首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 239 毫秒
1.
Stopped-flow investigation of antioxidant activity of estrogens in solution   总被引:4,自引:0,他引:4  
A kinetic study of the reaction between estrogens (female hormone) and substituted phenoxyl radical has been performed, as a model for the reactions of estrogens with lipid peroxyl radical in biological systems. The rates of reaction of estrogens (estrone 1, estradiol 2, 2-methoxyestrone 3, 3-methoxyestrone 4, and 2-hydroxyestrone 5) with substituted phenoxyl radical in benzene have been determined spectrophotometrically, using stopped-flow technique. The second-order rate constants, k2, obtained are 84 M-1.s-1 for 1, 138 M-1.s-1 for 2, 520 M-1.s-1 for 3, less than 10(-4) M-1.s-1 for 4, and 2.6 X 10(5) M-1.s-1 for 5 at 25.0 degrees C. 2-Hydroxyestrone 5 was found to be 2.9-times more active than alpha-tocopherol, which has the highest antioxidant activity among natural tocopherols. The order of magnitude of k2 value (1 less than 2 less than 3 less than alpha-Toc less than 5) is in agreement with that of in vitro tests of their antioxidant activities, as measured by the inhibition of lipid peroxidation. Further, similar measurements have been performed for the reaction between the above estrogens 1-5 and tocopheroxyl 6 in benzene solution. It was found that the estrogens having an OH group at the aromatic ring have an ability to regenerate the tocopheroxyl 6 to tocopherol. Especially, the 2-hydroxyestrone 5 showed about three orders of magnitude higher reactivity than ascorbic acid.  相似文献   

2.
Antioxidative peculiarities of the effect of tocopherol derivatives are considered. Attempts are made to reveal interrelation between tocopherol pharmacological effect and antiradical activity of its derivatives exemplified by an elementary reaction of tocopherol interaction with free peroxide radicals (FR). It is shown that the presence of free hydroxyl groups, number and location of CH3--groups in tocopherol benzol ring produce a significant effect on tocopherol ability to react with FR. The length of lateral phitil chain produces no appreciable effect on the rate of tocopherol reaction with free radicals. The values of energy activation in this reaction are calculated for tocopherol derivatives. Correlation between biological and antiradical activity of tocopherol homologs is shown. The absence of such correlation for tocopherol analogs is explained by the difference in the ability of analogs to be incorporated into biological membranes. Possible tocopherol regulations of the rates of free radical processes proceeding in lipid membranes are considered.  相似文献   

3.
Tocopherols serve a critical role as antioxidants inhibiting lipid peroxidation in photosynthetic organisms, yet are seldom used in geobiological investigations. The ubiquity of tocopherols in all photosynthetic lifeforms is often cited as an impediment to any diagnostic paleoenvironmental potential, while the inability to readily analyze these compounds via conventional methods, such as gas chromatography–mass spectrometry, further diminishes the capacity to serve as useful ‘biomarkers’. Here, we analyzed an exceptionally preserved black shale sequence from the Demerara Rise that spans Oceanic Anoxic Event 2 (OAE-2) to reexamine the significance of tocopherols and associated derivatives (i.e. tocol derivatives) in ancient sediments. Tocol derivatives were analyzed via liquid chromatography–quadrupole time-of-flight–mass spectrometry and included tocopherols, a methyltrimethyltridecylchroman, and the first reported detection of tocopherol quinones and methylphytylbenzoquinones in the geologic record. Strong correlations between tocol derivatives were observed over the studied interval. Tocol derivative concentrations and ratios, which normalized tocopherols to potential derivatives, revealed absolute and relative increases in tocopherols as exclusive features of OAE-2 that can be explained by two possible mechanisms related to tocopherol production and preservation. The development of photic zone euxinia during OAE-2 likely forced an upward migration of oxygenic photoautotrophs, increasing oxidative stress that elicited heightened tocopherol biosynthesis. However, shoaling euxinic conditions may have simultaneously acted to enhance tocopherol preservation given the relatively high lability of tocopherols in the water column. Both scenarios could produce the observed stratigraphic distribution of tocol derivatives in this study, although the elevated tocopherol concentrations that define OAE-2 at the Demerara Rise are primarily attributed to enhanced tocopherol production by shoaling phytoplanktonic communities. Thus, the occurrence of tocopherols and associated derivatives in sediments and rocks of marine origin is likely indicative of shallow-water anoxia, tracking the phytoplanktonic response to the abiotic stresses associated with vertical fluctuations in pelagic redox.  相似文献   

4.
Reactions of tocopherol model compounds with superoxide ion (02-) were investigated. 6-Hydroxy-2,2,5,7,8-pentamethylchroman (alpha-model), 6-hydroxy-2,2,5,7-tetramethylchroman and 6-hydroxy-2,2,5,8-tetramethylchroman (beta-model) were oxidized by O2- to yield chromanoxyl radicals which gave ESR spectra, but the radical species were not obtained from 6-hydroxy-2,2,7,8-tetramethylchroman (gamma-model) and 6-hydroxy-2,2-dimethylchroman, both of which do not have a methyl substituent at the C-5 position. ESR studies of the reactions of O2- with tocopherols or their model compounds indicate that the radical concentrations from tocopherol models correlate with the physiological activities of the tocopherols.  相似文献   

5.
Tocopherols are lipophilic antioxidants and together with tocotrienols belong to the vitamin-E family. The four forms of tocopherols (??-, ??-, ??- and ??-tocopherols) consist of a polar chromanol ring and lipophilic prenyl chain with differences in the position and number of methyl groups. The biosynthesis of tocopherols takes place mainly in plastids of higher plants from precursors derived from two metabolic pathways: homogentisic acid, an intermediate of degradation of aromatic amino acids, and phytyldiphosphate, which arises from methylerythritol phosphate pathway. The regulation of tocopherol biosynthesis in photosynthetic organisms occurs, at least partially, at the level of key enzymes as such including p-hydroxyphenylpyruvate dioxygenase (HPPD, EC 1.13.11.27), homogentisate phytyltransferase (HPT, EC 2.5.1.-), tocopherol cyclase (TC, EC 5.4.99.-), and two methyltransferases. Tocopherol biosynthesis changes during plant development and in response toward different stresses induced by high-intensity light, drought, high salinity, heavy metals, and chilling. It is supposed that scavenging of lipid peroxy radicals and quenching of singlet oxygen are the main functions of tocopherols in photosynthetic organisms. The antioxidant action of tocopherols is related to the formation of tocopherol quinone and its following recycling or degradation. However, until now, the mechanisms of tocopherol degradation in plants have not been established in detail. This review focuses on mechanisms of tocopherols biosynthesis and its regulation in photosynthetic organisms. In addition, available information on tocopherol degradation is summarized.  相似文献   

6.
Myeloperoxidase (MPO)-catalyzed one-electron oxidation of endogenous phenolic constituents (e.g., antioxidants, hydroxylated metabolites) and exogenous compounds (e.g., drugs, environmental chemicals) generates free radical intermediates: phenoxyl radicals. Reduction of these intermediates by endogenous reductants, i.e. recycling, may enhance their antioxidant potential and/or prevent their potential cytotoxic and genotoxic effects. The goal of this work was to determine whether generation and recycling of MPO-catalyzed phenoxyl radicals of a vitamin E homologue, 2,2,5,7,8-pentamethyl-6-hydroxychromane (PMC), by physiologically relevant intracellular reductants such as ascorbate/lipoate could be demonstrated in intact MPO-rich human leukemia HL-60 cells. A model system was developed to show that MPO/H(2)O(2)-catalyzed PMC phenoxyl radicals (PMC*) could be recycled by ascorbate or ascorbate/dihydrolipoic acid (DHLA) to regenerate the parent compound. Absorbance measurements demonstrated that ascorbate prevents net oxidation of PMC by recycling the phenoxyl radical back to the parent compound. The presence of DHLA in the reaction mixture containing ascorbate extended the recycling reaction through regeneration of ascorbate. DHLA alone was unable to prevent PMC oxidation. These conclusions were confirmed by direct detection of PMC* and ascorbate radicals formed during the time course of the reactions by EPR spectroscopy. Based on results in the model system, PMC* and ascorbate radicals were identified by EPR spectroscopy in ascorbate-loaded HL-60 cells after addition of H(2)O(2) and the inhibitor of catalase, 3-aminotriazole (3-AT). The time course of PMC* and ascorbate radicals was found to follow the same reaction sequence as during their recycling in the model system. Recycling of PMC by ascorbate was also confirmed by HPLC assays in HL-60 cells. Pre-loading of HL-60 cells with lipoic acid regenerated ascorbate and thus increased the efficiency of ascorbate in recycling PMC*. Lipoic acid had no effect on PMC oxidation in the absence of ascorbate. Thus PMC phenoxyl radical does not directly oxidize thiols but can be recycled by dihydrolipoate in the presence of ascorbate. The role of phenoxyl radical recycling in maintaining antioxidant defense and protecting against cytotoxic and genotoxic phenolics is discussed.  相似文献   

7.
Pulse radiolysis and electron spin resonance experiments have been performed on the antithrombotic and antimetastatic agent, nafazatrom. Results show that nafazatrom is an extremely reactive scavenger of free radicals. The rate of its reaction with Br-2 is higher than rates found for biologically important antioxidants, tocopherol and ascorbate. The radical formed by oxidation of nafazatrom is indicated by ESR to have a structure similar to phenoxyl radical. This radical is found to decay at a rate approaching diffusion controlled rates. The ease of oxidation of nafazatrom makes it ideally suited to act as an antioxidant. This property may be an important determinant of its pharmacological activities.  相似文献   

8.
This tutorial review is focused on some mechanistic aspects of peroxidation process and chemistry of phenolic chain-breaking antioxidants. Lipids are susceptible to oxidative degradation caused by radicals and during autoxidation (peroxidation) the chain reaction is mediated by peroxyl radicals leading to damage of integrity and the protective and organizational properties of biomembranes. Phenolic antioxidants provide active system of defence against lipid peroxidation, however, the effectiveness of their antioxidant action depends on several important parameters. Stoichiometry of the reaction with free radicals, fate of a phenoxyl radical, polarity of the microenvironment, localization of antioxidant molecules, their concentration and mobility, kinetic solvent effects, and interactions with other co-antioxidants are considered. Principal mechanisms of reaction between phenols and free radicals (Hydrogen Atom Transfer, Proton Coupled Electron Transfer and two mechanisms based on separate electron transfer and proton transfer steps) are described.  相似文献   

9.
alpha-Tocopherol inhibits glutathione S-transferase P1-1 (GST P1-1) (R.I.M. van Haaften, C.T.A. Evelo, G.R.M.M. Haenen, A. Bast, Biochem. Biophys. Res. Commun. 280 (2001)). In various cosmetic and dietary products alpha-tocopherol is added as a tocopherol ester. Therefore we have studied the effect of various tocopherol derivatives on GST P1-1 activity. It was found that GST P1-1 is inhibited, in a concentration dependent manner, by these compounds. Of the compounds tested, the tocopherols were the most potent inhibitors of GST P1-1; the concentration giving 50% inhibition (IC(50)) is <1 microM. The esterified tocopherols and alpha-tocopherol quinone also inhibit the GST P1-1 activity at a very low concentration: for most compounds the IC(50) was below 10 microM. RRR-alpha-Tocopherol acetate lowered the V(max) values, but did not affect the K(m) for either 1-chloro-2,4-dinitrobenzene or GSH. This indicates that the GST P1-1 enzyme is non-competitively inhibited by RRR-alpha-tocopherol acetate. The potential implications of GST P1-1 inhibition by tocopherol and alpha-tocopherol derivatives are discussed.  相似文献   

10.
Generation and recycling of radicals from phenolic antioxidants   总被引:3,自引:0,他引:3  
Hindered phenols are widely used food preservatives. Their pharmacological properties are usually attributed to high antioxidant activity due to efficient scavenging of free radicals. Butylated hydroxytoluene (BHT) and butylated hydroxyanisole (BHA) also cause tissue damage. Their toxic effects could be due to the production of phenoxyl radicals. If phenoxyl radicals can be recycled by reductants or electron transport, their potentially harmful side reactions would be minimized. A simple and convenient method to follow phenoxyl radical reactions in liposomes and rat liver microsomes based on an enzymatic (lipoxygenase + linolenic acid) oxidation system was used to generate phenoxyl radicals from BHT and its homologues with substitutents in m- and p-positions. Different BHT-homologues display characteristic ESR signals of their radical species. In a few instances the absence of phenoxyl radical ESR signals was found to be due to inhibition of lipoxygenase by BHT-homologues. In liposome or microsome suspensions addition of ascorbyl palmitate resulted in disappearance of the ESR signal of phenoxyl radicals with concomittant appearance of the ascorbyl radical signal. After exhaustion of ascorbate, the phenoxyl radical signal reappears. Comparison of the rates of ascorbyl radical decay in the presence or absence of BHT-homologues showed that temporary elimination of the phenoxyl radical ESR signal was due to their reduction by ascorbate. Similarly, NADPH or NADH caused temporary elimination of ESR signals as a result of reduction of phenoxyl radicals in microsomes. Since ascorbate and NADPH might generate superoxide in the incubation system used, SOD was tested. SOD shortened the period, during which the phenoxyl radicals ESR signal could not be observed. Both ascorbyl palmitate and NADPH exerted sparing effects on the loss of BHT-homologues during oxidation. These effects were partly diminished by SOD. These data indicate that reduction of phenoxyl radicals was partly superoxide-dependent. It is concluded that redox recycling of phenoxyl radicals can occur by intracellular reductants like ascorbate and microsomal electron transport.  相似文献   

11.
Azo compounds enable us to generate peroxyl radicals by thermal decomposition at a constant rate and at a desired site, that is, water-soluble compounds produce initiating radicals in an aqueous phase and lipid-soluble compounds initiate the oxidation within the membrane-lipid layer. Using these radicals generated in different sites, we oxidized red blood cell ghost membranes to study the relationships between alpha-tocopherol depletion, initiation of lipid peroxidation, and protein damage. When radicals were generated in the aqueous phase, the loss of membrane protein thiols was observed concurrently with the consumption of membrane tocopherol and after tocopherol was exhausted the peroxidation of membrane lipids occurred. On the other hand, when radicals were initiated within the lipid region, the oxidation of thiols and the formation of thiobarbituric acid-reactive substances were suppressed to give an induction period until tocopherol fell below a critical level. Our results indicate that the surface thiols of extrinsic proteins may compete with alpha-tocopherol for trapping aqueous radicals and spare tocopherol to some extent, whereas the oxidation of intrinsic buried thiols may commence due to lipid-derived radicals produced after tocopherol was consumed. In conclusion, alpha-tocopherol in the membrane can break the free radical chain efficiently to inhibit the lipid peroxidation. However, the effect of tocopherol on the inhibition of membrane protein damage, exhibited by the loss of thiols and the formation of high-molecular-weight proteins, would be different depending on the site of initial radical generation.  相似文献   

12.
Free radical reactions of curcumin and its ethoxy substituted derivative (C1) 1,7-bis-(4-hydroxy-3-ethoxy phenyl)-1,6-heptadiene-3,5-dione have been studied using a pulse radiolysis technique in homogeneous aqueous-organic solutions like acetonitrile-water and isopropanol-water mixtures, as well as in neutral TX-100 and cationic CTAB micellar solutions. The phenoxyl radicals of curcumin or C1 were generated by one-electron transfer to several oxidants like N(3)(.), Br(2)(-.), CCl(3)O(2)(.), glutathione radicals which exhibit absorption from a 300-600-nm wavelength region with the maximum at 490-500 nm. Other important properties of the phenoxyl radicals such as extinction coefficient, radical lifetime and their formation and decay rate constants were also determined in these systems. The antioxidant property of curcumin and C1 were estimated in terms of their ability to inhibit the lipid peroxidation in liposomes and also in terms of trolox equivalent antioxidant capacity (TEAC). The results were compared with alpha-tocopherol.  相似文献   

13.
The free radical scavenging properties and possible antioxidant activity of folic acid are reported. Pulse radiolysis technique is employed to study the one-electron oxidation of folic acid in homogeneous aqueous solution. The radicals used for this study are CCl3O2, N3, SO4, Br2, √OH, and O•−. All these radicals react with folic acid under ambient condition at an almost diffusion-controlled rate producing two types of transients. The first transient absorption maximum is around 430 nm, which decays, and a simultaneous growth at around 390 nm is observed. Considering the chemical structure of folic acid, the absorption maximum at 430 nm has been assigned to a phenoxyl radical. The latter one is proposed to be a delocalized molecular radical. A permanent product has been observed in the oxidation of folic acid with CCl3O2 and N3 radicals, with a broad absorption band around 370–400 nm. The bimolecular rate constants for all the radical-induced oxidation reactions of folic acid have been measured. Folic acid is seen to scavenge these radicals very efficiently. In the reaction of thiyl radicals with folic acid, it has been observed that folic acid can not only scavenge thiyl radicals but can also repair these thiols at physiological pH. While carrying out the lipid peroxidation study, in spite of the fact that folic acid is considerably soluble in water, we observed a significant inhibition property in microsomal lipid peroxidation. A suitable mechanism for oxidation of folic acid and repair of thiyl radicals by folic acid has been proposed.  相似文献   

14.
In the present study, we have demonstrated that membrane-free extracts of etiolated shoots of Phaseolus coccineus seedlings show tocopherol oxidase activity. For this reaction, presence of membrane lipids, such as lecithin and mixture of plant lipids was required. The rate of the reaction was the highest for α-tocopherol and decreased in the order α ? β > γ > δ tocopherols. In the case of α-tocopherol, the main oxidation product was α-tocopherolquinone, while for the other tocopherol homologues the dominant products were other derivatives. When the enzyme activity was measured in leaves, hypocotyls and roots of etiolated seedlings of P. coccineus, the oxidase activity was the highest in extracts of leaves and decreased towards the roots where no activity was detected. The effect of hydrogen peroxide and of different inhibitors on the reaction suggest that tocopherol oxidase does not belong to peroxidases or flavin oxidases but rather to multi-copper oxidases, such as polyphenol oxidases or laccases. On the other hand, catechol, the well-known substrate of polyphenol oxidases and laccases, was not oxidized by the enzyme, indicating a high substrate specificity of the tocopherol oxidase.  相似文献   

15.
Tocopherols and tocotrienols are food ingredients that are believed to have a positive effect on health. The most studied property of both groups of compounds is their antioxidant action. Previously, we found that tocopherols and diverse tocopherol derivatives can inhibit the activity of human glutathione S-transferase P1-1 (GST P1-1). In this study we found that GST P1-1 is also inhibited, in a concentration-dependent manner, by alpha- and gamma-tocotrienol. The concentration giving 50% inhibition of GST P1-1 is 1.8 +/- 0.1 microM for alpha-tocotrienol and 0.7 +/- 0.1 microM for gamma-tocotrienol. This inhibition of GST P1-1 is noncompetitive with respect to both substrates CDNB and GSH. We also examined the 3D structure of GST P1-1 for a possible tocopherol/tocotrienol binding site. The enzyme contains a very hydrophobic pit-like structure where the phytyl tail of tocopherols and tocotrienols could fit in. Binding of tocopherol and tocotrienol to this hydrophobic region might lead to bending of the 3D structure. In this way tocopherols and tocotrienols can inhibit the activity of the enzyme; this inhibition can have far-reaching implications for humans.  相似文献   

16.
To understand the relative importance of phenolic O-H and the CH-H hydrogen on the antioxidant activity and the free radical reactions of Curcumin, (1,7-bis[4-hydroxy-3-methoxyphenyl]-1,6-heptadiene-3,5-dione), biochemical, physicochemical, and density functional theory (DFT) studies were carried out with curcumin and dimethoxy curcumin (1,7-bis[3, 4-dimethoxy phenyl]-1,6-heptadiene-3,5-dione). The antioxidant activity of these compounds was tested by following radiation-induced lipid peroxidation in rat liver microsomes, and the results suggested that at equal concentration, the efficiency to inhibit lipid peroxidation is changed from 82% with curcumin to 24% with dimethoxy curcumin. Kinetics of reaction of (2,2'-diphenyl-1-picrylhydrazyl) DPPH, a stable hydrogen abstracting free radical was tested with these two compounds using stopped-flow spectrometer and steady state spectrophotometer. The bimolecular rate constant for curcumin was found to be approximately 1800 times greater than that for the dimethoxy derivative. Cyclic voltammetry studies of these two systems indicated two closely lying oxidation peaks at 0.84 and 1.0 V vs. SCE for curcumin, while only one peak at 1.0 V vs. SCE was observed for dimethoxy curcumin. Pulse radiolysis induced one-electron oxidation of curcumin and dimethoxy curcumin was studied at neutral pH using (*)N(3) radicals. This reaction with curcumin produced phenoxyl radicals absorbing at 500 nm, while in the case of dimethoxy curcumin a very weak signal in the UV region was observed. These results suggest that, although the energetics to remove hydrogen from both phenolic OH and the CH(2) group of the beta-diketo structure are very close, the phenolic OH is essential for both antioxidant activity and free radical kinetics. This is further confirmed by DFT calculations where it is shown that the -OH hydrogen is more labile for abstraction compared to the -CH(2) hydrogen in curcumin. Based on various experimental and theoretical results it is definitely concluded that the phenolic OH plays a major role in the activity of curcumin.  相似文献   

17.
The activity–structure relationships (ASR) of phenolic compounds as hydroxyl-radical scavengers have mostly been studied and discussed with regard to their iron-chelating and hydrogen-donation properties in Fenton-type system, but extensive elucidation of multiple mechanisms underlying the hydroxyl radical scavenging reaction is out of obtaining up to now. In the present paper, a series of phenolic compounds was studied for their reactivity with hydroxyl radical by computed chemistry and deoxyribose degradation assay. The rate constant (KS), an index dependent markedly on the reaction mechanism and intrinsic reactivity of antioxidants, was found to have good correlation with hydroxyl O–H bond strength (ΔHf), electron-donating ability (ionization potential approximated by HOMO energy level), enthalpy of single electron transfer (Ea), and spin distribution of phenoxyl radicals (Dsr) after H-abstraction. Moreover, the theoretical parameters were highly intercorrelated, suggesting that multiple mechanisms co-exist in the hydroxyl-radical-scavenging reaction and interact with each other. Multi-linear regression analysis indicated that, in addition to H-atom transfer, electron transfer process and stability of the resulted phenoxyl radicals also significantly influence the reactivity of quenching hydroxyl radicals. The QSAR model so established here was based on the elucidation of the complex molecular mechanisms, and may reasonably predict the antioxidant activity using simple experimental and calculated parameters.  相似文献   

18.
The content of vitamin E (tocopherols) in natural vegetable oils and fats has been determined by microcalorimetry. This technique belongs to kinetic methods for determining vitamin E, which are based on the capacity of tocopherol to inhibit liquid-phase radical oxidation reactions. It has been shown on a model reaction of initiated oxidation of cumene that fatty oils inhibit the radical reaction with an induction period proportional to the content of tocopherols in oil. From experimental curves, the content of tocopherols in oils obtained by different technological methods has been estimated. It has been shown that the amount of tocopherols is an indicator of the oil quality; therefore, the method proposed can be used to control the way of oil manufacture, oil quality, and the presence of synthetic antioxidants.  相似文献   

19.
The antioxidant properties of hydroxycinnamic acid derivatives (HCA) were studied by laser flash photolysis. The transient species with maximum absorption at 360 nm were assigned to the phenoxyl radical of HCA. The SO4•− induced oxidation of HCA was also investigated. It was shown that the interaction of SO4•− with HCA resulted in the formation of HCA phenoxyl radicals with rate constants of 2.0–3.9×109 M−1 s−1. The reactions of HCA with triplet state of benzophenone were analyzed and quenching rate constants of 4.3–7.8×109 M−1 s−1 were determined.  相似文献   

20.
Tocopherols, collectively known as vitamin E, are lipid-soluble antioxidants synthesized exclusively by photosynthetic organisms and are required components of mammalian diets. The committed step in tocopherol biosynthesis involves condensation of homogentisic acid and phytyl diphosphate (PDP) catalyzed by a membrane-bound homogentisate phytyltransferase (HPT). HPTs were identified from Synechocystis sp. PCC 6803 and Arabidopsis based on their sequence similarity to chlorophyll synthases, which utilize PDP in a similar prenylation reaction. HPTs from both organisms used homogentisic acid and PDP as their preferred substrates in vitro but only Synechocystis sp. PCC 6803 HPT was active with geranylgeranyl diphosphate as a substrate. Neither enzyme could utilize solanesyl diphosphate, the prenyl substrate for plastoquinone-9 synthesis. In addition, disruption of Synechocystis sp. PCC 6803 HPT function causes an absence of tocopherols without affecting plastoquinone-9 levels, indicating that separate polyprenyltransferases exist for tocopherol and plastoquinone synthesis in Synechocystis sp. PCC 6803. It is surprising that the absence of tocopherols in this mutant had no discernible effect on cell growth and photosynthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号