首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Differential and sucrose density gradient centrifugation established that about 80% of the total arginase activity (EC 3.5.3.1) in cotyledons of germinating broad bean seeds (Vicia faba L.) was present in the mitochondrial fraction. The mitochondrial arginase activity was enhanced considerably by exposure to osmotic shock, by freezing and thawing, or by Triton X-100 treatment. About 10% of the total arginase activity was recovered from the 40,000g supernatant fraction. During seed maturation, arginase activity in the cotyledons decreased to about one-third of its maximal activity, while increasing over 10-fold during subsequent germination. The time courses of mitochondrial arginase, succinate oxidase, and succinate dehydrogenase activities differed considerably during germination.  相似文献   

2.
Fractionation of cell organelles of nitrogen-fixing nodules of cowpea (Vigna unguiculata L. Walp) by discontinuous and continuous sucrose density centrifugation indicated that starch-containing plastids possessed the complete pathway for purine nucleotide synthesis together with significant activities of some other enzymes associated with the provision of substrates in purine synthesis; triosephosphate isomerase (EC 5.3.1.1), NADH-glutamate synthase (EC 2.6.1.53), aspartate aminotransferase (EC 2.6.1.1), phosphoglycerate oxidoreductase (EC 1.1.1.95), and methylene tetrahydrofolate oxidoreductase (EC 1.5.1.5). Enzymes of purine oxidation, xanthine oxidoreductase (EC 1.2.3.2), and urate oxidase (EC 1.7.3.3) were recovered in the soluble fraction; glutamine synthetase (EC 6.3.1.2) occurred in bacteroids and in the cytosol. Intact, infected (bacteroid-containing) and uninfected cells were prepared by enzymatic maceration of the central zone of the nodule and partially separated by centrifugation on discontinuous sucrose gradients. Glutamine synthetase was largely restricted to infected cells whereas plastid enzymes, de novo purine synthesis, and urate oxidase were present in both cell types. Although the levels of all enzymes assayed were higher in infected cells, both cell types possessed the necessary enzyme complement for ureide formation. A model for the cellular and subcellular organization of nitrogen metabolism and the transport of nitrogenous solutes in cowpea nodules is proposed.  相似文献   

3.
Mitochondrial adenosine triphosphatase isolated from a double mutant of Saccharomyces cerevisiae lacking cytochrome b apoprotein and subunit II of cytochrome oxidase does not contain the mitochondrial translation product (approximate molecular weight, 32,000) previously suggested to be a subunit of the enzyme complex.  相似文献   

4.
Pathways of carbohydrate metabolism in the adults of Schistosomatium douthitti: were investigated. Histochemical reactions for adenosinetriphosphatase (EC 3.6.1.3) glucose 6-phosphate dehydrogenase (EC 1.1.1.49), phosphogluconate dehydrogenase (EC 1.1.1.43), glycerol-3-phosphate dehydrogenase (EC 1.1.1.8), lactate dehydrogenase (EC 1.1.1.27, 1.1.2.3) isocitrate dehydrogenase (EC 1.1.1.41), succinate dehydrogenase (EC 1.3.99.1), malate dehydrogenase (EC 1.1.1.37), cytochrome oxidase (EC 1.9.3.1), and adenosine triphosphatase (EC 3.6.1.3) were found in the adult worms. Glycogen deposits occurred in the parenchyma.Low oxygen tension immobilized the worms. Tartar emetic, sodium cyanide reduced adult motility in vitro. Manometric experiments demonstrated a respiratory quotient of approximately one. Oxygen uptake was completely inhibited by tartar emetic and partially inhibited by sodium fluoracetate and sodium cyanide. Inhibition by sodium fluoroacetate was partially counteracted by citric acid in the medium.Adults demonstrated an oxygen debt following anaerobic incubation. A maximum of 52% of the glucose consumed under aerobic conditions was excreted as lactic acid. Under anaerobic conditions the amount of lactic acid excreted increased. Acids other than lactic acid were also released. Results indicate that although glycolysis is the major pathway, two additional aerobic pathways also exist, one which is cyanide sensitive and the other cyanide insensitive.  相似文献   

5.
Adenosine triphosphatase activity stimulated by Mg2+ was greater in muscle mitochondria of fish infected with larval Anisakis simplex nematodes than in uninfected fish. When muscle mitochondria were isolated in a sucrose ethylene-glycol bis(beta-aminoethyl ether)N,N'-tetraacetic acid medium from fresh uninfected fish, they were loosely coupled, and their adenosine triphosphatase activity was comparable to that of mitochondria from rat tissue. Activity in infected fish was dose dependent, increasing with the number of worms per fish. Excretory secretory products or a cytoplasmic fraction of anisakines, when incubated with coupled rat mitochondria, also caused adenosine triphosphatase activity to increase. Storage of fish flesh caused an increase in adenosine triphosphatase activity, but such aging was not significant until 5 and 10 days after death in refrigerated and frozen samples, respectively. The Mg2+ stimulated adenosine triphosphatase activity of muscle mitochondria can be used to estimate the number of nematodes per market fish. The type of medium used to isolate the mitochondria is crucial in such studies; an ionic medium with Nagarse proteinase was optimal for fish muscle mitochondria.  相似文献   

6.
1. Administration of ethanol (14g/day per kg) for 21–26 days to rats increases the ability of the animals to metabolize ethanol, without concomitant changes in the activities of liver alcohol dehydrogenase or catalase. 2. Liver slices from rats chronically treated with ethanol showed a significant increase (40–60%) in the rate of O2 consumption over that of slices from control animals. The effect of uncoupling agents such as dinitrophenol and arsenate was completely lost after chronic treatment with ethanol. 3. Isolated mitochondria prepared from animals chronically treated with ethanol showed no changes in state 3 or state 4 respiration, ADP/O ratio, respiratory control ratio or in the dinitrophenol effect when succinate was used as substrate. With β-hydroxybutyrate as substrate a small but statistically significant decrease was found in the ADP/O ratio but not in the other parameters or in the dinitrophenol effect. Further, no changes in mitochondrial Mg2+-activated adenosine triphosphatase, dinitrophenol-activated adenosine triphosphatase or in the dinitrophenol-activated adenosine triphosphatase/Mg2+-activated adenosine triphosphatase ratio were found as a result of the chronic ethanol treatment. 4. Liver microsomal NADPH oxidase activity, a H2O2-producing system, was increased by 80–100% by chronic ethanol treatment. Oxidation of formate to CO2 in vivo was also increased in these animals. The increase in formate metabolism could theoretically be accounted for by an increased production of H2O2 by the NADPH oxidase system plus formate peroxidation by catalase. However, an increased production of H2O2 and oxidation of ethanol by the catalase system could not account for more than 10–20% of the increased ethanol metabolism in the animals chronically treated with ethanol. 5. Results presented indicate that chronic ethanol ingestion results in a faster mitochondrial O2 consumption in situ suggesting a faster NADH reoxidation. Although only a minor change in mitochondrial coupling was observed with isolated mitochondria, the possibility of an uncoupling in the intact cell cannot be completely discarded. Regardless of the mechanism, these changes could lead to an increased metabolism of ethanol and of other endogenous substrates.  相似文献   

7.
1. The distribution of adenosine triphosphatase was studied in morphologically characterized subcellular fractions of guinea-pig brain. The conditions of homogenization were selected so as to favour the survival of nerve endings as organized structures. 2. A fraction consisting mainly of the external membranes of nerve endings was rich in a ouabain-sensitive Na+–K+-stimulated adenosine triphosphatase which closely resembled that present in the classical microsomal fraction studied by other workers, but which showed a higher specific activity. 3. A dinitrophenol-stimulated adenosine triphosphatase was located in the nerve-ending mitochondria. 4. The synaptic-vesicle fraction contained a small amount of adenosine triphosphatase that differed in its response to several ions and other compounds from the membrane, myelin and mitochondrial fractions, indicating freedom from contamination by these elements.  相似文献   

8.
Triton X-100-insoluble residues from Micrococcus lysodeikticus membranes were analyzed by crossed immunoelectrophoresis after dispersal of the residues in sodium dodecyl sulfate (SDS). Conditions which produce no obvious distortion of the immunoprecipitate profile and which allow qualitative and quantitative analyses of the antigens present in the extracts are described. Two main antigens were detected; these were identified as succinate dehydrogenase (EC 1.3.99.1) and adenosine triphosphatase (EC 3.6.1.3). As determined by peak area estimations, the maximal release of succinate dehydrogenase and of adenosine triphosphatase from Triton X-100-insoluble membrane residues occurred at protein/SDS ratios of about 4.3:1 (0.2% SDS) and 6.8:1 (0.13% SDS), respectively. A comparison of enzyme activities of SDS extracts with those of untreated, control Triton X-100-insoluble membrane residues indicated that both the succinate dehydrogenase and the adenosine triphosphatase antigens were released with a full (or enhanced) catalytic potential at or below concentrations of SDS required to effect maximal solubilization of the enzyme in question. Evidence is also presented to suggest that the more acidic of the two components detected by crossed immunoelectrophoresis for the heterogeneous adenosine triphosphatase antigen is more sensitive to SDS than is the other. Both succinate dehydrogenase and adenosine triphosphatase lost catalytic activity and were denatured at protein/SDS ratios lower than 3.4:1.  相似文献   

9.
1. Cell-free extracts of the marine bacterium Beneckea natriegens, derived by sonication, were separated into particulate and supernatant fractions by centrifugation at 150 000 × g.2. NADH, succinate, d(?)- and l(+)-lactate oxidase and dehydrogenase activities were located in the particles, with 2- to 3-fold increases in specific activity over the cell free extract. The d(?)- and l(+)-lactate dehydrogenases were NAD+ and NADP+ independent. Ascorbate-N,N,N′,N′-tetramethylphenylenediamine (TMPD) oxidase was also present in the particulate fraction; it was 7–12 times more active than the physiological substrate oxidases.3. Ascorbate-TMPD oxidase was completely inhibited by 10 μM cyanide. Succinate, NADH, d(?)-lactate and l(+)-lactate oxidases were inhibited in a biphasic manner, with 10 μM cyanide causing only 10–50 % inhibition; further inhibition required more than 0.5 mM cyanide, and 10 mM cyanide caused over 90 % inhibition. Low sulphide (5 μM) and azide (2 mM) concentrations also totally inhibited ascorbate-TMPD oxidase, but only partially inhibited the other oxidases. High concentrations of sulphide but not azide caused a second phase inhibition of NADH, succinate, d(?)-lactate and l(+)-lactate oxidases.4. Low oxidase activities of the physiological substrates, obtained by using non-saturating substrate concentrations, were more inhibited by 10 μM cyanide and 2 mM azide than high oxidase rates, yet ascorbate-TMPD oxidase was completely inhibited by 10 μM cyanide over a wide range of rates of oxidation.5. These results indicate terminal branching of the respiratory system. Ascorbate-TMPD is oxidised by one pathway only, whilst NADH, succinate, d(?)-lactate and l(+)-lactate are oxidised via both pathways. Respiration of the latter substrates occurs preferentially by the pathway associated with ascorbate-TMPD oxidase and which is sensitive to low concentrations of cyanide, azide and sulphide.6. The apparent Km for O2 for each of the two pathways was detected using ascorbate-TMPD and NADH or succinate plus 10 μM cyanide respectively. The former pathway had an apparent Km of 8–17 (average 10.6) μM and the latter 2.2–4.0 (average 3.0) μM O2.  相似文献   

10.
11.
Isoperoxidases were detected in resistant Rossol and susceptible Roma VF tomato roots uninfected and infected by Meloidogyne incognita. Syringaldazine, guaiacol, p-phenylenediamine-pyrocatechol (PPD-PC), and indoleacetic acid (IAA) were used as substrates, and the corresponding peroxidative activities were detected either in cytoplasmic or in cell wall fractions, except for IAA oxidase, which was measured in soluble and microsomal fractions. Isoperoxidase activities and cellular locations were induced differently in resistant and susceptible cultivars by nematodes. Nematode infestation markedly enhanced syringaldazine oxidase activity in cell walls of the resistant cultivar. This isoperoxidase is involved in the last step of lignin deposition in plants. Conversely, the susceptible cultivar reacted to M. incognita infection with an increase in cytoplasmic PPD-PC oxidase activity, which presumedly is involved in ethylene production; no changes in cell wall isoperoxidases were observed. IAA oxidase was inhibited in susceptible plants after nematode inoculation, whereas in resistant plants this activity increased in the soluble fraction and decreased in the microsomal fraction.  相似文献   

12.
Biochemical studies on the iojap mutant of maize   总被引:3,自引:1,他引:2       下载免费PDF全文
The white leaf tissue of seedlings of Zea mays L. affected by the recessive nuclear gene iojap shows no photosynthetic activity; it contains about 1.4% of carotenoid and less than 0.1% of chlorophyll a content of normal green tissue. Neither fraction I protein nor chloroplast adenosine triphosphatase (EC 3.6.1.4) (CF1) is detectable. This confirms earlier observations that plastids of white sectors of iojap maize do not contain ribosomes. About 40% of the activity of phosphoenolpyruvate carboxylase (EC 4.1.1.31) in green leaves could be found in white leaves indicating that the phosphoenolpyruvate carboxylase EC 4.1.1.31 is made on cytoplasmic ribosomes. The oxygen consumption of iojap-affected leaves is decreased.  相似文献   

13.
The isolation and partial characterization of subcellular particles from rabbit and rat lung are described. Detailed methods for separating a purified, active mitochondrial fraction are outlined and evaluated in terms of enzymatic, chemical, and morphological criteria. Mitochondrial preparations from rabbit and rat liver were used as comparative indices. The lung mitochondrial fraction was identified by its ability to oxidize succinate with a P/O ratio of 1.7 by a process sensitive to 2,4 dinitrophenol and antimycin A. The adenosine triphosphatase activity of the lung mitochondrial fraction is stimulated by magnesium ions, but this stimulation is not augmented by 2,4 dinitrophenol. In the absence of magnesium ions, the specific activity of the adenosine triphosphatase increases with increasing protein concentration. The presence of lysosomes in the mitochondrial fraction is suggested by acid phosphatase and cathepsin activities and by electron microscope observations.  相似文献   

14.
The possible presence of coproporphyrinogen oxidase (EC 1.3.3.3), an oxygen-requiring enzyme in the porphyrin biosynthetic pathway, was investigated in supernatant fractions of homogenized Ascaris lumbricoides muscle and developing eggs, and in mitochondrial preparations of muscle. Compared with rat liver controls, low levels of enzyme activity were found in A. lumbricoides gut, 6-day eggs, and muscle mitochondria. Enzyme activity in muscle, 8-day, and 25-day eggs was not measurable under the conditions employed.  相似文献   

15.
Isopycnic sucrose gradient separation of rat liver organelles revealed the presence of two distinct branched-chain α-keto acid decarboxylase activities; a mitochondrial activity, which decarboxylates the three branched-chain α-keto acids and requires CoA and NAD+ and a cytosolic activity, which decarboxylates α-ketoisocaproate, but not α-ketoisovalerate, or α-keto-β-methylvalerate. The latter enzyme does not require added CoA or NAD+. Assay conditions for the cytosolic α-ketoisocaproate decarboxylase activity were optimized and this activity was partially characterized. In rat liver cytosol preparations this activity has a pH optimum of 6.5 and is activated by 1.5 m ammonium sulfate. The decarboxylase activity has an apparent Km of 0.03 mm for α-ketoisocaproate when optimized assay conditions are employed. Phenylpyruvate is a very potent inhibitor. α-Ketoisovalerate, α-keto-β-methylvalerate, α-ketobutyrate, and α-ketononanoate also inhibit the α-ketoisocaproate decarboxylase activity. The data indicate that the soluble α-ketoisocaproate decarboxylase is an oxidase. Rat liver cytosol preparations consumed oxygen when either α-ketoisocaproate or α-keto-γ-methiolbutyrate were added. None of the other α-keto acids tested stimulated oxygen consumption. 1-14C-Labeled α-keto-γ-methiolbutyrate is also decarboxylated by cytosol preparations. The α-ketoisocaproate oxidase was purified 20-fold from a 70,000g supernatant fraction of a rat liver homogenate. In these preparations the activity was increased 4-fold by the addition of dithiothreitol, ferrous iron, and ascorbate. The major product of this enzyme activity is β-hydroxyisovalerate. Isovalerate is not a free intermediate in the reaction. The data indicate an alternative pathway for metabolism of α-ketoisocaproate which produces β-hydroxyisovalerate.  相似文献   

16.
Abstract— The activity and subcellular distribution of NADP- and NAD-isocitrate de-hydrogenases (ICDH) (EC 1.1.1.42 and 1.1.1.41, respectively) in brains of adult and newborn mice have been determined. In the adult, NAD-ICDH activity in whole brain homogeantes was 1–17 mol/kg wet wt of brain/h (MKH), whereas the NADP-ICDH activity was 0.223 MKH. In the newborn, the activity of the NAD-dependent enzyme was only 0.246 MKH, whereas the NADP-dependent enzyme activity was 1.23 MKH. At both ages, 66 per cent of the NADP-ICDH activity was in the cytosol, less than 10 per cent was in the purified mitochondrial fraction and the remainder was in the crude synaptosomal fraction. Less than 10 per cent of the NAD-ICDH activity was in the cytosol in both the newborn and adult, whereas 50 per cent was in the purified mitochondrial fraction. The crude synaptosomal fraction from the newborn and adult brains contained 28 and 22 per cent, respectively, of the total NAD-ICDH activity. The activities of these enzymes in the cytosol and mitochondria were compared with those of succinate dehydrogenase and with three other enzymes which utilize the product, 2-oxoglutarate, as substrate. The relationship of the isocitrate dehydrogenases to the metabolism of adult and newborn brain is discussed.  相似文献   

17.
Coronary artery disease (CAD) is the leading cause of mortality in diabetic patients. Mitochondrial dysfunction and increased production of reactive oxygen species (ROS) are associated with diabetes and CAD. Elevated levels of glycated LDL (glyLDL) were detected in patients with diabetes. Our previous studies demonstrated that glyLDL increased the generation of ROS and altered the activities of antioxidant enzymes in vascular endothelial cells (EC). This study examined the effects of glyLDL on oxygen consumption in mitochondria and the activities of key enzymes in the mitochondrial electron transport chain (ETC) in cultured porcine aortic EC. The results demonstrated that glyLDL treatment significantly impaired oxygen consumption in Complexes I, II/III, and IV of the mitochondrial ETC in EC compared to LDL or vehicle control detected using oxygraphy. Incubation with glyLDL significantly reduced the mitochondrial membrane potential, the NAD+/NADH ratio, and the activities of mitochondrial ETC enzymes (NADH-ubiquinone dehydrogenase, succinate cytochrome c reductase, ubiquinone cytochrome c reductase, and cytochrome c oxidase) in EC compared to LDL or control. The abundance of mitochondria-associated ROS and the release of ROS from EC were significantly increased after glyLDL treatment. The findings suggest that glyLDL attenuates the activities of key enzymes in the mitochondrial ETC, decreases mitochondrial oxygen consumption, reduces mitochondrial membrane potential, and increases ROS generation in EC, which potentially contribute to mitochondrial dysfunction in diabetic patients.  相似文献   

18.
Washing of excised corn (Zea mays L., variety WF9×M14) root tissue is accompanied by an increase in (Mg2+ + K+)-stimulated adenosine triphosphatase. This is the adenosine triphosphatase described by Fisher, Hansen, and Hodges as positively correlated with ion accumulation rates. The increase in activity is confined to the microsomal fraction. A close parallel exists between increases in adenosine triphosphatase and phosphate absorption, and they respond similarly to inhibitors of RNA and protein synthesis. However, the amplitude of change is much smaller in adenosine triphosphatase. Possible reasons for this discrepancy are discussed.  相似文献   

19.
In an effort to determine the subcellular localization of sodium- and potassium-activated adenosine triphosphatase (Na+, K+-ATPase) in the pseudobranch of the pinfish Lagodon rhomboides, this tissue was fractionated by differential centrifugation and the activities of several marker enzymes in the fractions were measured. Cytochrome c oxidase was found primarily in the mitochondrial-light mitochondrial (M+L) fraction. Phosphoglucomutase appeared almost exclusively in the soluble (S) fraction. Monoamine oxidase was concentrated in the nuclear (N) fraction, with a significant amount also in the microsomal (P) fraction but little in M+L or S. Na+, K+-ATPase and ouabain insensitive Mg2+-ATPase were distributed in N, M+L, and P, the former having its highest specific activity in P and the latter in M+L. Rate sedimentation analysis of the M+L fraction indicated that cytochrome c oxidase and Mg2+-ATPase were associated with a rapidly sedimenting particle population (presumably mitochondria), while Na+, K+-ATPase was found primarily in a slowly sedimenting component. At least 75% of the Na+, K+-ATPase in M+L appeared to be associated with structures containing no Mg2+-ATPase. Kinetic properties of the two ATPases were studied in the P fraction and were typical of these enzymes in other tissues. Na+, K+-ATPase activity was highly dependent on the ratio of Na+ and K+ concentrations but independent of absolute concentrations over at least a fourfold range.  相似文献   

20.
In vivo administration of testosterone significantly stimulated the activities of cytochrome oxidase, alpha-glycerophosphate dehydrogenase (alpha-GPDH), succinate dehydrogenase (SDH) and adenosine triphosphatase (Mg2+ ATPase), in mitochondria isolated from the liver of G. carnosus. Administration of dehydroepiandrosterone and androstenedione while significantly stimulated the activities of cytochrome oxidase and alpha-GPDH, did not change that of SDH and Mg2+ ATPase. Simultaneous injections of testosterone and actinomycin D or chloramphenicol prevented the testosterone-stimulated activities of all the oxidative enzymes studied. The results clearly document the important stimulatory role of androgens in the regulation of hepatic mitochondrial metabolism in G. carnosus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号