首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
3.
Nucleolin is a multifunctional nucleolar protein involved in the synthesis, packaging and maturation of pre-rRNA in eukaryotic cells. We describe the molecular organization and complete sequence of the mouse nucleolin gene, the first higher eukaryotic gene encoding a protein that is both an RNA binding protein involved in rRNA processing and a specific nucleolar protein. The nucleolin gene extends over 9000 base-pairs and is split into 14 exons that encode the 706 amino acid residues of the protein. The promoter sequence is G + C-rich (67% G + C) with four G/C boxes, it lacks bona fide TATA and CAAT boxes and shows capping site heterogeneity. The existence of pyrimidine-rich motifs, similar to those found in the promoter of ribosomal protein genes, could be relevant to the co-regulation of genes whose products are involved in ribosome biogenesis. Nucleolin contains four RNA binding domains, each about 80 amino acid residues long, which include the 11-residue core ribonucleoprotein consensus motif. Each domain is encoded by two exons, with an intervening sequence interrupting the conserved core motif at roughly the same amino acid position. This latter result suggests that the RNA binding domains are composed of two independent subdomains, whose functions remain to be determined.  相似文献   

4.
5.
6.
7.
To understand the unusual features of the genes and genomes fromGonyaulax polyedra, we isolated the promoter portions of the luciferin binding protein (LBP) gene, using IPCR methods, and characterized their sequences. Five LBP genomic clones were classified into a group of genes from the LBPα family, based on the sequence homology of the coding portion of the LBP gene. They were subdivided into two groups. Southern analysis implied that the promoter region is conserved well in most LBP genes. The comparison of the promoter regions from the LBP and luciferase genes showed that, although some portions of their sequences were well conserved, these two genes did not share common features of promoter region, as is normally found in eukaryotes or prokaryotes.  相似文献   

8.
9.
The complete genome sequences of the lactic acid bacteria (LAB), Lactobacillus plantarum, Lactococcus lactis, and Lactobacillus johnsonii were used to compare location, sequence, organisation, and regulation of the ribosomal RNA (rrn) operons. All rrn operons of the examined LAB diverge from the origin of replication, which is compatible with their efficient expression. All operons show a common organisation of 5'-16S-23S-5S-3' structure, but differ in the number, location and specificity of the tRNA genes. In the 16S-23S intergenic spacer region, two of the five rrn operons of Lb. plantarum and three of the six of Lb. johnsonii contain tRNA-ala and tRNA-ile genes, while L. lactis has a tRNA-ala gene in all six operons. The number of tRNA genes following the 5S rRNA gene ranges up to 14, 16, and 21 for L. lactis, Lb. johnsonii and Lb. plantarum, respectively. The tRNA gene complements are similar to each other and to those of other bacteria. Micro-heterogeneity was found within the rRNA structural genes and spacer regions of each strain. In the rrn operon promoter regions of Lb. plantarum and L. lactis marked differences were found, while the promoter regions of Lb. johnsonii showed a similar tandem promoter structure in all operons. The rrn promoters of L. lactis show either a single or a tandem promoter structure. All promoters of Lb. plantarum contain two or three -10 and -35 regions, of which either zero to two were followed by an UP-element. The Lb. plantarum rrnA, rrnB, and rrnC promoter regions display similarity to the rrn promoter structure of Esherichia coli. Differences in regulation between the five Lb. plantarum promoters were studied using a low copy promoter-probe plasmid. Taking copy number and growth rate into account, a differential expression over time was shown. Although all five Lb. plantarum rrn promoters are significantly different, this study shows that their activity was very similar under the circumstances tested. An active promoter was also identified within the Lb. plantarum rrnC operon preceding a cluster of 17 tRNA genes.  相似文献   

10.
11.
12.
Trichothecene biosynthetic pathway genes are localized within a gene cluster in Fusarium sporotrichioides and require the zinc-finger containing protein, TRI6, for expression. We show here that TRI6 is able to bind within the promoter regions of nine different pathway genes and that TRI6 binding is involved in pathway gene activation. TRI6 binding occurs at three distinct sites in the TRI5 promoter, all of which contain the sequence TNAGGCCT. DNA fragments from the promoter regions of six other pathway genes containing this sequence are also substrates for TRI6 binding. Specific nucleotide changes in the TNAGGCCT sequence dramatically reduced TRI6 binding. Analysis of TRI6 binding within the TRI3 and TRI11 promoters and the TRI4-TRI6 intergenic region which do not contain the TNAGGCCT motif suggests that the minimum sequence required for TRI6 binding is YNAGGCC. Two potential TRI6 binding sites, T4A and T4B, were identified within the intergenic region for the divergently transcribed TRI4 and TRI6 genes. Alteration or deletion of the T4A site resulted in the loss of nearly all in vitro TRI6 binding and was correlated with the loss of promoter activity in vivo as measured by the expression of mutant TRI4(p)/GUS fusions. This establishes a physiological role for TRI6 binding and demonstrates that TRI6 is directly involved in the regulation of pathway gene expression. To determine if a predicted Cys2His2 zinc-finger motif at the C-terminus of TRI6 is involved in DNA binding, a C187A mutant was constructed in TRI6 using site-directed mutagenesis. The C187A mutant did not bind promoter DNA fragments, supporting the role of C187 in DNA binding. In addition, a TRI6 homologue in the distantly related macrocyclic trichothecene pathway of Myrothecium roridum (MRTRI6) was also shown to bind to the same TRI5 and TRI4 promoter fragments bound by TRI6. Together, these data confirm our previous proposal that TRI6 is an activator of trichothecene pathway gene expression and that DNA binding employs the C-terminal region of TRI6 containing three predicted Cys2His2 zinc fingers.  相似文献   

13.
14.
15.
16.
17.
The goal of this study was to determine to what extent the Aquificales are related to the epsilon-Proteobacteria. The genome sequence of several members of this group as well as the genome sequence of Aquifex aeolicus are available. In this study we used information extracted from those whole-genome sequences to gain further insights into the relationships between these organisms, including the fraction of shared putative orthologous protein-encoding genes, dinucleotide relative abundance values and the sequences of the 16S rRNA gene and 20 housekeeping genes. The results of our analyses show that it is not straightforward to come to a consistent picture of the phylogenetic position of the order Aquificales but our data clearly show that there is no particularly close relationship between A. aeolicus and the epsilon-Proteobacteria as (i) they do not share more genes with each other than do other distantly related organisms and (ii) they do not share significant sequence similarity in many macromolecules. In addition, there is considerable evidence that confirms the placement of the Aquificales near the root of the bacterial tree.  相似文献   

18.
Epigenetic programming of the rRNA promoter by MBD3   总被引:2,自引:0,他引:2       下载免费PDF全文
  相似文献   

19.
Xanthomonas axonopodis pv. citri (X. axonopodis pv. citri) possesses two lexA genes, designated lexA1 and lexA2. Electrophoretic mobility shift data show that LexA1 binds to both lexA1 and lexA2 promoters, but LexA2 does not bind to the lexA1 promoter, suggesting that LexA1 and LexA2 play different roles in regulating the expression of SOS genes. In this study, we have determined that LexA2 binds to a 14-bp dyad-spacer-dyad palindromic sequence, 5'-TGTACAAATGTACA-3', located at nucleotides -41 to -28 relative to the translation start site of lexA2 of X. axonopodis pv. citri. The two spacer nucleotides in this sequence can be changed from AA to TT without affecting LexA2 binding; all other base deletions or substitutions abolish LexA2 binding. The LexA1 binding sequence in the promoter region of lexA2 is TTAGTACTAAAGTTATAA and is located at -133 to -116, and that in the lexA1 gene is AGTAGTAATACTACT located at nucleotides -19 to -5 relative to the translation start site of lexA1. Any base change in the latter sequence abolishes LexA1 binding.  相似文献   

20.
Maiväli  Ü.  Saarma  U.  Remme  J. 《Molecular Biology》2001,35(4):569-574
We have studied in vivothe phenotypes of 23S rRNA mutations G2582A, G2582U, G2583C, and U2584C, which are located at the A site of Escherichia coli50S ribosomal subunit. All mutant rRNAs incorporated into 50S ribosomal subunits. Upon sucrose gradient fractionation of cell lysates, 23S rRNAs mutated at G2582 to A and G2583 to C accumulated in the 50S and 70S fractions and were underrepresented in the polysome fraction. Induction of 23S rRNAs mutated at G2582 and G2583 lead to a drastic reduction in cell growth. In addition, mutations G2582A and G2583C reduced to one-third the total protein synthesis but not the RNA synthesis. Finally, we show that 23S rRNA mutations G2582A, G2582U, and G2583C cause a significant increase in peptidyl-tRNA drop-off from ribosomes, thereby reducing translational processivity. The results clearly show that tRNA–23S rRNA interaction has an essential role in maintaining the processivity of translation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号