首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 842 毫秒
1.
Oligodendrocytes, the myelin-forming cells in the central nervous system, were visualized with excellent resolution at the light microscopic level using in situ hybridization (ISH). Digoxigenin (Dig)-tagged probes were synthesized and efficiently labeled by PCR. Specific probes to myelin genes were made by RT from brain total RNAs, followed by PCR with designed specific primers in the presence of Dig-11-dUTP. Probes specific to proteolipid protein (PLP), PLP and its isoform DM20 (PLP/DM20), and myelin oligodendrocyte glycoprotein (MOG) were synthesized and labeled. ISH was then applied on vibratomed tissue sections from mouse brains. Despite a low expression of MOG-specific and PLP-specific mRNAs in adult and newborn mouse brains, an oligodendrocyte population was detected. The specificity of Dig-labeled probes was confirmed with the double labeling of carbonic anhydrase II (CA II) and glial fibrillary acidic protein (GFAP) immunocytochemistry and ISH. This versatile and easy method for synthesis and labeling of specific probes to oligodendrocytes can be also applied to detect many other mRNAs in the nervous system and in other tissues.  相似文献   

2.
3.
4.
Proteolipid protein (PLP), the major protein of central nervous system myelin, contains approximately 2 mol of covalently bound fatty acids. In this study, the in vivo turnover rate of the acyl chains bound to PLP was determined in 40-day-old rats after a single intracranial injection of [3H]palmitic acid. The apparent half-life of total fatty acids bound to PLP was approximately 7 days. After correction for acyl chain interconversion, the half-life of palmitate bound to PLP was only 3 days. This turnover rate is much more rapid than that of the protein moiety calculated under the same experimental conditions (t1/2 = 1 month). Additional evidence for the dynamic metabolism of acyl groups was provided by experiments in brain tissue slices which showed that acylation of PLP occurs in adult animals as well as during active myelination. Acylation of endogenous PLP in purified myelin and its subfractions was also studied during rat brain development using either [3H]palmitoyl-CoA or [3H]palmitic acid plus ATP and CoA. Labeling of endogenous PLP with [3H]palmitoyl-CoA was observed as early as 10 days postnatal and continued at the same rate throughout development. When [3H]palmitic acid was used as precursor in the presence of both ATP and CoA, esterification of myelin PLP occurred rapidly in adult animals, indicating that both nonacylated PLP and acyl-CoA ligase are present in myelin. Finally, pulse-chase experiments in a cell-free system showed that PLP-bound fatty acids turn over with a half-life shorter than 10 min. These observations are consistent with the concept that acylation of myelin PLP is a dynamic process involved mainly in myelin maintenance and function.  相似文献   

5.
Multiple sclerosis is an inflammatory disease of the CNS that involves immune reactivity against myelin oligodendrocyte glycoprotein (MOG), a type I transmembrane protein located at the outer surface of CNS myelin. The epitope MOG92-106 is a DR4-restricted Th cell epitope and a target for demyelinating autoantibodies. In this study, we show that the immune response elicited by immunization with this epitope is qualitatively different from immune responses induced by the well-defined epitopes myelin basic protein (MBP) 84-96 and proteolipid protein (PLP) 139-151. Mice with MOG92-106-, but not with MBP84-96- or PLP139-151-induced experimental autoimmune encephalomyelitis developed extensive B cell reactivity against secondary myelin Ags. These secondary Abs were directed against a set of encephalitogenic peptide Ags derived from MBP and PLP as well as a broad range of epitopes spanning the complete MBP sequence. The observed diversification of the B cell reactivity represents a simultaneous spread toward a broad range of antigenic epitopes and differs markedly from T cell epitope spreading that follows a sequential cascade. The Abs were of the isotypes IgG1 and IgG2b, indicating that endogenously recruited B cells receive help from activated T cells. In sharp contrast, B cell reactivity in MBP84-96- and PLP139-151-induced experimental autoimmune encephalomyelitis was directed against the disease-inducing Ag only. These data provide direct evidence that the nature of the endogenously acquired immune reactivity during organ-specific autoimmunity critically depends on the disease-inducing Ag. They further demonstrate that the epitope MOG92-106 has the specific capacity to induce a widespread autoimmune response.  相似文献   

6.
7.
Duplication of PLP1 (proteolipid protein gene 1) and the subsequent overexpression of the myelin protein PLP (also known as DM20) in oligodendrocytes is the most frequent cause of Pelizaeus-Merzbacher disease (PMD), a fatal leukodystrophy without therapeutic options. PLP binds cholesterol and is contained within membrane lipid raft microdomains. Cholesterol availability is the rate-limiting factor of central nervous system myelin synthesis. Transgenic mice with extra copies of the Plp1 gene are accurate models of PMD. Dysmyelination followed by demyelination, secondary inflammation and axon damage contribute to the severe motor impairment in these mice. The finding that in Plp1-transgenic oligodendrocytes, PLP and cholesterol accumulate in late endosomes and lysosomes (endo/lysosomes), prompted us to further investigate the role of cholesterol in PMD. Here we show that cholesterol itself promotes normal PLP trafficking and that dietary cholesterol influences PMD pathology. In a preclinical trial, PMD mice were fed a cholesterol-enriched diet. This restored oligodendrocyte numbers and ameliorated intracellular PLP accumulation. Moreover, myelin content increased, inflammation and gliosis were reduced and motor defects improved. Even after onset of clinical symptoms, cholesterol treatment prevented disease progression. Dietary cholesterol did not reduce Plp1 overexpression but facilitated incorporation of PLP into myelin membranes. These findings may have implications for therapeutic interventions in patients with PMD.  相似文献   

8.
Expression of the myelin proteolipid protein (PLP) was examined in the nuclei and polysomes of 12-27-day-old quaking, jimpy, and shiverer mouse brains and in 2-27-day-old normal brains and compared with expression of the myelin basic proteins (MBPs). Northern blots showed the presence of multiple mouse PLP RNAs, the developmental expression of which coincided with myelination. Two major mouse PLP RNAs, 3.5 and 2.6 kilobases in length, were observed in both cytoplasmic polyribosomes and nuclei, and, in addition, a larger 4.6-kilobase PLP RNA was observed in nuclei. Quantitative measurements with slot blot analyses showed that the levels of PLP and MBP RNAs peaked simultaneously at 18 days in nuclei but that maximal levels of PLP RNA lagged behind MBP RNA by several days in the polysomes. The developmental expression of both major classes of myelin protein mRNAs was affected in all three mutants. In shiverer brains, the levels of PLP mRNA in polysomes and nuclei were only 30-55% of control levels after 15 days. Thus, the deletion of a portion of the MBP gene appeared to have a major effect on the expression of the PLP gene in this mutant. In jimpy mice, where the mutation has been shown to involve the PLP gene, expression of MBP mRNA was also severely reduced, to less than 25% of control values. In quaking brains, the expression of each gene followed its own developmental course, different from each other and different from the normal mouse. The extent to which the expression of PLP and MBP was affected by the quaking mutation depended on the age at which it was examined.  相似文献   

9.
Synthesis and incorporation of myelin polypeptides into CNS myelin   总被引:17,自引:6,他引:11       下载免费PDF全文
The distribution of newly synthesized proteolipid protein (PLP, 23 kdaltons) and myelin basic proteins (MBPs, 14-21.5 kdaltons) was determined in microsomal and myelin fractions prepared from the brainstems o1 10-30 d-old rats sacrificed at different times after an intracranial injection of 35S-methionine. Labeled MBPs were found in the myelin fraction 2 min after the injection, whereas PLP appeared first in the rough microsomal fraction and only after a lag of 30 min in the myelin fraction. Cell-free translation experiments using purified mRNAs demonstrated that PLP and MBPs are synthesized in bound and free polysomes, respectively. A mechanism involving the cotranslational insertion into the ER membrane and subsequent passage of the polypeptides through the Golgi apparatus is consistent with the lag observed in the appearance of the in vivo-labeled PLP in the myelin membrane. Newly synthesized PLP and MBPs are not proteolytically processed, because the primary translation products synthesized in vitro had the same electrophoretic mobility and N-terminal amino acid sequence as the mature PLP and MBP polypeptides. It was found that crude myelin fractions are highly enriched in mRNAs coding for the MBPs but not in mRNA coding for PLP. This suggests that whereas the bound polysomes synthesizing PLP are largely confined to the cell body, free polysomes synthesizing MBPs are concentrated in oligodendrocyte processes involved in myelination, which explains the immediate incorporation of MBPs into the developing myelin sheath.  相似文献   

10.
11.
Multiple sclerosis (MS) is a chronic autoimmune demyelinating disorder of the central nervous system (CNS) of unknown etiology. Several studies have shown that demyelination in MS is caused by proinflammatory mediators which are released by perivascular infiltrates and/or activated glial cells. To understand if proinflammatory mediators such as IL (interleukin)-1beta and TNF (tumor necrosis factor)-alpha are capable of modulating the expression of myelin-specific genes, we investigated the effect of these cytokines on the expression of myelin basic protein (MBP), 2',3'-cyclic nucleotide 3'-phosphodiesterase (CNPase), myelin oligodendrocyte glycoprotein (MOG), and proteolipid protein (PLP) in human primary oligodendrocytes. Interestingly, both IL-1beta and TNF-alpha markedly inhibited the expression of MOG, CNPase, and PLP but not MBP, the effect that was blocked by antioxidants such as N-acetylcysteine (NAC) and pyrrolidine dithiocarbamate (PDTC). Consistently, oxidants and prooxidants like H(2)O(2) and diamide also markedly inhibited the expression of MOG, CNPase, and PLP. Furthermore, both IL-1beta and TNF-alpha induced the production of H(2)O(2). Taken together, these studies suggest that proinflammatory cytokines inhibit the expression of myelin genes in human primary oligodendrocytes through the alteration of cellular redox.  相似文献   

12.
Bovine myelin/oligodendrocyte glycoprotein (MOG) was purified from a Wolfgram protein fraction of brain myelin by molecular sieving and preparative gel electrophoresis. The N-terminal sequence of this wheat germ agglutinin reacting glycoprotein was determined. Antibodies against purified MOG and synthetic N-terminal octapeptide of MOG were produced in rabbits. Respective affinity purified antibody preparations gave identical results on Western blots. Treatment with specific glycosidases indicated that the oligosaccharide chains of MOG are only of N-chain type. This glycoprotein seems to be restricted to mammalian species since it was not detected in other animal species, ranging from fish up to reptiles. Immunohistochemical investigations on rat brain sections revealed that MOG is restricted to myelin sheaths and oligodendrocytes, thus corroborating previous results obtained with the MOG 8-18C5 monoclonal antibody. Decreased staining pattern in Jimpy brain further attested its specific localization in myelin-related structures. The octapeptide site-specific antibodies were not reactive on brain sections which may be attributed to the burying of this N-terminal sequence in the membrane. These MOG polyclonal antibodies appear to be valuable tools for further studies concerning this minor glycoprotein.Abbreviations BSA bovine serum albumin - CNS central nervous system - DM-20 minor myelin proteolipid protein - MAG Myelin-associated glycoprotein - MBP myelin basic proteins - MOG Myelin/oligodendrocyte glycoprotein - OMgp Oligodendrocyte/Myelin glycoprotein - PAGE polyacrylamide gel electrophoresis - PBS phosphate buffered saline - PeptMOG n-terminal octapeptide of MOG - PLP major myelin proteolipid protein - PMSF phenylmethylsulfonylfluoride - SDS sodium dodecylsulphate - TBS Tris buffered saline - WPF Wolfgram protein fraction - WGA Wheat germ agglutinin  相似文献   

13.
Multiple sclerosis (MS) is an inflammatory and demyelinating disease of the CNS with associated axonal loss. There is strong evidence for an autoimmune pathogenesis driven by myelin-specific T cells. Myelin oligodendrocyte glycoprotein (MOG) induces a type of experimental autoimmune encephalomyelitis in animals which is very MS-like since there are demyelinating CNS lesions and axonal loss. This underscores the potential role of MOG in MS pathogenesis. We performed a T cell reactivity pattern analysis of MS patients at the onset of relapse or progression of neurological deficits and controls that were stratified for the genetic risk factor HLA-DRB1*1501. For the first time, we show that there is an HLA-DR-restricted promiscuous dominant epitope for CD4(+) T cells within the transmembrane/intracellular part of MOG comprising aa 146-154 (FLCLQYRLR). Surprisingly, controls had broader T cell reactivity patterns toward MOG peptides compared with MS patients, and the transmembrane and intracellular parts of MOG were much more immunogenic compared with the extracellular part. Measurements of in vitro binding affinities revealed that HLA-DRB1*1501 molecules bound MOG 146-154 with intermediate and HLA-DRB1*0401 molecules with weak affinities. The binding of MOG 146-154 was comparable or better than myelin basic protein 85-99, which is the dominant myelin basic protein epitope in context with HLA-DRB1*1501 molecules in MS patients. This is the first study in which the data underscore the need to investigate the pathogenic or regulatory role of the transmembrane and intracellular part of MOG for MS in more detail.  相似文献   

14.
Recovery of Proteolipid Protein in Mice Heterozygous for the Jimpy Gene   总被引:1,自引:1,他引:0  
We have measured levels and synthesis of proteolipid protein (PLP) and its transport into myelin in female mice heterozygous for the jimpy gene and in their normal female littermates. In both cord and cerebrum, jimpy carriers show deficits in PLP during development followed by compensation in adulthood. Recovery of PLP occurs earlier in cord than in brain. At 13 days levels of PLP in carriers compared to controls are reduced to 0.60 and 0.44, respectively, in cord and cerebrum. By 100 days, normal levels of PLP are attained in cord (1.13) whereas levels of PLP in cerebrum are only 0.78 of control. By 200 days full recovery occurs in cerebrum, with a ratio of 1.21, suggesting a possible over-compensation. The yield of myelin from cerebrum was reduced to 0.78 in carriers compared to controls at 17 days. In brain slices, incorporation of [3H]leucine into homogenate PLP from carriers is the same as in controls, whereas [3H]leucine incorporation into myelin PLP is reduced to 0.68 of control. These results indicate that synthesis of PLP in the carriers is normal at 17 days, but transport of PLP into myelin is reduced. Similarly, acylation of homogenate PLP is normal, whereas acylation of myelin PLP is reduced, as measured by incorporation of [3H]palmitic acid. Transport of PLP into myelin was compared to transport of MBP; transport of both proteins was equally decreased as indicated by the similar ratio of labeled PLP to MBP in myelin from carriers compared to noncarriers.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Myelin Proteolipid Protein Gene Expression in Jimpy and Jimpymsd Mice   总被引:2,自引:1,他引:1  
Proteolipid protein (PLP) gene expression was studied in the dysmyelinating mouse mutant jimpy(msd) (jpmsd; myelin synthesis deficient) and compared with that in wild-type mice and the allelic mutant, jimpy (jp). Southern analyses of genomic DNA from jpmsd mice revealed no major rearrangements of the PLP gene relative to the wild-type mouse PLP gene. PLP-specific mRNA levels were significantly reduced in these mutant mice, although both the 3.2- and 2.4-kilobase PLP-specific mRNAs were seen. Also, no size differences in either PLP or DM20 mRNAs were found by S1 nuclease assays of brain RNA from either jpmsd or wild-type mice. Both PLP and DM20 protein were detectable at low levels in jpmsd brain homogenates, and these proteins comigrated with PLP and DM20 protein from normal mice. Western analyses showed an altered PLP:DM20 ratio in jpmsd mice relative to wild-type mice; DM20 levels exceeded PLP levels. It is surprising that a similar pattern of expression was seen in normal mice at less than 10 days of age: DM20 protein expression preceding PLP expression. Thus, jpmsd mice are capable of synthesizing normal PLP and DM20 protein; however, the PLP gene defect has affected the normal developmental pattern of expression for these two proteins.  相似文献   

16.
Abstract: We have conditionally immortalized oligodendrocytes isolated from normal and shiverer primary mouse brain cultures through the use of the retroviral vector ZIPSVtsA58. This vector encodes an immortalizing thermolabile simian virus 40 large T antigen (Tag) and allows for clonal selection by conferring neomycin (G418) resistance. We isolated 14 shiverer and 10 normal lines that expressed the early oligodendrocyte marker 2′,3′-cyclic nucleotide 3′-phosphodiesterase mRNA. These cell lines grew continuously at the permissive temperature (34°C) and displayed Tag nuclear immunostaining. On shifting to nonpermissive temperatures (39°C), the cells showed rapid arrested cell growth and loss of Tag staining. One line (N20.1) engineered from normal oligodendrocytes also expressed myelin basic protein (MBP) and proteolipid protein (PLP) mRNAs, genes normally expressed by mature, differentiated oligodendrocytes. No differences in any of the myelin-specific protein mRNA levels were observed in N20.1 cells grown at 39°C for >9 days compared with cells maintained at 34°C. Immunocytochemical staining revealed N20.1 cells to be positive for the oligodendrocyte surface markers—galactocerebroside, A007, and A2B5. However, MBP and PLP polypeptides could not be detected by western blot or immunocytochemical staining at either the permissive or nonpermissive temperature. Cell-free protein synthesis experiments indicated that the MBP mRNAs isolated from N20.1 cells were translatable and directed the synthesis of the 17-, 18.5-, and 21.5-kDa MBP isoforms. Analysis of the PLP/DM20 gene splice products by polymerase chain reaction indicated that the expression of DM20 mRNA predominated over that of PLP mRNA in this cell line. Because the cell line expressed the MBP and PLP genes, it represents a “mature” oligodendrocyte, but the splicing patterns of these genes indicate that it is at an early stage of “maturation’. This cell line has now been passaged >40 times with fidelity of phenotype and genotype.  相似文献   

17.
Bezafibrate is a known activator of peroxisome proliferator-activated receptors (PPARs) that can activate both PPARalpha and PPARbeta. To determine the role(s) of these receptors in mediating the biological effects of this chemical, the effect of bezafibrate was examined in PPARalpha-null and PPARbeta-null mice. Wild-type, PPARalpha-null, or PPARbeta-null mice were fed either a control diet or one containing 0.5% bezafibrate for 10 days. Bezafibrate feeding caused a significant increase in liver weight in wild-type and PPARbeta-null mice compared to controls, while liver weight was unchanged in bezafibrate-fed PPARalpha-null mice. Gonadal adipose stores were significantly smaller in wild-type and PPARbeta-null mice fed bezafibrate than in controls, and this effect was not found in similarly fed PPARalpha-null mice. Analysis of liver, white adipose tissue, and intestinal mRNAs showed that bezafibrate caused similar changes of mRNAs encoding lipid metabolizing enzymes in wild-type and PPARbeta-null mice compared to controls. Interestingly, in PPARalpha-null mice, bezafibrate also induced several mRNAs previously thought to be solely controlled by PPARalpha, showing that the effects of this drug are not exclusively modulated by this PPAR isoform. Western blot analysis of liver protein was consistent with changes in mRNA expression showing that the alterations in mRNA expression correlate with protein expression in this tissue. Results from these studies demonstrate that the effect of bezafibrate is mediated in large part by PPARalpha, although some changes in gene expression are dependent on PPARbeta. In contrast to other PPARalpha ligands such as WY-14,643, induction of some target genes by bezafibrate can also be modulated in the absence of a functional PPARalpha.  相似文献   

18.
Proteolipid protein (PLP) is a major structural component of central nervous system (CNS) myelin. Evidence exists that PLP or the related splice variant DM-20 protein may also play a role in early development of oligodendrocytes (OLs), the cells that form CNS myelin. There are several naturally occurring mutations of the PLP gene that have been used to study the roles of PLP both in myelination and in OL differentiation. The PLP mutation in the jimpy (jp) mouse has been extensively characterized. These mutants produce no detectable PLP and exhibit an almost total lack of CNS myelin. Additionally, most OLs in affected animals die prematurely, before producing myelin sheaths. We have studied cultures of jp CNS in order to understand whether OL survival and myelin formation require production of normal PLP. When grown in primary cultures, jp OLs mimic the relatively undifferentiated phenotype of jp OLs in vivo. They produce little myelin basic protein (MBP), never immunostain for PLP, and rarely elaborate myelin-like membranes. We report here that jp OLs grown in medium conditioned by normal astrocytes synthesize MBP and incorporate it into membrane expansions. Some jp OLs grown in this way stain with PLP antibodies, including an antibody to a peptide sequence specific for the mutant jp PLP. This study shows that: (1) an absence of PLP does not necessarily lead to dysmyelination or OL death; (2) OLs are capable of translating at least a portion of the predicted jp PLP; (3) the abnormal PLP made in the cultured jp cells is not toxic to OLs. These results also highlight the importance of environmental factors in controlling OL phenotype. © 1996 John Wiley & Sons, Inc.  相似文献   

19.
Kim  Taeyoon  Pfeiffer  S. E. 《Brain Cell Biology》1999,28(4-5):281-293
Plasma membranes are complex arrays of protein and lipid subdomains. Detergent-insoluble, glycosphingolipid/cholesterol-enriched micro-domains (DIGCEMs) have been implicated in protein sorting and/or as sites for signaling cascades in the plasma membrane. We previously identified the presence of DIGCEMs in oligodendrocytes in culture and purified myelin and characterized a novel DIGCEM-associated tetraspan protein, MVP17/rMAL (Kim et al. (1995) Journal of Neuroscience Research 42, 413–422). We have now analyzed the association of known myelin proteins with DIGCEMs in order to provide a better understanding of their roles during myelin biogenesis. We used four well-established criteria to identify myelin DIGCEM-associated proteins: insolubility in a non-ionic detergent Triton X-100 at low temperature (4°C), flotation of the insoluble complexes to low density fractions in sucrose gradients, and TX-100 solubilization at 37°C, or at 4°C following treatment with the cholesterol-binding detergent saponin. We demonstrate that these proteins fall into four distinct groups. Although all tested proteins could be floated to a low-density fraction, proteolipid protein (PLP), myelin basic protein (MBP) and myelin associated glycoprotein (MAG) were solubilized by the detergent extraction, and connexin32 (Cx32) and oligodendrocyte-specific protein (OSP) met only some of the criteria for DIGCEMs. Only the non-compact myelin proteins 2′,3′-cyclic nucleotide 3′-phosphodiesterase (CNP) and myelin/oligodendrocyte glycoprotein (MOG) satisfied all four criteria for DIGCEM-associated proteins. Significantly, only ~40% of CNP and MOG were selectively associated with DIGCEMs. This suggests that they may have both non-active “soluble”, and functionally active DIGCEM-associated, forms in the membrane, consistent with current views that DIGCEMs provide platforms for bringing together and activating components of the signal transduction apparatus. We therefore propose that CNP and MOG may have unique roles among the major myelin proteins in signaling pathways mediated by lipid-protein microdomains formed in myelin.  相似文献   

20.
The present study was designed to determine whether the palmitoylation of the hydrophobic myelin proteolipid protein (PLP) is dependent on cellular energy. To this end, brain slices from 20- and 60-day-old rats were incubated with [3H]palmitate for 1 h in the presence or absence of various metabolic poisons. In adult rats, the inhibition of mitochondrial ATP production with KCN (5 mM), oligomycin (10 microM), or rotenone (10 microM) reduced the incorporation of [3H]palmitate into fatty acyl-CoA and glycerolipids by 50-60%, whereas the labeling of PLP was unaltered. Incubation in the presence of rotenone (10 microM) plus NaF (5 mM) abolished the synthesis of acyl-CoA and lipid palmitoylation, but the incorporation of [3H]palmitate into PLP was still not different from that in controls. In rapidly myelinating animals, the inhibition of both mitochondrial electron transport and glycolysis obliterated the palmitoylation of lipids but reduced that of PLP by only 40%. PLP acylation was reduced to a similar extent when slices were incubated for up to 3 h, indicating that exogenously added palmitate is incorporated into PLP by ATP-dependent and ATP-independent mechanisms. Determination of the number of PLP molecules modified by each of these reactions during development suggests that the ATP-dependent process is important during the formation and/or compaction of the myelin sheath, whereas the ATP-independent mechanism is likely to play a role in myelin maintenance, perhaps by participating in the periodic repair of thioester linkages between the fatty acids and the protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号