首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
The superfamily 1 bacterial helicase PcrA has a role in the replication of certain plasmids, acting with the initiator protein (RepD) that binds to and nicks the double-stranded origin of replication. PcrA also translocates single-stranded DNA with discrete steps of one base per ATP hydrolyzed. Individual rate constants have been determined for the DNA helicase PcrA ATPase cycle when bound to either single-stranded DNA or a double-stranded DNA junction that also has RepD bound. The fluorescent ATP analogue 2′(3′)-O-(N-methylanthraniloyl)ATP was used throughout all experiments to provide a complete ATPase cycle for a single nucleotide species. Fluorescence intensity and anisotropy stopped-flow measurements were used to determine rate constants for binding and release. Quenched-flow measurements provided the kinetics of the hydrolytic cleavage step. The fluorescent phosphate sensor MDCC-PBP was used to measure phosphate release kinetics. The chemical cleavage step is the rate-limiting step in the cycle and is essentially irreversible and would result in the bound ATP complex being a major component at steady state. This cleavage step is greatly accelerated by bound DNA, producing the high activation of this protein compared to the protein alone. The data suggest the possibility that ADP is released in two steps, which would result in bound ADP also being a major intermediate, with bound ADP·Pi being a very small component. It therefore seems likely that the major transition in structure occurs during the cleavage step, rather than Pi release. ATP rebinding could then cause reversal of this structural transition. The kinetic mechanism of the PcrA ATPase cycle is very little changed by potential binding to RepD, supporting the idea that RepD increases the processivity of PcrA by increasing affinity to DNA rather than affecting the enzymatic properties per se.  相似文献   

2.
3.
Globin-coupled sensors are heme-binding signal transducers in Bacteria and Archaea in which an N-terminal globin controls the activity of a variable C-terminal domain. Here, we report that BpeGReg, a globin-coupled diguanylate cyclase from the whooping cough pathogen Bordetella pertussis, synthesizes the second messenger bis-(3′-5′)-cyclic diguanosine monophosphate (c-di-GMP) upon oxygen binding. Expression of BpeGReg in Salmonella typhimurium enhances biofilm formation, while knockout of the BpeGReg gene of B. pertussis results in decreased biofilm formation. These results represent the first identification a signal ligand for any diguanylate cyclase and provide definitive experimental evidence that a globin-coupled sensor regulates c-di-GMP synthesis and biofilm formation. We propose that the synthesis of c-di-GMP by globin sensors is a widespread phenomenon in bacteria.  相似文献   

4.
In many bacteria, high levels of the ubiquitous second messenger c-di-GMP have been demonstrated to suppress motility and to promote the establishment of surface-adherent biofilm communities. While molecular mechanisms underlying the synthesis and degradation of c-di-GMP have been comprehensively characterized, little is known about how c-di-GMP mediates its regulatory effects. In this study, we have established a chemical proteomics approach to identify c-di-GMP interacting proteins in the opportunistic pathogen Pseudomonas aeruginosa. A functionalized c-di-GMP analog, 2′-aminohexylcarbamoyl-c-di-GMP (2′-AHC-c-di-GMP), was chemically synthesized and following its immobilization used to perform affinity pull down experiments. Enriched proteins were subsequently identified by high-resolution mass spectrometry. 2′-AHC-c-di-GMP was also employed in surface plasmon resonance studies to evaluate and quantify the interaction of c-di-GMP with its potential target molecules in vitro. The biochemical tools presented here may serve the identification of novel classes of c-di-GMP effectors and thus contribute to a better characterization and understanding of the complex c-di-GMP signaling network.  相似文献   

5.
Cdc42, a member of the Ras superfamily of small guanine nucleotide binding proteins, plays an important role in regulating the actin cytoskeleton, intracellular trafficking, and cell polarity. Its activation is controlled by guanine nucleotide exchange factors (GEFs), which stimulate the dissociation of bound guanosine-5′-diphosphate (GDP) to allow guanosine-5′-triphosphate (GTP) binding. Here, we investigate the exchange factor activity of the Dbl-homology domain containing constructs of the adaptor protein Intersectin1L (ITSN1L), which is a specific GEF for Cdc42. A detailed kinetic characterisation comparing ITSN1L-mediated nucleotide exchange on Cdc42 in its GTP- versus GDP-bound state reveals a kinetic discrimination for GEF-stimulated dissociation of GTP: The maximum acceleration of the intrinsic mGDP [2′/3′-O-(N-methyl-anthraniloyl)-GDP] release from Cdc42 by ITSN1L is accelerated at least 68,000-fold, whereas the exchange of mGTP [2′/3′-O-(N-methyl-anthraniloyl)-GTP] is stimulated only up to 6000-fold at the same GEF concentration. The selectivity in nucleotide exchange kinetics for GDP over GTP is even more pronounced when a Cdc42 mutant, F28L, is used, which is characterised by fast intrinsic dissociation of nucleotides. We furthermore show that both GTP and Mg2+ ions are required for the interaction with effectors. We suggest a novel model for selective nucleotide exchange residing on a conformational change of Cdc42 upon binding of GTP, which enables effector binding to the Cdc42 · GTP complex but, at the same time, excludes efficient modulation by the GEF. The higher exchange activity of ITSN1L towards the GDP-bound conformation of Cdc42 could represent an evolutionary adaptation of this GEF that ensures nucleotide exchange towards the formation of the signalling-active GTP-bound form of Cdc42 and avoids dissociation of the active complex.  相似文献   

6.
7.
RecJ exonuclease plays crucial roles in several DNA repair and recombination pathways, and its ubiquity in bacterial species points to its ancient origin and vital cellular function. RecJ exonuclease from Haemophilus influenzae is a 575-amino-acid protein that harbors the characteristic motifs conserved among RecJ homologs. The purified protein exhibits a processive 5′-3′ single-stranded-DNA-specific exonuclease activity. The exonuclease activity of H. influenzae RecJ (HiRecJ) was supported by Mg2 + or Mn2 + and inhibited by Cd2 +, suggesting a different mode of metal binding in HiRecJ as compared to Escherichia coli RecJ (EcoRecJ). Site-directed mutagenesis of highly conserved residues in HiRecJ abolished enzymatic activity. Interestingly, substitution of alanine for aspartate 77 resulted in a catalytically inactive enzyme that bound to DNA with a significantly higher affinity as compared to the wild-type enzyme. Noticeably, steady-state kinetic studies showed that H. influenzae single-stranded DNA-binding protein (HiSSB) increased the affinity of HiRecJ for single-stranded DNA and stimulated its exonuclease activity. HiSSB, whose C-terminal tail had been deleted, failed to enhance RecJ exonuclease activity. More importantly, HiRecJ was found to directly associate with its cognate single-stranded DNA-binding protein (SSB), as demonstrated by various in vitro assays. Interaction studies carried out with the truncated variants of HiRecJ and HiSSB revealed that the two proteins interact via the C-terminus of SSB protein and the core-catalytic domain of RecJ. Taken together, these results emphasize direct interaction between RecJ and SSB, which confers functional cooperativity to these two proteins. In addition, these results implicate SSB as being involved in the recruitment of RecJ to DNA and provide insights into the interplay between these proteins in repair and recombination pathways.  相似文献   

8.
9.
The antiviral protein viperin is a radical SAM enzyme   总被引:1,自引:0,他引:1  
Viperin, an interferon-inducible antiviral protein, is shown to bind an iron-sulfur cluster, based on iron analysis as well as UV-Vis and electron paramagnetic resonance spectroscopic data. The reduced protein contains a [4Fe-4S]1+ cluster whose g-values are altered upon addition of S-adenosylmethionine (SAM), consistent with SAM coordination to the cluster. Incubation of reduced viperin with SAM results in reductive cleavage of SAM to produce 5′-deoxyadenosine (5′-dAdo), a reaction characteristic of the radical SAM superfamily. The 5′-dAdo cleavage product was identified by a combination of HPLC and mass spectrometry analysis.  相似文献   

10.
Periplasmic binding proteins comprise a superfamily that is present in archaea, prokaryotes, and eukaryotes. Periplasmic binding protein ligand-binding sites have diversified to bind a wide variety of ligands. Characterization of the structural mechanisms by which functional adaptation occurs is key to understanding the evolution of this important protein superfamily. Here we present the structure and ligand-binding properties of a maltotriose-binding protein identified from the Thermus thermophilus genome sequence. We found that this receptor has a high affinity for the trisaccharide maltotriose (Kd < 1 μM) but little affinity for disaccharides that are transported by a paralogous maltose transport operon present in T. thermophilus. Comparison of this structure to other proteins that adopt the maltose-binding protein fold but bind monosaccharides, disaccharides, or trisaccharides reveals the presence of four subsites that bind individual glucose ring units. Two loops and three helical segments encode adaptations that control the presence of each subsite by steric blocking or hydrogen bonding. We provide a model in which the energetics of long-range conformational equilibria controls subsite occupancy and ligand binding.  相似文献   

11.
The mature 3′-end of many chloroplast mRNAs is generated by the processing of the 3′-untranslated region (3′-UTR), which is a mechanism that involves the removal of a segment located downstream an inverted repeat sequence that forms a stem-loop structure. Nuclear-encoded chloroplast RNA binding proteins associate with the stem-loop to process the 3′-UTR or to influence mRNA stability. A spinach chloroplast processing extract (CPE) has been previously generated and used to in vitro dissect the biochemical mechanism underlying 3′-UTR processing. Being Arabidopsis thaliana an important genetic model, the development of a CPE allowing to correlate 3′-UTR processing activity with genes encoding proteins involved in this process, would be of great relevance. Here, we developed a purification protocol that generated an Arabidopsis CPE able to correctly process a psbA 3′-UTR precursor. By UV crosslinking, we characterized the protein patterns generated by the interaction of RNA binding proteins with Arabidopsis psbA and petD 3′-UTRs, finding that each 3′-UTR bound specific proteins. By testing whether Arabidopsis CPE proteins were able to bind spinach ortholog 3′-UTRs, we also found they were bound by specific proteins. When Arabidopsis CPE 3′-UTR processing activity on ortholog spinach 3′-UTRs was assessed, stable products appeared: for psbA, a smaller size product than the expected mature 3′-end, and for petD, low amounts of the expected product plus several others of smaller sizes. These results suggest that the 3′-UTR processing mechanism of these chloroplast mRNAs might be partially conserved in Arabidopsis and spinach.  相似文献   

12.
13.
14.
The second messenger cyclic diguanylic acid (c-di-GMP) is implicated in key lifestyle decisions of bacteria, including biofilm formation and changes in motility and virulence. Some challenges in deciphering the physiological roles of c-di-GMP are the limited knowledge about the cellular targets of c-di-GMP, the signals that control its levels, and the proportion of free cellular c-di-GMP, if any. Here, we identify the target and the regulatory signal for a c-di-GMP-responsive Escherichia coli ribonucleoprotein complex. We show that a direct c-di-GMP target in E. coli is polynucleotide phosphorylase (PNPase), an important enzyme in RNA metabolism that serves as a 3′ polyribonucleotide polymerase or a 3′-to-5′ exoribonuclease. We further show that a complex of polynucleotide phosphorylase with the direct oxygen sensors DosC and DosP can perform oxygen-dependent RNA processing. We conclude that c-di-GMP can mediate signal-dependent RNA processing and that macromolecular complexes can compartmentalize c-di-GMP signaling.  相似文献   

15.
16.
2′-Deoxycytidylate deaminase [or deoxycytidine-5′-monophosphate (dCMP) deaminase, dCD] catalyzes the deamination of dCMP to deoxyuridine-5′-monophosphate to provide the main nucleotide substrate for thymidylate synthase, which is important in DNA synthesis. The activity of this homohexameric enzyme is allosterically regulated by deoxycytidine-5′-triphosphate (dCTP) as an activator and by deoxythymidine-5′-triphosphate as an inhibitor. In this article, we report the crystal structures of dCMP deaminase from Streptococcus mutans and its complex with dCTP and an intermediate analog at resolutions of 3.0 and 1.66 Å. The protein forms a hexamer composed of subunits adopting a three-layer α/β/α sandwich fold. The positive allosteric regulator dCTP mainly binds at the interface between two monomers in a molar ratio of 1:1 and rearranges the neighboring interaction networks. Structural comparisons and sequence alignments revealed that dCMP deaminase from Streptococcus mutans belongs to the cytidine deaminase superfamily, wherein the proteins exhibit a similar catalytic mechanism. In addition to the two conserved motifs involved in the binding of Zn2 +, a new conserved motif, (G43YNG46), related to the binding of dCTP was also identified. N-terminal Arg4, a key residue located between two monomers, binds strongly to the γ phosphate group of dCTP. The regulation signal was transmitted by Arg4 from the allosteric site to the active site via modifications in the interactions at the interface where the substrate-binding pocket was involved and the relocations of Arg26, His65, Tyr120, and Arg121 to envelope the active site in order to stabilize substrate binding in the complex. Based on the enzyme-regulator complex structure observed in this study, we propose an allosteric mechanism for dCD regulation.  相似文献   

17.
Recent crystallographic resolution of ?29 DNA polymerase complexes with ssDNA at its 3′-5′ exonuclease active site has allowed the identification of residues Pro129 and Tyr148 as putative ssDNA ligands, the latter being conserved in the Kx2h motif of proofreading family B DNA polymerases. Single substitution of ?29 DNA polymerase residue Tyr148 to Ala rendered an enzyme with a reduced capacity to stabilize the binding of the primer terminus at the 3′-5′ exonuclease active site, not having a direct role in the catalysis of the reaction. Analysis of the 3′-5′ exonuclease on primer/template structures showed a critical role for residue Tyr148 in the proofreading of DNA polymerisation errors. In addition, Tyr148 is not involved in coupling polymerisation to strand displacement in contrast to the catalytic residues responsible for the exonuclease reaction, its role being restricted to stabilisation of the frayed 3′ terminus at the exonuclease active site. Altogether, the results lead us to extend the consensus sequence of the above motif of proofreading family B DNA polymerases into Kx2hxA. The different solutions adopted by proofreading DNA polymerases to stack the 3′ terminus at the exonuclease site are discussed. In addition, the results obtained with mutants at ?29 DNA polymerase residue Pro129 allow us to rule out a functional role as ssDNA ligand for this residue.  相似文献   

18.
The cytosolic sulfotransferases (SULTs) in vertebrates catalyze the sulfonation of endogenous thyroid/steroid hormones and catecholamine neurotransmitters, as well as a variety of xenobiotics, using 3′-phosphoadenosine 5′-phosphosulfate (PAPS) as the sulfonate donor. In this study, we determined the structures of SULT1A2 and an allozyme of SULT1A1, SULT1A1∗3, bound with 3′-phosphoadenosine 5′-phosphate (PAP), at 2.4 and 2.3 Å resolution, respectively. The conformational differences between the two structures revealed a plastic substrate-binding pocket with two channels and a switch-like substrate selectivity residue Phe247, providing clearly a structural basis for the substrate inhibition. In SULT1A2, Tyr149 extends approximately 2.1 Å further to the inside of the substrate-binding pocket, compared with the corresponding His149 residue in SULT1A1∗3. Site-directed mutagenesis study showed that, compared with the wild-type SULT1A2, mutant Tyr149Phe SULT1A2 exhibited a 40 times higher Km and two times lower Vmax with p-nitrophenol as substrate. These latter data imply a significant role of Tyr149 in the catalytic mechanism of SULT1A2.  相似文献   

19.
The adenosine 3′,5′-monophosphate and guanosine 3′,5′-monophosphate contents of microliter quantities of urine can be determined simultaneously by combining individual protein binding assays for the two nucleotides. 32P-labeled adenosine 3′,5′-monophosphate is bound to a protein from bovine skeletal muscle, while a lobster muscle protein preparation is utilized for binding of 3H-labeled guanosine 3′,5′-monophosphate.  相似文献   

20.
The thermodynamics of the formation of binary and ternary complexes between Anabaena PCC 7119 FNR and its substrates, NADP+ and Fd, or Fld, has been studied by ITC. Despite structural dissimilarities, the main difference between Fd and Fld binding to FNR relates to hydrophobicity, reflected in different binding heat capacity and number of water molecules released from the interface. At pH 8, the formation of the binary complexes is both enthalpically and entropically driven, accompanied by the protonation of at least one ionizable group. His299 FNR has been identified as the main responsible for the proton exchange observed. However, at pH 10, where no protonation occurs and intrinsic binding parameters can be obtained, the formation of the binary complexes is entropically driven, with negligible enthalpic contribution. Absence of the FMN cofactor in Fld does not alter significantly the strength of the interaction, but considerably modifies the enthalpic and entropic contributions, suggesting a different binding mode. Ternary complexes show negative cooperativity (6-fold and 11-fold reduction in binding affinity, respectively), and an increase in the enthalpic contribution (more favorable) and a decrease in the entropic contribution (less favorable), with regard to the binary complexes energetics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号