首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Iron release from human serum transferrin (hTF) has been studied extensively; however, the molecular details of the mechanism(s) remain incomplete. This is in part due to the complexity of this process, which is influenced by lobe–lobe interactions, the transferrin receptor (TFR), the salt effect, the presence of a chelator, and acidification within the endosome, resulting in iron release. The present work brings together many of the concepts and assertions derived from previous studies in a methodical, uniform, and visual manner. Examination of earlier work reveals some uncertainty due to sample and technical limitations. We have used a combination of steady-state fluorescence and urea gels to evaluate the effect of conformation, pH, time, and the soluble portion of the TFR (sTFR) on iron release from each lobe of hTF. The use of authentic recombinant monoferric and locked species removes any possibility of cross-contamination by acquisition of iron. Elimination of detergent by use of the sTFR provides a further technical advantage. We find that iron release from the N-lobe is very sensitive to the conformation of the C-lobe, but is insensitive to the presence of the sTFR or to changes in pH (between 5.6 and 6.4). Specifically, when the cleft of the C-lobe is locked, the urea gels indicate that only about half of the iron is completely removed from the cleft of the N-lobe. Iron release from the C-lobe is most affected by the presence of the sTFR and changes in pH, but is unaffected by the conformation of the N-lobe. A model for iron release from diferric hTF is provided to delineate our findings. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

3.
Each homologous lobe of human serum transferrin (hTF) has one Fe(3+) ion bound by an aspartic acid, a histidine, two tyrosine residues, and two oxygens from the synergistic anion, carbonate. Extensive characterization of these ligands in the N-terminal lobe has been carried out. Despite sharing the same set of ligands, there is a substantial amount of evidence that the N- and C-lobes are inequivalent. Studies of full-length hTF have shown that iron release from each lobe is kinetically distinguishable. To simplify the assessment of mutations in the C-lobe, we have created mutant hTF molecules in which the N-lobe binds iron with high affinity or not at all. Mutations targeting the C-lobe liganding residues have been introduced into these hTF constructs. UV-visible spectral, kinetic, and EPR studies have been undertaken to assess the effects of each mutation and to allow direct comparison to the N-lobe. As found for the N-lobe, the presence of Y517 in the C-lobe (equivalent to Y188 in the N-lobe) is absolutely essential for the binding of iron. Unlike the N-lobe, however, mutation of Y426 (equivalent to Y95) does not produce a stable complex with iron. For the mutants that retain the ability to bind iron (D392S and H585A), the rates of release are considerably slower than those measured for equivalent mutations in the N-lobe at both pH 7.4 and pH 5.6. Equilibrium binding experiments with HeLa S(3) cells indicate that recombinant hTF, in which Y426 or H585 is mutated, favor a closed or nearly closed conformation while those with mutations of the D392 or Y517 ligands appear to promote an open conformation. The differences in the effects of mutating the liganding residues in the two lobes and the subtle indications of cooperativity between lobes point to the importance of the transferrin receptor in effecting iron release from the C-lobe. Significantly, the equilibrium binding experiments also indicate that, regardless of which lobe contains the iron, the free energy of binding is equivalent and not additive; each monoferric hTF has a free energy of binding that is 82% of diferric hTF.  相似文献   

4.
Efficient delivery of iron is critically dependent on the binding of diferric human serum transferrin (hTF) to its specific receptor (TFR) on the surface of actively dividing cells. Internalization of the complex into an endosome precedes iron removal. The return of hTF to the blood to continue the iron delivery cycle relies on the maintenance of the interaction between apohTF and the TFR after exposure to endosomal pH (≤6.0). Identification of the specific residues accounting for the pH-sensitive nanomolar affinity with which hTF binds to TFR throughout the cycle is important to fully understand the iron delivery process. Alanine substitution of 11 charged hTF residues identified by available structures and modeling studies allowed evaluation of the role of each in (1) binding of hTF to the TFR and (2) TFR-mediated iron release. Six hTF mutants (R50A, R352A, D356A, E357A, E367A, and K511A) competed poorly with biotinylated diferric hTF for binding to TFR. In particular, we show that Asp356 in the C-lobe of hTF is essential to the formation of a stable hTF-TFR complex: mutation of Asp356 in the monoferric C-lobe hTF background prevented the formation of the stoichiometric 2:2 (hTF:TFR monomer) complex. Moreover, mutation of three residues (Asp356, Glu367, and Lys511), whether in the diferric or monoferric C-lobe hTF, significantly affected iron release when in complex with the TFR. Thus, mutagenesis of charged hTF residues has allowed identification of a number of residues that are critical to formation of and release of iron from the hTF-TFR complex.  相似文献   

5.
His349 in human transferrin (hTF) is a residue critical to transferrin receptor (TFR)-stimulated iron release from the C-lobe. To evaluate the importance of His349 on the TFR interaction, it was replaced by alanine, aspartate, lysine, leucine, tryptophan, and tyrosine in a monoferric C-lobe hTF construct (FeChTF). Using a stopped-flow spectrofluorimeter, we determined rate processes assigned to iron release and conformational events (in the presence and in the absence of the TFR). Significantly, all mutant/TFR complexes feature dampened iron release rates. The critical contribution of His349 is most convincingly revealed by analysis of the kinetics as a function of pH (5.6–6.2). The FeChTF/TFR complex titrates with a pK a of approximately 5.9. By contrast, the H349A mutant/TFR complex releases iron at higher pH with a profile that is almost the inverse of that of the control complex. At the putative endosomal pH of 5.6 (in the presence of salt and chelator), iron is released from the H349W mutant/TFR and H349Y mutant/TFR complexes with a single rate constant similar to the iron release rate constant for the control; this suggests that these substitutions bypass the required pH-induced conformational change allowing the C-lobe to directly interact with the TFR to release iron. The H349K mutant proves that although the positive charge is crucial to complete iron release, the geometry at this position is also critical. The H349D mutant shows that a negative charge precludes complete iron release at pH 5.6 both in the presence and in the absence of the TFR. Thus, histidine uniquely drives the pH-induced conformational change in the C-lobe required for TFR interaction, which in turn promotes iron release.  相似文献   

6.
Serum transferrin reversibly binds iron in each of two lobes and delivers it to cells by a receptor-mediated, pH-dependent process. The binding and release of iron result in a large conformational change in which two subdomains in each lobe close or open with a rigid twisting motion around a hinge. We report the structure of human serum transferrin (hTF) lacking iron (apo-hTF), which was independently determined by two methods: 1) the crystal structure of recombinant non-glycosylated apo-hTF was solved at 2.7-A resolution using a multiple wavelength anomalous dispersion phasing strategy, by substituting the nine methionines in hTF with selenomethionine and 2) the structure of glycosylated apo-hTF (isolated from serum) was determined to a resolution of 2.7A by molecular replacement using the human apo-N-lobe and the rabbit holo-C1-subdomain as search models. These two crystal structures are essentially identical. They represent the first published model for full-length human transferrin and reveal that, in contrast to family members (human lactoferrin and hen ovotransferrin), both lobes are almost equally open: 59.4 degrees and 49.5 degrees rotations are required to open the N- and C-lobes, respectively (compared with closed pig TF). Availability of this structure is critical to a complete understanding of the metal binding properties of each lobe of hTF; the apo-hTF structure suggests that differences in the hinge regions of the N- and C-lobes may influence the rates of iron binding and release. In addition, we evaluate potential interactions between apo-hTF and the human transferrin receptor.  相似文献   

7.
A unique feature of the mechanism of iron binding to the transferrin (TF) family is the synergistic relationship between metal binding and anion binding. Little or no iron will bind to the protein without concomitant binding of an anion, physiologically identified as carbonate. Substitution of oxalate for carbonate produces no significant changes in polypeptide folding or domain orientation in the N-lobe of human serum TF (hTF) as revealed by our 1.2A structure. The oxalate is able to bind to the iron in a symmetric bidentate fashion, which, combined with the low pK(a) of the oxalate anion, makes iron displacement more difficult as documented by both iron release kinetic and equilibrium data. Characterization of an N-lobe in which the arginine at position 124 is mutated to alanine reveals that the stabilizing effect of oxalate is even greater in this mutant and nearly cancels the destabilizing effect of the mutation. Importantly, incorporation of oxalate as the synergistic anion appears to completely inhibit removal of iron from recombinant full-length hTF by HeLa S(3) cells, strongly indicating that oxalate also replaces carbonate in the C-lobe to form a stable complex. Kinetic studies confirm this claim. The combination of structural and functional data provides a coherent delineation of the effect of oxalate binding on hTF and rationalizes the results of many previous studies. In the context of iron uptake by cells, substitution of carbonate by oxalate effectively locks the iron into each lobe of hTF, thereby interfering with normal iron metabolism.  相似文献   

8.
Production of the soluble portion of the transferrin receptor (sTFR) by baby hamster kidney (BHK) cells is described, and the effect of glycosylation on the biological function of sTFR is evaluated for the first time. The sTFR (residues 121-760) has three N-linked glycosylation sites (Asn251, Asn317, and Asn727). Although fully glycosylated sTFR is secreted into the tissue culture medium ( approximately 40 mg/L), no nonglycosylated sTFR could be produced, suggesting that carbohydrate is critical to the folding, stability, and/or secretion of the receptor. Mutants in which glycosylation at positions 251 and 727 (N251D and N727D) is eliminated are well expressed, whereas production of the N317D mutant is poor. Analysis by electrospray ionization mass spectrometry confirms dimerization of the sTFR and the absence of the carbohydrate at the single site in each mutant. The effect of glycosylation on binding to diferric human transferrin (Fe(2) hTF), an authentic monoferric hTF with iron in the C-lobe (designated Fe(C) hTF), and a mutant (designated Mut-Fe(C) hTF that features a 30-fold slower iron release rate) was determined by surface plasmon resonance; a small ( approximately 20%) but consistent difference is noted for the binding of Fe(C) hTF and the Mut-Fe(C) hTF to the sTFR N317D mutant. The rate of iron release from Fe(C) hTF and Mut-Fe(C) hTF in complex with the sTFR and the sTFR mutants at pH 5.6 reveals that only the N317D mutant has a significant effect. The carbohydrate at position 317 lies close to a region of the TFR previously shown to interact with hTF.  相似文献   

9.
Gumerov DR  Mason AB  Kaltashov IA 《Biochemistry》2003,42(18):5421-5428
Human serum transferrin (hTF) is an iron transport protein, comprising two lobes (N and C), each containing a single metal-binding center. Despite substantial structural similarity between the two lobes, studies have demonstrated the existence of significant differences in their metal-binding properties. The nature of these differences has been elucidated through the use of electrospray ionization mass spectrometry to study both metal retention and conformational properties of hTF under a variety of conditions. In the absence of chelating agents or nonsynergistic anions, the diferric form of hTF remains intact until the pH is lowered to 4.5. The monoferric form of hTF retains the compact conformation until the pH is lowered to 4.0, whereas the apoprotein becomes partially unfolded at pH as high as 5.5. Selective (lobe-specific) modulation of the iron-binding properties of hTF using recombinant forms of the protein (in which the pH-sensitive elements in each lobe were mutated) verifies that the N-lobe of the protein has a lower affinity for ferric ion. Surprisingly, the apo-N-lobe is significantly less flexible compared to the apo-C-lobe. Furthermore, the conformation of the iron-free N-lobe is stabilized when the C-lobe contains iron, confirming the existence of an interlobe interaction within the protein. The experimental results provide strong support for the earlier suggestion that hTF interacts with its receptor (TFR) primarily through the C-lobe both at the cell surface and inside the endosome.  相似文献   

10.
Attachment of a cleavable hexa His tag is a common strategy for the production of recombinant proteins. Production of two recombinant nonglycosylated human serum transferrins (hTF-NG), containing a factor Xa cleavage site and a hexa His tag at the carboxyl terminus, has been described [Mason et al. (2001) Prot. Exp. Purif 23, 142-150]. More recently, hTF-NG with an amino-terminal His tag and a factor Xa cleavage site has been expressed (>30 mg/L) in baby hamster kidney cells and purified from the tissue culture medium. Although it is frequently assumed that addition of a His tag has little or no effect on function, this is not always confirmed experimentally. In the present study, in vitro quantitative data clearly shows that the presence of the C-terminal His tag has an effect on the release of iron from recombinant hTF at pH 7.4 and 5.6. Measurement of the rate of release from both the N- and C-lobes is reduced 2-4-fold. These findings provide further compelling evidence that the two lobes communicate with each other and highlight the importance of the C-terminal portion of the C-terminal lobe in this interaction. In contrast to these results, we demonstrate that the presence of a His tag at the N-terminus of hTF has no effect on the rate of iron release from either lobe. In a competition experiment, both unlabeled N- and C-terminal His-tagged constructs were equally effective at inhibiting the binding of radio-iodinated diferric glycosylated hTF from a commercial source to receptors on HeLa cells as the unlabeled recombinant diferric hTF-NG control. Thus, the presence of a His tag at either the N- or C-terminus of hTF-NG has no apparent effect on the ability of these hTF species to bind to transferrin receptors.  相似文献   

11.
Transferrins have been extensively studied in order to understand how they reversibly bind and release iron. Human serum transferrin (hTF) is a single polypeptide chain that folds into two lobes (N- and C-lobe); each lobe binds a single ferric ion. Iron release induces a large conformational change in each lobe. At the putative endosomal pH of 5.6, measurement of the increase in intrinsic fluorescence upon iron release from the recombinant N-lobe yields two rate constants: 8.9 min-1 and 1.3 min-1. Direct monitoring of iron release from the N-lobe at pH 5.6 (by the decrease in absorbance at 470 nm) gives a single rate constant of 9.1 min-1, definitively establishing that the faster rate constant in the fluorescent studies is due to iron release. To further elucidate the molecular basis of the intrinsic fluorescence change (and the source of the slower rate constant), we examined the contributions of the three individual tryptophan residues in the N-lobe (Trp8, Trp128, and Trp264). Three double mutants, each containing the single remaining tryptophan residue, were produced. In the iron-bound N-lobe, Trp128 and Trp264 are quenched by iron and account for almost the entire fluorescent signal when iron is released. As for the wild-type N-lobe, the fluorescence increase for each of these mutants is best fit by a double-exponential function indicating two processes. Trp8 is severely quenched under all conditions, making virtually no contribution to the signal. Additionally, a mutant lacking all three Trp residues allows assignment of the fluorescent signal completely to the three tryptophan residues and observation of the presence of one (or more) tyrosinates in the N-lobe that have physiological significance in the uptake of iron.  相似文献   

12.
The transferrins (TFs) are a family of proteins that are widely distributed in vertebrates, where they serve a major role in iron binding and transport. Most TFs are composed of two homologous lobes, the N- and C-lobes, each able to bind a single iron atom. Human serum transferrin (hTF) binds iron in the blood and delivers it to actively dividing cells; through the process of receptor-mediated endocytosis, diferric hTF in the serum (pH approximately 7.4) binds to specific TF receptors on the cell surface and is internalized, whereupon a pH drop in the endosome (pH approximately 5.6) facilitates iron release. Many factors affect the rate of iron release, including pH, chelator, temperature, salt, and lobe-lobe interactions. We, and others, have actively studied the mechanism of iron release from the recombinant N-lobe of hTF; in contrast, the exact details of iron release from the C-lobe have remained less well characterized but appear to differ from those found for the N-lobe. Recently, to simplify the purification protocol, we have expressed and purified full-length recombinant hTF containing an N-terminal hexahistidine tag [Mason et al. (2002) Biochemistry 41, 9448-9454]. In the present work, we have expressed a full-length recombinant hTF containing a K206E mutation such that the N-lobe does not readily release iron. The resulting full-length hTF allows us to focus on the C-lobe and to study the effects of mutations introduced into the C-lobe. The success of this strategy is documented and in vitro mutagenesis is used to identify three residues in the C-lobe that are critical for iron-release. Although the importance of this triad is unequivocally demonstrated, further studies are needed to completely elucidate the mechanism of iron release from the C-lobe of hTF. In addition, the striking difference in the effect of increasing salt concentrations on iron release from the two lobes of hTF is further documented in the present work.  相似文献   

13.
The recent crystal structure of two monoferric human serum transferrin (Fe(N)hTF) molecules bound to the soluble portion of the homodimeric transferrin receptor (sTFR) has provided new details about this binding interaction that dictates the delivery of iron to cells. Specifically, substantial rearrangements in the homodimer interface of the sTFR occur as a result of the binding of the two Fe(N)hTF molecules. Mutagenesis of selected residues in the sTFR highlighted in the structure was undertaken to evaluate the effect on function. Elimination of Ca(2+) binding in the sTFR by mutating two of four coordinating residues ([E465A,E468A]) results in low production of an unstable and aggregated sTFR. Mutagenesis of two histidines ([H475A,H684A]) at the dimer interface had little effect on the kinetics of release of iron at pH 5.6 from either lobe, reflecting the inaccessibility of this cluster to solvent. Creation of an H318A sTFR mutant allows assignment of a small pH-dependent initial decrease in the magnitude of the fluorescence signal to His318. Removal of the four C-terminal residues of the sTFR, Asp757-Asn758-Glu759-Phe760, eliminates pH-stimulated release of iron from the C-lobe of the Fe(2)hTF/sTFR Δ757-760 complex. The inability of this sTFR mutant to bind and stabilize protonated hTF His349 (a pH-inducible switch) in the C-lobe of hTF accounts for the loss. Collectively, these studies support a model in which a series of pH-induced events involving both TFR residue His318 and hTF residue His349 occurs to promote receptor-stimulated release of iron from the C-lobe of hTF.  相似文献   

14.
The transferrins (TF) are a family of bilobal glycoproteins that tightly bind ferric iron. Each of the homologous N- and C-lobes contains a single iron-binding site situated in a deep cleft. Human serum transferrin (hTF) serves as the iron transport protein in the blood; circulating transferrin binds to receptors on the cell surface, and the complex is internalized by endocytosis. Within the cell, a reduction in pH leads to iron release from hTF in a receptor-dependent process resulting in a large conformational change in each lobe. In the hTF N-lobe, two critical lysines facilitate this pH-dependent conformational change allowing entry of a chelator to capture the iron. In the C-lobe, the lysine pair is replaced by a triad of residues: Lys534, Arg632, and Asp634. Previous studies show that mutation of any of these triad residues to alanine results in significant retardation of iron release at both pH 7.4 and pH 5.6. In the present work, the role of the three residues is probed further by conversion to the residues observed at the equivalent positions in ovotransferrin (Q-K-L) and human lactoferrin (K-N-N) as well as a triad with an interchanged lysine and arginine (K534R/R632K). As expected, all of the constructs bind iron and associate with the receptor with nearly the same K(D) as the wild-type monoferric hTF control. However, interesting differences in the effect of the substitutions on the iron release rate in the presence and absence of the receptor at pH 5.6 are observed. Additionally, titration with KCl indicates that position 632 must have a positively charged residue to elicit a robust rate acceleration as a function of increasing salt. On the basis of these observations, a model for iron release from the hTF C-lobe is proposed. These studies provide insight into the importance of charge and geometry of the amino acids at these positions as a partial explanation for differences in behavior of individual TF family members, human serum transferrin, ovotransferrin, and lactoferrin. The studies collectively highlight important features common to both the N- and C-lobes of TF and the critical role of the receptor in iron release.  相似文献   

15.
Transferrin is a bilobal protein with the ability to bind iron in two binding sites situated at the bottom of a cleft in each lobe. We have previously described the production of recombinant non-glycosylated human serum transferrins (hTF-NG), containing a factor Xa cleavage site and a hexa-His tag at the amino-terminus. Constructs in this background that contain strategic mutations to completely prevent iron binding in each lobe or in both lobes have now been produced. These monoferric hTFs will allow dissection of the contribution of each lobe to transferrin function. In addition, the construct completely lacking in the ability to bind iron in either lobe provides an opportunity to assess whether hTF has any other functions in addition to iron transport. Following insertion of the His-tagged hTF molecules into the pNUT vector, transfection into baby hamster kidney cells and selection with methotrexate, the secreted recombinant proteins were isolated from the tissue culture medium and characterized with regard to their iron binding properties. Significant improvements over our previous protocol include: (1) addition of butyric acid at a level of 1mM which leads to a substantial increase in protein production (as much as a 65% increase compared to control cells); and (2) elimination of an anion exchange column prior to isolation on a Qiagen Ni-NTA column which makes purification of the His-tagged constructs faster and therefore more efficient. These improvements should be applicable to expression of other recombinant proteins in mammalian cells.  相似文献   

16.
P K Bali  O Zak  P Aisen 《Biochemistry》1991,30(2):324-328
Iron removal by pyrophosphate from human serum diferric transferrin and the complex of transferrin with its receptor was studied in 0.05 M HEPES or MES buffers containing 0.1 M NaCl and 0.01 M CHAPS at 25 degrees C at pH 7.4, 6.4, and 5.6. At each pH, the concentration of pyrophosphate was adjusted to achieve rates of release amenable to study over a reasonable time course. Released iron was separated from protein-bound iron by poly(ethylene glycol) precipitation of aliquots drawn from the reaction mixture at various times during the course of a kinetic run. The amount of 59Fe label associated with the protein and pyrophosphate was determined from the radioactivity of precipitate and supernatant, respectively, in each aliquot. Iron removal of 0.05 M pyrophosphate at pH 7.4 from diferric transferrin bound to the receptor is considerably slower than that from free diferric transferrin, with observed pseudo-first-order rate constants of 0.020 and 0.191 min-1, respectively. For iron removal by 0.01 M pyrophosphate at pH 6.4, corresponding rate constants are 0.031 and 0.644 min-1. However, at pH 5.6, iron removal by 0.001 M pyrophosphate is faster from diferric transferrin bound to its receptor than from free transferrin (observed rate constants of 0.819 and 0.160 min-1, respectively). Thus, the transferrin receptor not only facilitates the removal of iron from diferric transferrin at the low pH that prevails in endocytic vesicles but may also reduce its accessibility to iron acceptors at extracellular pH, thereby minimizing the likelihood of nonspecific release of iron from transferrin at the cell surface.  相似文献   

17.
The energy transfer from the three Trp residues at positions 8, 128, and 264 within the human serum transferrin (hTF) N-lobe to the ligand to metal charge transfer band has been investigated by monitoring changes in Trp fluorescence emission and lifetimes. The fluorescence emission from hTF N-lobe is dominated by Trp264, as revealed by an 82% decrease in the quantum yield when this Trp residue is absent. Fluorescence lifetimes were determined by multifrequency phase fluorometry of mutants containing one or two Trp residues. Decays of these samples are best described by two or three discrete lifetimes or by a unimodal Lorentzian distribution. The discrete lifetimes and the center of the lifetime distribution for samples containing Trp128 and Trp264 are affected by iron. The distribution width narrows on iron removal and is consistent with a decrease in dynamic mobility of the dominant fluorophore, Trp264. Both the quantum yield and the lifetimes are lower when iron is present, however, not proportionally. The greater effect of iron on quantum yields is indicative of nonexcited state quenching, i.e., static quenching. The results of these experiments provide quantitative data strongly suggesting that Förster resonance energy transfer is not the sole source of Trp quenching in the N-lobe of hTF.  相似文献   

18.
We report the determination in cell-free assays of the mechanism of iron release from the N-lobe and C-lobe of human serum transferrin in interaction with intact transferrin receptor 1 at 4.3< or =pH< or =6.5. Iron is first released from the N-lobe in the tens of milliseconds range and then from the C-lobe in the hundreds of seconds range. In both cases, iron loss is rate-controlled by slow proton transfers, rate constant for the N-lobe k(1)=1.20(+/-0.05)x10(6)M(-1)s(-1) and for the C-lobe k(2)=1.6(+/-0.1)x10(3)M(-1)s(-1). This iron loss is subsequent to a fast proton-driven decarbonation and is followed by two proton gains, (pK(1a))/2=5.28 per proton for the N-lobe and (pK(2a))/2=5.10 per proton for the C-lobe. Under similar experimental conditions, iron loss is about 17-fold faster from the N-lobe and is at least 200-fold faster from the C-lobe when compared to holotransferrin in the absence of receptor 1. After iron release, the apotransferrin-receptor adduct undergoes a slow partial dissociation controlled by a change in the conformation of the receptor; rate constant k(3)=1.7(+/-0.1)x10(-3)s(-1). At endosomic pH, the final equilibrated state is attained in about 1000 s, after which the free apotransferrin, two prototropic species of the acidic form of the receptor and apotransferrin interacting with the receptor coexist simultaneously. However, since recycling of the vesicle containing the receptor to the cell surface takes a few minutes, the major part of transferrin will still be forwarded to the biological fluid in the form of the apotransferrin-receptor protein-protein adduct.  相似文献   

19.
Zak O  Aisen P 《Biochemistry》2003,42(42):12330-12334
Human transferrin, like other members of the transferrin class of iron-binding proteins, is a bilobal structure, the product of duplication and fusion of an ancestral gene during the course of biochemical evolution. Although the two lobes exhibit 45% sequence identity and identical ligand structures of their iron-binding sites (one in each lobe), they differ in their iron-binding properties and their responsiveness to complex formation with the transferrin receptor. A variety of interlobe interactions modulating these iron-binding functions has been described. We have now studied the kinetics of iron release to pyrophosphate from the isolated recombinant C-lobe and from that lobe in the intact protein, each free and bound to receptor. The striking finding is that the rates of iron release at the pH of the endosome to which transferrin is internalized by the iron-dependent cell are similar in the free proteins but 18 times faster from full-length monoferric transferrin selectively loaded with iron in the C-lobe than from isolated C-lobe when each is complexed to the receptor. The possibility that the faster release in the receptor complex of the full-length protein at endosomal pH contributes to the evolutionary advantage of the bilobal structure is considered.  相似文献   

20.
The flavonol rutin has been shown to possess antioxidant and iron chelating properties in vitro and in vivo. These dual properties are beneficial as therapeutic options to reduce iron accumulation and the generation of reactive oxygen species (ROS) resultant from excess free iron. The effect of rutin on iron metabolism has been limited to studies performed in wildtype mice either injected or fed high-iron diets. The effect of rutin on iron overload caused by genetic dysregulation of iron homoeostasis has not yet been investigated. In the present study we examined the effect of rutin treatment on tissue iron loading in a genetic mouse model of iron overload, which mirrors the iron loading associated with Type 3 hereditary haemochromatosis patients who have a defect in Transferrin Receptor 2 (TFR2). Male TFR2 knockout (KO) mice were administered rutin via oral gavage for 21 continuous days. Following treatment, iron levels in serum, liver, duodenum and spleen were assessed. In addition, hepatic ferritin protein levels were determined by Western blotting, and expression of iron homoeostasis genes by quantitative real-time PCR. Rutin treatment resulted in a significant reduction in hepatic ferritin protein expression and serum transferrin saturation. In addition, trends towards decreased iron levels in the liver and serum, and increased serum unsaturated iron binding capacity were observed. This is the first study to explore the utility of rutin as a potential iron chelator and therapeutic in an animal model of genetic iron overload.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号