首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
Sex determination in the Nile tilapia (Oreochromis niloticus) is thought to be an XX-XY (male heterogametic) system controlled by a major gene. We searched for DNA markers linked to this major locus using bulked segregant analysis. Ten microsatellite markers belonging to linkage group 8 were found to be linked to phenotypic sex. The putative Y-chromosome alleles correctly predict the sex of 95% of male and female individuals in two families. Our results suggest a major sex-determining locus within a few centimorgans of markers UNH995 and UNH104. A third family from the same population showed no evidence for linkage of this region with phenotypic sex, indicating that additional genetic and/or environmental factors regulate sex determination in some families. These markers have immediate utility for studying the strength of different Y chromosome alleles, and for identifying broodstock carrying one or more copies of the Y haplotype.  相似文献   

2.
The understanding of sex determination in general, but in particular in mammals, has been a subject of scientific speculation for a long time. It has been shown that in many vertebrate and invertebrate species, the sex of an individual is determined by the individual's chromosomal constitution. Initial studies of classical genetic searching for sex-transforming mutations and the scrupulous analyses of modified phenotypes have shed light on the mechanism(s) of sex-determination. They paved the road to successful studies at molecular level. After a brief review on sex determination in chosen model species, the “Drosophila system” is presented to exemplify a possible general principle for sex determinism.  相似文献   

3.
Genetic mapping of Y-chromosomal DNA markers in Pacific salmon   总被引:11,自引:0,他引:11  
Devlin RH  Biagi CA  Smailus DE 《Genetica》2001,111(1-3):43-58
Sex chromosomes in fish provide an intriguing view of how sex-determination mechanisms evolve in vertebrates. Many fish species with single-factor sex-determination systems do not have cytogenetically-distinguishable sex chromosomes, suggesting that few sex-specific sequences or chromosomal rearrangements are present and that sex-chromosome evolution is thus at an early stage. We describe experiments examining the linkage arrangement of a Y-chromosomal GH pseudogene (GH-Y) sequence in four species of salmon (chum, Oncorhynchus keta; pink, O. gorbuscha; coho, O. kisutch; chinook, O. tshawytscha). Phylogenetic analysis indicates that GH-Y arose early in Oncorhynchus evolution, after this genus had diverged from Salmo and Salvelinus. However, GH-Y has not been detected in some Oncorhynchus species (O. nerka, O. mykiss and O. clarki), consistent with this locus being deleted in some lineages. GH-Y is tightly linked genetically to the sex-determination locus on the Y chromosome and, in chinook salmon, to another Y-linked DNA marker OtY1. GH-Y is derived from an ancestral GH2 gene, but this latter functional GH locus is autosomal or pseudoautosomal. YY chinook salmon are viable and fertile, indicating the Y chromosome is not deficient of vital genetic functions present on the X chromosome, consistent with sex chromosomes that are in an early stage of divergence.  相似文献   

4.
陆静  陈赢男  尹佟明 《植物学报》2021,56(1):90-103
雌雄异株植物是研究性别决定遗传机制及性染色体起源与进化的理想材料,而克隆性别决定基因是解析性别决定遗传机制的关键。木本植物中有丰富的雌雄异株植物,且包括2种相反的性别决定系统:XY型(雌株为同配型的XX,雄株为异配型的XY)和ZW型(雌株为异配型的ZW,雄株为同配型的ZZ)。此外,不同性别植株的经济价值也有所不同。在木...  相似文献   

5.
Although the sex-determining gene DMY has been identified on the Y chromosome in the medaka (Oryzias latipes), this gene is absent in most Oryzias species, suggesting that closely related species have different sex-determining genes. Here, we investigated the sex-determination mechanism in O. dancena, which does not possess the DMY gene. Since heteromorphic sex chromosomes have not been reported in this species, a progeny test of sex-reversed individuals produced by hormone treatment was performed. Sex-reversed males yielded all-female progeny, indicating that O. dancena has an XX/XY sex-determination system. To uncover the cryptic sex chromosomes, sex-linked DNA markers were screened using expressed sequence tags (ESTs) established in O. latipes. Linkage analysis of isolated sex-linked ESTs showed a conserved synteny between the sex chromosomes in O. dancena and an autosome in O. latipes. Fluorescence in situ hybridization (FISH) analysis of these markers confirmed that sex chromosomes of these species are not homologous. These findings strongly suggest an independent origin of sex chromosomes in O. dancena and O. latipes. Further analysis of the sex-determining region in O. dancena should provide crucial insights into the evolution of sex-determination mechanisms in vertebrates.  相似文献   

6.
Dioecy, the presence of separate sexes on distinct individuals, has evolved repeatedly in multiple plant lineages. However, the specific mechanisms by which sex systems evolve and their commonalities among plant species remain poorly understood. With both XY and ZW sex systems, the family Salicaceae provides a system to uncover the evolutionary forces driving sex chromosome turnovers. In this study, we performed a genome-wide association study to characterize sex determination in two Populus species, P. euphratica and P. alba. Our results reveal an XY system of sex determination on chromosome 14 of P. euphratica, and a ZW system on chromosome 19 of P. alba. We further assembled the corresponding sex-determination regions, and found that their sex chromosome turnovers may be driven by the repeated translocations of a Helitron-like transposon. During the translocation, this factor may have captured partial or intact sequences that are orthologous to a type-A cytokinin response regulator gene. Based on results from this and other recently published studies, we hypothesize that this gene may act as a master regulator of sex determination for the entire family. We propose a general model to explain how the XY and ZW sex systems in this family can be determined by the same RR gene. Our study provides new insights into the diversification of incipient sex chromosomes in flowering plants by showing how transposition and rearrangement of a single gene can control sex in both XY and ZW systems.  相似文献   

7.
Cano JM  Li MH  Laurila A  Vilkki J  Merilä J 《Heredity》2011,107(6):530-536
The common frog (Rana temporaria) has become a model species in the fields of ecology and evolutionary biology. However, lack of genomic resources has been limiting utility of this species for detailed evolutionary genetic studies. Using a set of 107 informative microsatellite markers genotyped in a large full-sib family (800 F1 offspring), we created the first linkage map for this species. This partial map-distributed over 15 linkage groups-has a total length of 1698.8 cM. In line with the fact that males are the heterogametic sex in this species and a reduction of recombination is expected, we observed a lower recombination rate in the males (map length: 1371.5 cM) as compared with females (2089.8 cM). Furthermore, three loci previously documented to be sex-linked (that is, carrying male-specific alleles) in adults from the wild mapped to the same linkage group. The linkage map described in this study is one of the densest ones available for amphibians. The discovery of a sex linkage group in Rana temporaria, as well as other regions with strongly reduced male recombination rates, should help to uncover the genetic underpinnings of the sex-determination system in this species. As the number of linkage groups found (n=15) is quite close to the actual number of chromosomes (n=13), the map should provide a useful resource for further evolutionary, ecological and conservation genetic work in this and other closely related species.  相似文献   

8.
Genetic markers in tilapia species associated with loci affecting sex determination (SD), sex‐specific mortality or both were mapped to linkage groups (LG) 1, 2, 3, 6 and 23. The objective of this study was to use these markers to fine‐map the locus with the greatest effect on SD in Oreochromis niloticus. Our parental stock, full‐sibs of Nile tilapia (Swansea origin), were divided into three groups: (i) untreated, (ii) feminized by diethylstilbestrol and (iii) masculinized by 17α‐methyltestosterone. We analysed the first group for association of microsatellite markers representing these five LGs. The strongest association with gender was found on LG23 for marker UNH8982; P = 8.6 × 10?5). Allele 276 was found almost exclusively in males, and we hypothesized that this allele is a male‐associated allele (MAA). Sex‐reversed individuals were used for mating experiments with and without the segregating MAA. Mating of individuals lacking the MAA resulted in all‐female progeny. Mating of two heterozygotes for MAA gave rise to 81 males and 30 females. Analysis of association between gender and genotypes identified the MAA in 98.6% of males as opposed to 8.0% of females (χ2; P = 2.5 × 10?18). Eight markers that flank UNH898 were genotyped to map the locus on LG23 within a confidence interval of 16–21 cM. Mating of homozygous individuals for MAA is underway for production of all‐male populations.  相似文献   

9.
Dissecting the genetic mechanisms underlying dioecy (i.e., separate female and male individuals) is critical for understanding the evolution of this pervasive reproductive strategy. Nonetheless, the genetic basis of sex determination remains unclear in many cases, especially in systems where dioecy has arisen recently. Within the economically important plant genus Solanum (∼2,000 species), dioecy is thought to have evolved independently at least 4 times across roughly 20 species. Here, we generate the first genome sequence of a dioecious Solanum and use it to ascertain the genetic basis of sex determination in this species. We de novo assembled and annotated the genome of Solanum appendiculatum (assembly size: ∼750 Mb scaffold N50: 0.92 Mb; ∼35,000 genes), identified sex-specific sequences and their locations in the genome, and inferred that males in this species are the heterogametic sex. We also analyzed gene expression patterns in floral tissues of males and females, finding approximately 100 genes that are differentially expressed between the sexes. These analyses, together with observed patterns of gene-family evolution specific to S. appendiculatum, consistently implicate a suite of genes from the regulatory network controlling pectin degradation and modification in the expression of sex. Furthermore, the genome of a species with a relatively young sex-determination system provides the foundational resources for future studies on the independent evolution of dioecy in this clade.  相似文献   

10.
A second-generation genetic linkage map of tilapia (Oreochromis spp.)   总被引:16,自引:0,他引:16  
We constructed a second-generation linkage map of tilapia from the F(2) progeny of an interspecific cross between Oreochromis niloticus and Oreochromis aureus. The map reported here contains 525 microsatellite and 21 gene-based markers. It spans 1311 cM in 24 linkage groups, for an average marker spacing of 2.4 cM. We detected associations of sex and red color with markers on linkage group 3. This map will enable mapping and selective breeding of quantitative traits important to the economic culture of tilapia as a food fish and will contribute to the study of closely related cichlids that have undergone explosive adaptive radiation in the lakes of East Africa.  相似文献   

11.
Sex-determination is commonly categorized as either “genetic” or “environmental”—a classification that obscures the origin of this dichotomy and the evolution of sex-determining factors. The current focus on static outcomes of sex-determination provides little insight into the dynamic developmental processes by which some mechanisms acquire the role of sex determinants. Systems that combine “genetic” pathways of sex-determination (i.e., sex chromosomes) with “environmental” pathways (e.g., epigenetically induced segregation distortion) provide an opportunity to examine the evolutionary relationships between the two classes of processes and, ultimately, illuminate the evolution of sex-determining systems. Taxa with sex chromosomes typically undergo an evolutionary reduction in size of one of the sex chromosomes due to suppressed recombination, resulting in pronounced dimorphism of the sex chromosomes, and setting the stage for emergence of epigenetic compensatory mechanisms regulating meiotic segregation of heteromorphic sex chromosomes. Here we propose that these dispersed and redundant regulatory mechanisms enable environmental contingency in genetic sex-determination in birds and account for frequently documented context-dependence in avian sex-determination. We examine the evolution of directionality in such sex-determination as a result of exposure of epigenetic regulators of meiosis to natural selection and identify a central role of hormones in integrating female reproductive homeostasis, resource allocation to oocytes, and offspring sex. This approach clarifies the evolutionary relationship between sex-specific molecular genetic mechanisms of sex-determination and non-sex-specific epigenetic regulators of meiosis and demonstrates that both can determine sex. Our perspective shows how non-sex-specific mechanisms can acquire sex-determining function and, by establishing the explicit link between physiological integration of oogenesis and sex-determination, opens new avenues to the studies of adaptive sex-bias and sex-specific resource allocation in species with genetic sex-determination.  相似文献   

12.
Partial genetic linkage maps, based on microsatellite markers, were constructed for two tilapia species, Oreochromis aureus and Oreochromis niloticus using an interspecific backcross population. The linkage map for O. aureus comprised 28 markers on 10 linkage groups and covered 212.8 CM. Nine markers were mapped to four linkage groups on an O. niloticus female linkage map covering 40.6 CM. Results revealed a high degree of conservation of synteny between the linkage groups defined in O. aureus and the previously published genetic linkage map of O. niloticus.  相似文献   

13.
Most studies of sex determination systems in plants involve dioecious annuals that have known sex chromosomes. Despite the absence of such structures in the majority of dioecious plants, gender seems to be under relatively strict genetic control in some species. Genetic markers linked to a female sex-determination locus in Salix viminalis L. have been discovered through bulked segregant analysis of three full-sib families using approximately 1,000 arbitrary primers. Two RAPD markers that were present in the common female parent as well as in predominantly female progeny of these families were subsequently sequenced and converted to sequence characterized amplified region (SCAR) markers. The two SCAR markers are correlated with gender in the three full-sib families and are present in 96.4% of the female progeny and 2.2% of the males, providing evidence of linkage to a putative female-specific locus associated with gender determination in S. viminalis. Estimates of recombination suggest that the two markers are flanking a putative sex determination locus, SDL-II, in certain families of S. viminalis.  相似文献   

14.
Studies of sex allocation offer excellent opportunities for examining the constraints and limits on adaptation. A major topic of debate within this field concerns the extent to which the ability of individuals to adaptively manipulate their offspring sex ratio is determined by constraints such as the method of sex determination. We address this problem by comparing the extent of sex-ratio adjustment across taxa with different methods of sex determination, under the common selective scenario of interactions between relatives. These interactions comprise the following: local resource competition (LRC), local mate competition (LMC), and local resource enhancement (LRE). We found that: (1) species with supposedly constraining methods of sex determination showed consistent sex-ratio adjustment in the predicted direction; (2) vertebrates with chromosomal sex determination (CSD) showed less adjustment then haplodiploid invertebrates; (3) invertebrates with possibly constraining sex-determination mechanisms (CSD and pseudo-arrhenotoky) did not show less adjustment then haplodiploid invertebrates; (4) greater sex-ratio adjustment was seen in response to LRC and LMC than LRE; (5) greater sex-ratio adjustment was seen in response to interactions between relatives (LRC, LMC, and LRE) compared to responses to other environmental factors. Our results also illustrate the problem that sex-determination mechanism and selective pressure are confounded across taxa because vertebrates with CSD are influenced primarily by LRE whereas invertebrates are influenced by LRC and LMC. Overall, our analyses suggest that sex-allocation theory needs to consider simultaneously the influence of variable selection pressures and variable constraints when applying general theory to specific cases.  相似文献   

15.
Polyploidization, which is expected to trigger major genomic reorganizations, occurs much less commonly in animals than in plants, possibly because of constraints imposed by sex-determination systems. We investigated the origins and consequences of allopolyploidization in Palearctic green toads (Bufo viridis subgroup) from Central Asia, with three ploidy levels and different modes of genome transmission (sexual versus clonal), to (i) establish a topology for the reticulate phylogeny in a species-rich radiation involving several closely related lineages and (ii) explore processes of genomic reorganization that may follow polyploidization. Sibship analyses based on 30 cross-amplifying microsatellite markers substantiated the maternal origins and revealed the paternal origins and relationships of subgenomes in allopolyploids. Analyses of the synteny of linkage groups identified three markers affected by translocation events, which occurred only within the paternally inherited subgenomes of allopolyploid toads and exclusively affected the linkage group that determines sex in several diploid species of the green toad radiation. Recombination rates did not differ between diploid and polyploid toad species, and were overall much reduced in males, independent of linkage group and ploidy levels. Clonally transmitted subgenomes in allotriploid toads provided support for strong genetic drift, presumably resulting from recombination arrest. The Palearctic green toad radiation seems to offer unique opportunities to investigate the consequences of polyploidization and clonal transmission on the dynamics of genomes in vertebrates.  相似文献   

16.
Much of our current state of knowledge concerning sex chromosome evolution is based on a handful of ‘exceptional’ taxa with heteromorphic sex chromosomes. However, classifying the sex chromosome systems of additional species lacking easily identifiable, heteromorphic sex chromosomes is indispensable if we wish to fully understand the genesis, degeneration and turnover of vertebrate sex chromosomes. Squamate reptiles (lizards and snakes) are a potential model clade for studying sex chromosome evolution as they exhibit a suite of sex‐determining modes yet most species lack heteromorphic sex chromosomes. Only three (of 203) chameleon species have identified sex chromosome systems (all with female heterogamety, ZZ/ZW). This study uses a recently developed method to identify sex‐specific genetic markers from restriction site‐associated DNA sequence (RADseq) data, which enables the identification of sex chromosome systems in species lacking heteromorphic sex chromosomes. We used RADseq and subsequent PCR validation to identify an XX/XY sex chromosome system in the veiled chameleon (Chamaeleo calyptratus), revealing a novel transition in sex chromosome systems within the Chamaeleonidae. The sex‐specific genetic markers identified here will be essential in research focused on sex‐specific, comparative, functional and developmental evolutionary questions, further promoting C. calyptratus’ utility as an emerging model organism.  相似文献   

17.
The discovery of genetic markers linked to physiological traits in wild populations is increasingly desired for ecological and evolutionary studies, as well as to inform management decisions. However, identifying such markers often requires a large investment of both time and money. Serendipitously, in a recent microsatellite survey, we discovered three out of 16 microsatellite loci that were correlated to the female sex in Pacific halibut (Hippoglossus stenolepis). These three loci were screened in 550 Pacific halibut to determine their accuracy at identifying sex. Genetic assignment successfully identified sex in 92% of individuals from sample collections spanning 3,000 km and 9 years. All but two of 287 females had one copy of a characteristic allele for at least one of the three microsatellite loci, resulting in consistent heterozygote excess in females. This pattern is consistent with the hypothesis that females are the heterogametic sex in Pacific halibut, which thus may have a different sex-determination pattern than the closely related Atlantic halibut (Hippoglossus hippoglossus). A rapid divergence of sex-determining mechanisms could be either a cause or consequence of speciation between Pacific and Atlantic halibut. In either case, the ability to genetically identify sex in individual Pacific halibut provides a new tool for ecological studies, fisheries management, and insight into the evolution of sex determination in flatfish.  相似文献   

18.
Squamates may be an attractive group in which to study the influence of sex chromosomes on speciation rates because of the repeated evolution of heterogamety (both XY and ZW), as well as an apparently large number of taxa with environmental sex-determination.  相似文献   

19.
Elucidation of the sex‐determination mechanism in flathead grey mullet (Mugil cephalus) is required to exploit its economic potential by production of genetically determined monosex populations and application of hormonal treatment to parents rather than to the marketed progeny. Our objective was to construct a first‐generation linkage map of the M. cephalus in order to identify the sex‐determining region and sex‐determination system. Deep‐sequencing data of a single male was assembled and aligned to the genome of Nile tilapia (Oreochromis niloticus). A total 245 M. cephalus microsatellite markers were designed, spanning the syntenic tilapia genome assembly at intervals of 10 Mb. In the mapping family of full‐sib progeny, 156 segregating markers were used to construct a first‐generation linkage map of 24 linkage groups (LGs), corresponding to the number of chromosomes. The linkage map spanned approximately 1200 cM with an average inter‐marker distance of 10.6 cM. Markers segregating on LG9 in two independent mapping families showed nearly complete concordance with gender (R2 = 0.95). The sex determining locus was fine mapped within an interval of 8.6 cM on LG9. The sex of offspring was determined only by the alleles transmitted from the father, thus indicating an XY sex‐determination system.  相似文献   

20.
Summary Computer simulations of diploid genetic models were used to examine the consequences of the spread of a cytoplasmic sex ratio distorter on the frequencies of nuclear sex-determination alleles and the spread of nuclear resistance alleles in female biased populations. The cytoplsmic elements considered here override the expression of the nuclear sex-determination genes, turning genetic males into females. When homozygous male genotypes are viable, a cytoplasmic sex ratio historter spreads in a population if the proportion of daughters produced by infected females exceeds the proportion of daughters produced by uninfected females. The equilibrium frequency of male phenotypes is the proportion of uninfected progeny produced by infected females. When homozygous male genotypes are lethal, the conditions for the spread of the cytoplasmic element are more stringent. The spread of a cytoplasmic sex ratio distorter causes an increase in the frequency of nuclear male sex-determination alleles as a result of the unusual combinations of genotypes which mate in infected populations. Eventually, a cytoplasmic element may replace the nuclear gene as the sex-determination mechanism. This occurs without selection. Nuclear genes conferring resistance to cytoplasmic sex ratio distorters generally increase in female biased populations and often restore a 11 sex ratio despite continual selection on the cytoplasmic element to increase its transmission efficiency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号