta activity was affected by genotype. In Per3(-/-) mice, running wheel activity was increased, and REM sleep and NREM sleep were reduced in the middle of the dark phase, and delta activity was enhanced at the end of the dark phase. At the beginning of the baseline light period, there was less wakefulness and more REM and NREM sleep in Per3(-/-) mice. Per3(-/-) mice spent less time in wakefulness and more time in NREM sleep in the light period immediately after sleep deprivation, and REM sleep accumulated more slowly during the recovery dark phase. These data confirm a role for PER3 in sleep-wake timing and sleep homeostasis.  相似文献   

13.
Megirian, David, Jacek Dmochowski, and Gaspar A. Farkas. Mechanism controlling sleep organization ofthe obese Zucker rat. J. Appl.Physiol. 84(1): 253-256, 1998.We tested thehypothesis that the obese (fa/fa)Zucker rat has a sleep organization that differs from that of leanZucker rats. We used the polygraphic technique to identify and toquantify the distribution of the three main states of the rat:wakefulness (W), non-rapid-eye-movement (NREM), and rapid-eye-movement(REM) sleep states. Assessment of states was made with light present(1000-1600), at the rats thermoneutral temperature of 29°C.Obese rats, compared with lean ones, did not show significantdifferences in the total time spent in the three main states. Whereasthe mean durations of W and REM states did not differ statistically,that of NREM did (P = 0.046). However,in the obese rats, the frequencies of switching from NREM sleep to W,which increased, and from NREM to REM sleep, which decreased, werestatistically significantly different(P = 0.019). Frequency of switchingfrom either REM or W state was not significantly different. We concludethat sleep organization differs between lean and obese Zucker rats andthat it is due to a disparity in switching from NREM sleep to either Wor REM sleep and the mean duration of NREM sleep.

  相似文献   

14.
Recent epidemiological, clinical, and experimental studies have demonstrated important links between sleep duration and architecture, circadian rhythms, and metabolism, although the genetic pathways that interconnect these processes are not well understood. Leptin is a circulating hormone and major adiposity signal involved in long-term energy homeostasis. In this study, we tested the hypothesis that leptin deficiency leads to impairments in sleep-wake regulation. Male ob/ob mice, a genetic model of leptin deficiency, had significantly disrupted sleep architecture with an elevated number of arousals from sleep [wild-type (WT) mice, 108.2 +/- 7.2 vs. ob/ob mice, 148.4 +/- 4.5, P < 0.001] and increased stage shifts (WT, 519.1 +/- 25.2 vs. ob/ob, 748.0 +/- 38.8, P < 0.001) compared with WT mice. Ob/ob mice also had more frequent, but shorter-lasting sleep bouts compared with WT mice, indicating impaired sleep consolidation. Interestingly, ob/ob mice showed changes in sleep time, with increased amounts of 24-h non-rapid eye movement (NREM) sleep (WT, 601.5 +/- 10.8 vs. ob/ob, 669.2 +/- 13.4 min, P < 0.001). Ob/ob mice had overall lower body temperature (WT, 35.1 +/- 0.2 vs. ob/ob, 33.4 +/- 0.2 degrees C, P < 0.001) and locomotor activity counts (WT, 25125 +/- 2137 vs. ob/ob, 5219 +/- 1759, P < 0.001). Ob/ob mice displayed an attenuated diurnal rhythm of sleep-wake stages, NREM delta power, and locomotor activity. Following sleep deprivation, ob/ob mice had smaller amounts of NREM and REM recovery sleep, both in terms of the magnitude and the duration of the recovery response. In combination, these results indicate that leptin deficiency disrupts the regulation of sleep architecture and diurnal rhythmicity.  相似文献   

15.
The hypnogenic properties of cannabis have been recognized for centuries, but endogenous cannabinoid (endocannabinoid) regulation of vigilance states is poorly characterized. We report findings from a series of experiments in mice measuring sleep with polysomnography after various systemic pharmacological manipulations of the endocannabinoid system. Rapid, unbiased scoring of vigilance states was achieved using an automated algorithm that we devised and validated. Increasing endocannabinoid tone with a selective inhibitor of monoacyglycerol lipase (JZL184) or fatty acid amide hydrolase (AM3506) produced a transient increase in non-rapid eye movement (NREM) sleep due to an augmentation of the length of NREM bouts (NREM stability). Similarly, direct activation of type 1 cannabinoid (CB1) receptors with CP47,497 increased NREM stability, but both CP47,497 and JZL184 had a secondary effect that reduced NREM sleep time and stability. This secondary response to these drugs was similar to the early effect of CB1 blockade with the antagonist/inverse agonist AM281, which fragmented NREM sleep. The magnitude of the effects produced by JZL184 and AM281 were dependent on the time of day this drug was administered. While activation of CB1 resulted in only a slight reduction in gamma power, CB1 blockade had dramatic effects on broadband power in the EEG, particularly at low frequencies. However, CB1 blockade did not significantly reduce the rebound in NREM sleep following total sleep deprivation. These results support the hypothesis that endocannabinoid signaling through CB1 is necessary for NREM stability but it is not necessary for sleep homeostasis.  相似文献   

16.
Consciousness is now considered a primary function and activity of the brain itself. If so, consciousness is simply the brain's interpretation and integration of all the information made available to it at any given time. On the assumption that the brain is active across all states of being (wakefulness, REM sleep, and NREM sleep), this article proposes that dreaming and hallucinations represent variations on the same theme. Under usual circumstances during wakefulness, the brain ignores internally generated activity and attends to environmental sensory stimulation. During sleep, dreaming occurs because the brain attends to endogenously generated activity. In unusual settings, such as sleep-deprivation, sensory deprivation, or medication or drug ingestion, the brain attends to exogenous and endogenous activities simultaneously, resulting in hallucinations, or wakeful dreaming. This concept is supported by numerous neurologic conditions and syndromes that are associated with hallucinations.  相似文献   

17.
A series of naphthoquinones based on the naphtho[2,3-b]furan-4,9-dione skeleton such as (−)-5-hydroxy-2-(1′-hydoxyethyl)naphtho[2,3-b]furan-4,9-dione (1) and its positional isomer, (−)-8-hydroxy-2-(1′-hydoxyethyl)naphtho[2,3-b]furan-4,9-dione (2), which are secondary metabolites found in the inner bark of Tabebuia avellanedae, were stereoselectively synthesized and their biological activities were evaluated in conjunction with those of their corresponding enantiomers. Compound 1 exhibited potent antiproliferative effect against several human tumor cell lines, but its effect against some human normal cell lines was much lower than that of mitomycin. On the other hand, its enantiomer (R)-1 was less active toward the above tumor cell lines than 1. The antiproliferative effect of 2 against all tumor cell lines was significantly reduced. These results indicated the presence of the phenolic hydroxy group at C-5 is of great important for increasing antiproliferative effect. In addition, 1 also showed higher cancer chemopreventive activity than 2, while there were no significant differences between 1 and 2 in antimicrobial activity. Both compounds displayed modest antifungal and antibacterial activity (Gram-positive bacteria), whereas they were inactive against Gram-negative bacteria.  相似文献   

18.
We recorded sleep electroencephalogram longitudinally across ages 9-18 yr in subjects sleeping at home. Recordings were made twice yearly on 4 consecutive nights: 2 nights with the subjects maintaining their ongoing school-night schedules, and 2 nights with time in bed extended to 12 h. As expected, school-night total sleep time declined with age. This decline was entirely produced by decreasing non-rapid eye movement (NREM) sleep. Rapid eye movement (REM) sleep durations increased slightly but significantly. NREM and REM sleep durations also exhibited different age trajectories when sleep was extended. Both durations exceeded those on school-night schedules. However, the elevated NREM duration did not change with age, whereas REM durations increased significantly. We interpret the adolescent decline in school-night NREM duration in relation to our hypothesis that NREM sleep reverses changes produced in plastic brain systems during waking. The "substrate" produced during waking declines across adolescence, because synaptic elimination decreases the intensity (metabolic rate) of waking brain activity. Declining substrate reduces both NREM intensity (i.e., delta power) and NREM duration. The absence of a decline in REM sleep duration on school-night sleep and its age-dependent increase in extended sleep pose new challenges to understanding its physiological role. Whatever their ultimate explanation, these robust findings demonstrate that the two physiological states of human sleep respond differently to the maturational brain changes of adolescence. Understanding these differences should shed new light on both brain development and the functions of sleep.  相似文献   

19.
A series of compounds containing the nitrobenzene and sulfonamido moieties were synthesized and their leishmanicidal effect was assessed in vitro against Leishmania infantum promastigotes. Among the compounds evaluated, the p-nitrobenzenesulfonamides 4Aa and 4Ba, and the p-nitroaniline 5 showed significant activity with a good selectivity index. In a Balb/c mice model of L. Infantum, administration of compounds 4Aa, 4Ba or 5 (5 mg/kg/day for 10 days, injected ip route) led to a clear-cut parasite burden reduction (ca. 99%). In an attempt to elucidate their mechanism of action, the DNA interaction of 4Aa and 5 was investigated by means of viscosity studies, thermal denaturation and nuclease activity assay. Both compounds showed nuclease activity in the presence of copper salt. The results suggest that compounds 4Aa, 4Ba and 5 represent possible candidates for drug development in the therapeutic control of leishmaniasis.  相似文献   

20.
The crude product of deamination of the commercially available -homoserine was acetylated and the 2-O-acetyl-3-deoxy- -glycero-tetronolactone (18) formed was used to N-acylate methyl perosaminide (methyl 4-amino-4,6-dideoxy-α- -mannopyranoside, 12) and its 2,3-O-isopropylidene derivative. The major product isolated from the reaction was the crystalline methyl 4-(4-O-acetyl-3-deoxy- -glycero-tetronamido)-4,6-dideoxy-α- -mannopyranoside (1, 70–75%) resulting from acetyl group migration in the initially formed 2'-O-acetyl derivative. O-Deacetylation of 1 gave the title amide 2. Compound 2, obtained crystalline for the first time, was fully characterized, and its crystal structure was determined. Deoxytetronamido derivatives diastereomeric with 1 and 2, respectively, were obtained by the acylation of 12 with 2-O-acetyl-3-deoxy- -glycero-tetronolactone (prepared from -homoserine), and subsequent deacetylation. Structures of several byproducts of the reaction of 12 with 18 have been deduced from their spectral characteristics. Since these byproducts were various O-acetyl derivatives of 2, the title compound could be obtained in ≈ 90% yield by deacetylating (Zemplén) the crude mixture of N-acylation products, followed by chromatography.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号