首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
A novel DNA sequence element termed the J element involved in the regulated expression of class II major histocompatibility complex genes was recently described. To study this element and its role in class II gene regulation further, a cDNA library was screened with oligonucleotide probes containing both the S element and the nearby J element of the human DPA gene. Several DNA clones were obtained by this procedure, one of which, clone 18, is reported and characterized here. It encodes a protein predicted to contain 688 amino acid residues, including 11 zinc finger motifs of the C2H2 type in the C-terminal region, that are Krüppel-like in the conservation of the H/C link sequence connecting them. The 160 N-terminal amino acids in the nonfinger region of clone 18 are highly homologous with similar regions of several other human, mouse, and Drosophila sequences, defining a subfamily of Krüppel-like zinc finger proteins termed TAB (tramtrack [ttk]-associated box) here. One of the Drosophila sequences, ttk, is a developmental control gene, while a second does not contain a zinc finger region but encodes a structure important in oocyte development. An acidic activation domain is located between the N-terminal conserved region of clone 18 and its zinc fingers. This protein appears to require both the S and J elements, which are separated by 10 bp for optimal binding. Antisense cDNA to clone 18 inhibited the expression of a reporter construct containing the DPA promoter, indicating its functional importance in the expression of this class II gene.  相似文献   

2.
Filippov V  Solovyev V  Filippova M  Gill SS 《Gene》2000,245(1):213-221
The RNase III family of double-stranded RNA-specific endonucleases is characterized by the presence of a highly conserved 9 amino acid stretch in their catalytic center known as the RNase III signature motif. We isolated the drosha gene, a new member of this family in Drosophila melanogaster. Characterization of this gene revealed the presence of two RNase III signature motifs in its sequence that may indicate that it is capable of forming an active catalytic center as a monomer. The drosha protein also contains an 825 amino acid N-terminus with an unknown function. A search for the known homologues of the drosha protein revealed that it has a similarity to two adjacent annotated genes identified during C. elegans genome sequencing. Analysis of the genomic region of these genes by the Fgenesh program and sequencing of the EST cDNA clone derived from it revealed that this region encodes only one gene. This newly identified gene in nematode genome shares a high similarity to Drosophila drosha throughout its entire protein sequence. A potential drosha homologue is also found among the deposited human cDNA sequences. A comparison of these drosha proteins to other members of the RNase III family indicates that they form a new group of proteins within this family.  相似文献   

3.
4.
5.
《Gene》1997,185(1):99-103
A mouse testis cDNA expression library (Clontech) was screened with a synthetic oligonucleotide ligand containing CT-rich motifs derived from the rat skeletal muscle actin gene promoter. These motifs bind nuclear proteins, and seem to be involved in the regulation of the gene. Analysis of isolated clones, which expressed proteins that specifically bind the oligonucleotide, indicated that they were derived from a single gene. This gene was identified as a contaminant of bacterial origin (Leuconostoc lactis). The cloned gene from L. lactis encodes a protein with significant homology to bacterial ribosomal protein S1, which we designated LrpS1-L. Band shift analysis and competition experiments indicated that both the bacterial protein and a mouse nuclear protein specifically bind to the same CT-rich motif of the skeletal muscle actin promoter. Furthermore, antibodies against the recombinant bacterial protein interfered with the formation of complex between the CT-rich element and the mouse nuclear protein. These results indicate that the bacterial LrpS1-L protein and the mammalian protein bind the same CT-rich motif and share common antigenic epitopes.  相似文献   

6.
7.
To discover causes of infertility and potential contraceptive targets, we used in silico subtraction and genomic database mining to identify conserved genes with germ cell-specific expression. In silico subtraction identified an expressed sequence tag (EST) present exclusively in a newborn mouse ovary library. The full-length cDNA sequence corresponding to this EST encodes a novel protein containing four ankyrin (ANK) repeats, a sterile-alpha motif (SAM), and a putative basic leucine zipper (bZIP) domain. Northern blot and semiquantitative RT-PCR analyses demonstrated that the mRNA is exclusively expressed in the mouse testis and ovary. The expression sites were localized by in situ hybridization to pachytene spermatocytes in the testis and oocytes in the ovary. Immunohistochemistry showed that the novel protein is localized to the cytoplasm in pachytene spermatocytes and early spermatids, oocytes at all stages of oogenesis, and in early preimplantation embryos. Based on its germ cell-specific expression and the presence of ANK, SAM, and basic leucine zipper domains, we have termed this novel protein GASZ. The mouse Gasz gene, which consists of 13 exons and spans 60 kb, is located on chromosome 6 between the Wnt2 and cystic fibrosis transmembrane conductance regulator (Cftr) genes. Using genomic database mining, orthologous genes encoding GASZ were identified in the rat, cow, baboon, chimpanzee, and human. Phylogenetic analyses reveal that the GASZ proteins are highly conserved among these species. Human and mouse GASZ proteins share 85.3% amino acid identity, and human and chimpanzee GASZ proteins differ by only 3 out of 475 amino acids. In humans, the GASZ gene resides on chromosome 7 and is similarly composed of 13 exons. Because both ANK repeats and the SAM domain function as protein-protein interaction modules that mediate signal transduction cascades in some systems, GASZ may represent an important cytoplasmic signal transducer that mediates protein-protein interactions during germ cell maturation in both males and females and during preimplantation embryogenesis.  相似文献   

8.
9.
Gasdermin (Gsdm) was originally identified as a candidate causative gene for several mouse skin mutants. Several Gsdm-related genes sharing a protein domain with DFNA5, the causative gene of human nonsyndromic hearing loss, have been found in the mouse and human genomes, and this group is referred to as the DFNA5-Gasdermin domain family. However, our current comparative genomic analysis identified several novel motifs distinct from the previously reported domain in the Gsdm-related genes. We also identified three new Gsdm genes clustered on mouse chromosome 15. We named these genes collectively the Gsdm family. Extensive expression analysis revealed exclusive expression of Gsdm family genes in the epithelium of the skin and gastrointestinal tract in a highly tissue-specific manner. Further database searching revealed the presence of other related genes with a similar N-terminal motif. These results suggest that the Gsdm family and related genes have evolved divergent epithelial expression profiles.  相似文献   

10.
11.
12.
We have isolated and characterized a unique gene that encodes a highly conserved membrane bound extracellular protein that defines a new epidermal growth factor-related gene family. The CRELD1 (Cysteine-Rich with EGF-Like Domains 1) gene (previously known as cirrin) was cloned from a human chromosome 3 BAC. Mapping of the gene confirmed its position at chromosome 3p25.3. The gene is ubiquitously expressed in early development and later becomes more markedly expressed in the developing heart, limb buds, mandible and central nervous system. Expression persists in adulthood in most tissues. Sequence analysis suggests that this is a cell adhesion protein. The mouse orthologue was cloned and mapped to the syntenic region of mouse chromosome 6. Orthologues or homologues have also been identified for cow, Chinese hamster, Drosophila and Caenorhabditis elegans. The CRELD1 gene is deleted in the human cytogenetic disorder 3p- syndrome and is in the region of loss of heterozygosity for several types of cancer. A potential role for this protein in these disorders is discussed.  相似文献   

13.
14.
15.
We previously identified a partial expressed sequence tag clone corresponding to NARG2 in a screen for genes that are expressed in developing neurons and misexpressed in transgenic mice that lack functional N-methyl-d-aspartate receptors. Here we report the first characterization of the mouse and human NARG2 genes, cDNAs and the proteins that they encode. Mouse and human NARG2 consist of 988 and 982 amino acids, respectively, and share 74% identity. NARG2 does not display significant homology to other known genes, and lower organisms such as Saccharomyces cerevisiae, Drosophila melanogaster and Fugu rubripes appear to lack NARG2 orthologs. In vitro translation of the mouse cDNA yields a 150 kDa protein. NARG2 localizes to the nucleus in transfected cells, and deletion of a canonical basic nuclear localization signal suggests that this and other sequences in the protein cooperate for nuclear targeting. NARG2 consists of 16 exons in both mice and humans, 11 of which are identical in length, and alternative splicing is evident in both species. Exon 10 is the largest, and exhibits a much higher rate of nonsynonymous nucleotide substitution than the others. In addition, NARG2 contains (S/T)PXX motifs (11 in mouse NARG2, six in human NARG2). Northern blot analysis and RNase protection demonstrated that NARG2 is expressed at relatively high levels in dividing and immature cells, and that it is down-regulated upon terminal differentiation. The results indicate that NARG2 encodes a novel (S/T)PXX motif-containing nuclear protein, and suggest that NARG2 may play an important role in the early development of a number of different cell types.  相似文献   

16.
Draft sequence derived from the 46-Mb gene-rich euchromatic portion of human chromosome 19 (HSA19) was utilized to generate a sequence-ready physical map spanning homologous regions of mouse chromosomes. Sequence similarity searches with the human sequence identified more than 1000 individual orthologous mouse genes from which 382 overgo probes were developed for hybridization. Using human gene order and spacing as a model, these probes were used to isolate and assemble bacterial artificial chromosome (BAC) clone contigs spanning homologous mouse regions. Each contig was verified, extended, and joined to neighboring contigs by restriction enzyme fingerprinting analysis. Approximately 3000 mouse BACs were analyzed and assembled into 44 contigs with a combined length of 41.4 Mb. These BAC contigs, covering 90% of HSA19-related mouse DNA, are distributed throughout 15 homology segments derived from different regions of mouse chromosomes 7, 8, 9, 10, and 17. The alignment of the HSA19 map with the ordered mouse BAC contigs revealed a number of structural differences in several overtly conserved homologous regions and more precisely defined the borders of the known regions of HSA19-syntenic homology. Our results demonstrate that given a human draft sequence, BAC contig maps can be constructed quickly for comparative sequencing without the need for preestablished mouse-specific genetic or physical markers and indicate that similar strategies can be applied with equal success to genomes of other vertebrate species.  相似文献   

17.
18.
The PDZ domain gained its name from the three proteins that were first seen to have homology by virtue of these domains, the mammalian postsynaptic density protein, PSD-95, the Drosophila discs-large septate junction protein, DLG, and the mammalian epithelial tight-junction protein zona occludens, ZO-1. Over 50 PDZ domain-containing genes have been recognized so far from almost any organism subjected to sequencing, including mammals, nematodes, yeast, plants, and bacteria. The domain consists of an approximately 90-amino-acid-residue unit, which is often repeated in the protein. The majority of residues form a conserved spatial structure while a few amino acids in critical positions confer protein binding specificity. A subgroup of PDZ domains have been shown to recognize a short carboxy-terminal amino acid motif, T/SXV (Ser/Thr-X-Val-COO-), where X is any amino acid. We have identified and completely sequenced a gene, Mpdz, that encodes a mouse protein containing 13 such domains. We have also mapped the gene to a series of overlapping deletions on mouse chromosome 4 and can therefore determine that its function is not essential for embryonic development or neonatal survival.  相似文献   

19.
Database searching with bacterial serine beta-lactamases identified mouse expressed sequence tags (ESTs) with significant similarity scores.The cloned mouse cDNA encodes a novel 551-amino-acid protein, LACTB, with a predicted amino-terminal transmembrane domain but no signal peptide. It contains an active site motif related to C-class beta-lactamases. Homologues were detected in sequence data from human, rat, cow, rabbit, pig, toad, zebrafish, and Caenorhabditis elegans, but not in Saccharomyces cerevisiae or Drosophila melanogaster. The genes were mapped to human chromosome 15q22.1 and mouse chromosome 9. Sequencing of a 14.7-kb fragment of mouse genomic DNA defined six exons. A virtual human cDNA and a 549-residue protein, predicted from unfinished genomic sequence, showed the same intron/exon structure. Northern blot analysis showed expression of the 2.3-kb mRNA predominantly in mouse liver and human skeletal muscle. This is the first reported vertebrate example of this microbial peptidase family.  相似文献   

20.
The vertebrate Axin protein, the product of the mouse fused gene, binds to beta-catenin to inhibit Wnt signaling. We have identified a homolog of Axin in Drosophila, Daxin. Using double-stranded RNA interference, we generated loss-of-function phenotypes that are similar to overexpression of the Drosophila Wnt gene wingless (wg). Overexpression of Daxin produces phenotypes similar to loss of wg. In addition, we show that Daxin overexpression can modify phenotypes elicited by wg and another Drosophila Wnt gene, DWnt-2. Using immunoprecipitation of endogenous Daxin protein from embryos we show that Daxin interacts with Armadillo and Zeste-white 3. The loss-of-function and overexpression phenotypes show that Daxin, like its mammalian counterpart, acts as a negative regulator of wg/Wnt signaling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号