首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 549 毫秒
1.
The pathogenic neisseriae, Neisseria gonorrhoeae and Neisseria meningitidis, possess an outer membrane protein, H.8, which contains a conserved monoclonal antibody (MAb)-binding epitope in all strains tested. We have cloned and sequenced a meningococcal H.8 gene, and determined the characteristics of the predicted protein. The predicted signal peptide has features characteristic of a prokaryotic lipoprotein. The region at the N-terminal end of the mature protein (39 amino acids) is primarily composed of alanine, glutamate and proline residues arranged in imperfect repeats with the consensus sequence AAEAP. The epitope for H.8 MAb-binding was localized to a 20-amino-acid sequence within this region. The remainder of the predicted amino acid sequence shows extensive homology to azurins, which are small blue copper-binding proteins found in a limited number of species of pathogenic bacteria.  相似文献   

2.
AIMS: To clone, sequence and characterize the gene encoding the Omp48, a major outer membrane protein from Aeromonas veronii. METHODS AND RESULTS: A genomic library of Aer. veronii was constructed and screened to detect omp48 gene sequences, but no positive clones were identified, even under low stringency conditions. The cloned gene probably was toxic to the host Escherichia coli strain, so the cloning of omp48 was achieved by inverse PCR. The nucleotide sequence of omp48 consisted of an open reading frame of 1278 base pairs. The predicted primary protein is composed of 426 amino acids, with a 25-amino-acid signal peptide and common Ala-X-Ala cleavage site. The mature protein is composed of 401 amino acids with a molecular mass of 44,256 Da. CONCLUSIONS: The omp48 gene from Aer. veronii was cloned, sequenced and characterized in detail. BLAST analysis of Omp48 protein showed sequence similarity (over 50%) to the LamB porin family from other pathogenic Gram-negative bacteria. SIGNIFICANCE AND IMPACT OF THE STUDY: Bacterial diseases are a major economic problem for the fish farming industry. Outer membrane proteins are potentially important vaccine components. The characterization of omp48 gene will allow further investigation of the potential of Omp48 as recombinant or DNA vaccine component to prevent Aer. veronii and related species infections in reared fish.  相似文献   

3.
The outer membrane-spanning (Oms) proteins of Borrelia burgdorferi have been visualized by freeze-fracture analysis but, until recently, not further characterized. We developed a method for the isolation of B. burgdorferi outer membrane vesicles and described porin activities with single-channel conductances of 0.6 and 12.6 nS in 1 M KCI. By using both nondenaturing isoelectric focusing gel electrophoresis and fast-performance liquid chromatography separation after detergent solubilization, we found that the 0.6-nS porin activity resided in a 28-kDa protein, designated Oms28. The oms28 gene was cloned, and its nucleotide sequence was determined. The deduced amino acid sequence of Oms28 predicted a 257-amino-acid precursor protein with a putative 24-amino-acid leader peptidase I signal sequence. Processed Oms28 yielded a mature protein with a predicted molecular mass of 25,363 Da. When overproduced in Escherichia coli, the Oms28 porin fractionated in part to the outer membrane. Sodium dodecyl sulfate-polyacrylamide gel-purified recombinant Oms28 from E. coli retained functional activity as demonstrated by an average single-channel conductance of 1.1 nS in the planar lipid bilayer assay. These findings confirmed that Oms28 is a B. burgdorferi porin, the first to be described. As such, it is potential relevance to the pathogenesis of Lyme borreliosis and to the physiology of the spirochete.  相似文献   

4.
A cloned fragment of Salmonella typhimurium DNA complemented the defect in cobalamin uptake of Escherichia coli or S. typhimurium btuB mutants, which lack the outer membrane high-affinity transport protein. This DNA fragment did not carry btuB and was derived from the 90-kb plasmid resident in S. typhimurium strains. The cobalamin transport activity engendered by this plasmid had substantially lower affinity and activity than that conferred by btuB. Complementation behavior and maxicell analyses of transposon insertions showed that the cloned fragment encoded five polypeptides, at least two of which were required for complementation activity. The nucleotide sequence of the coding region for one of these polypeptides, an outer membrane protein of about 84,000 Da, was determined. The deduced polypeptide had properties typical of outer membrane proteins, with an N-terminal signal sequence and a predicted preponderance of beta structure. This outer membrane protein had extensive amino acid sequence homology with PapC and FaeD, two E. coli outer membrane proteins involved in the export and assembly of pilus and fimbria subunits on the cell surface. This homology raises the likelihood that the observed cobalamin transport did not result from the production of an authentic transport system but that overexpression of one or more outer membrane proteins allowed leakage of cobalamins through the perturbed outer membrane. These results also suggest that the 90-kb plasmid carries genes encoding an adherence mechanism.  相似文献   

5.
6.
7.
A Tn501 mutant of Pseudomonas aeruginosa resistant to imipenem and lacking the imipenem-specific outer membrane porin protein OprD was isolated. The mutation could be complemented to imipenem susceptibility and OprD-sufficiency by a cloned 6-kb EcoRI-PstI fragment of DNA from the region of chromosome of the wild-type strain surrounding the site of Tn501 insertion. However, this fragment did not contain the oprD structural gene as judged by its inability to hybridize with an oligonucleotide corresponding to the N-terminal amino acid sequence of OprD. DNA sequencing of 3.9 kb of the region surrounding the Tn501 insertion site revealed three large open reading frames, one of which would be interrupted by the Tn501 insertion in the mutant. This latter open reading frame, named opdE (for putative regulator of oprD expression), predicted a hydrophobic protein of M(r) 41,592. Using the above-mentioned oligonucleotide, the oprD structural gene was cloned and expressed in Escherichia coli on a 2.1-kb Bam HI-KpnI fragment. DNA sequencing predicted a 420 amino acid mature OprD protein with a 23 amino acid signal sequence.  相似文献   

8.
Pathogenic Leptospira spp. are spirochetes that have a low transmembrane outer membrane protein content relative to that of enteric gram-negative bacteria. In a previous study we identified a 31-kDa surface protein that was present in strains of Leptospira alstoni in amounts which correlated with the outer membrane particle density observed by freeze fracture electron microscopy (D. A. Haake, E. M. Walker, D. R. Blanco, C. A. Bolin, J. N. Miller, and M. A. Lovett, Infect. Immun. 59:1131-1140, 1991). The N-terminal amino acid sequence was used to design a pair of oligonucleotides which were utilized to screen a lambda ZAP II library containing EcoRI fragments of L. alstoni DNA. A 2.5-kb DNA fragment which contained the entire structural ompL1 gene was identified. The structural gene deduced from the sequence of this DNA fragment would encode a 320-amino-acid polypeptide with a 24-amino-acid leader peptide and a leader peptidase I cleavage site. Processing of OmpL1 results in a mature protein with a predicted molecular mass of 31,113 Da. Secondary-structure prediction identified repeated stretches of amphipathic beta-sheets typical of outer membrane protein membrane-spanning sequences. A topological model of OmpL1 containing 10 transmembrane segments is suggested. A recombinant OmpL1 fusion protein was expressed in Escherichia coli in order to immunize rabbits with the purified protein. Upon Triton X-114 extraction of L. alstoni and phase separation, anti-OmpL1 antiserum recognized a single band on immunoblots of the hydrophobic detergent fraction which was not present in the hydrophilic aqueous fraction. Immunoelectron microscopy with anti-OmpL1 antiserum demonstrates binding to the surface of intact L. alstoni. DNA hybridization studies indicate that the ompL1 gene is present in a single copy in all pathogenic Leptospira species that have been tested and is absent in nonpathogenic Leptospira species. OmpL1 may be the first spirochetal transmembrane outer membrane protein for which the structural gene has been cloned and sequenced.  相似文献   

9.
The filamentous phage-encoded gene IV protein is required at high levels for virus assembly, although it is not a constituent of the virion. It is an integral membrane protein that does not contain an extended hydrophobic region of the kind often required for stable integration in the inner membrane. Rather, like a number of Escherichia coli outer membrane proteins, pIV is rich in charged amino acid residues and is predicted to consist of extensive beta-sheet structures. In phage-producing cells, pIV is primarily detected in the outer membrane, while in cells that produce it from the cloned gene, pIV is found in both the inner and outer membranes. The protein is synthesized as a precursor. Following cleavage of the signal sequence and translocation into the periplasm, the mature form is initially found as a soluble species. Soluble pIV then integrates into the membrane with a half-time of one to two minutes. Neither phage assembly nor other phage proteins are needed for this membrane integration, and phage assembly does not require the presence of the soluble form. The gene IV protein may be part of the structure through which the assembling phage is extruded.  相似文献   

10.
The primary structure of the iron-sulfur subunit of ubiquinol-cytochrome c reductase from Neurospora mitochondria was determined by cDNA and genomic DNA sequencing. A first cDNA was identified from a cDNA bank cloned in Escherichia coli by hybridization selection of mRNA, cell-free protein synthesis and immunoadsorption. Further cDNA and geonomic DNA were identified by colony filter hybridization. The N-terminal sequence of the mature protein was determined by automated Edman degradation. From the sequence a molecular mass of 24749 Da results for the precursor protein and of 21556 Da for the mature protein. The presequence consists of 32 amino acids with four arginines as the only charged residues. The mature protein consists of 199 amino acids. It is characterized by a small N-terminal hydrophilic part of 29 residues, a hydrophobic stretch of 25 residues and a large C-terminal hydrophilic domain of 145 residues. The only four cysteines of the protein, which are assumed to bind the 2 Fe-2S cluster, are located in a moderate hydrophobic region of this large domain. Cysteines 3 and 4 are unusually arranged in that they are separated by only one proline. From sequence data the arrangement of the subunit in the membrane is deduced.  相似文献   

11.
《Anaerobe》2009,15(3):74-81
Thin sectioning and freeze-fracture-etch of the ovine ruminal isolate Mitsuokella multacida strain 46/5(2) revealed a Gram-negative envelope ultra-structure consisting of a peptidoglycan wall overlaid by an outer membrane. Sodium-dodecyl-sulfate-polyacrylamide gel electrophoretic (SDS-PAGE) analysis of whole cells, cell envelopes and Triton X-100 extracted envelopes in combination with thin-section and N-terminal sequence analyses demonstrated that the outer membrane contained two major proteins (45 and 43 kDa) sharing identical N-termini (A-A-N-P-F-S-D-V-P-A-D-H-W-A-Y-D). A gene encoding a protein with a predicted N-terminus identical to those of the 43 and 45 kDa outer-membrane proteins was cloned. The 1290 bp open reading frame encoded a 430 amino acid polypeptide with a predicted molecular mass of 47,492 Da. Cleavage of a predicted 23 amino acid leader sequence would yield a protein with a molecular mass of 45,232 Da. Mass spectroscopic analysis confirmed that the cloned gene (ompM1) encoded the 45 kDa outer-membrane protein. The N-terminus of the mature OmpM1 protein (residues 24–70) shared homology with surface-layer homology (SLH) domains found in a wide variety of regularly structured surface-layers (S-layers). However, the outer-membrane locale, resistance to denaturation by SDS and high temperatures and the finding that the C-terminal residue was a phenylalanine suggested that ompM1 encoded a porin. Threading analysis in combination with the identification of membrane spanning domains indicated that the C-terminal region of OmpM1 (residues 250–430) likely forms a 16-strand β-barrel and appears to be related to the unusual N-terminal SLH-domain-containing β-barrel-porins previously described in the cyanobacterium Synechococcus PCC6301.  相似文献   

12.
Various mutations in the tolQRAB gene cluster of Escherichia coli render the bacteria tolerant to high concentrations of the E, A, or K colicins as well as tolerant to infection by the single-stranded filamentous bacteriophage. The nucleotide sequence of a 2.8-kilobase fragment containing the tolA and tolB genes was determined. This sequence predicts TolA to be a 421-amino-acid protein of molecular mass 44,190 daltons. Studies using minicells show it to be associated with the inner membrane, presumably via a 21-amino-acid hydrophobic sequence between residues 13 and 35. The remaining 387 residues on the carboxyl side of this region are located in the periplasm. Within this region of TolA is a 230-residue portion that is predicted to form a very long helical segment. This region is rich in alanine, lysine, and glutamic and aspartic acids. The TolB protein is predicted to contain 431 amino acids. Localization studies using minicells show two proteins encoded by this open reading frame. The larger protein of 47.5 kilodaltons appears to be associated with the membrane fractions. The smaller protein is 43 kilodaltons in size and is found with the periplasmic components of the cell.  相似文献   

13.
A ca. 20-kilobase (kb) region (hrp) that controls the interaction of Pseudomonas syringae pv. phaseolicola with its host (pathogenicity) and nonhost plants (hypersensitive reaction) was previously cloned and partially characterized. In this study we defined the limits and determined the nucleotide sequence of a hrp locus (hrpS), located near the right end of the hrp cluster. The largest open reading frame (ORF302) in hrpS has a coding capacity for a 302-amino-acid polypeptide. The predicted amino acid sequence of the translation product of ORF302 (HrpS) shows significant similarity to several procaryotic regulatory proteins, including the NtrC, NifA, and DctD proteins of Rhizobium spp., the NtrC and NifA proteins of Klebsiella pneumoniae, and the TyrR protein of Escherichia coli. These proteins regulate diverse operons involved in nitrogen fixation, transport and metabolism of amino acids, and transport of C-4 dicarboxylic acids. The HrpS protein appears to be the shortest naturally occurring member of this family of proteins, corresponding for the most part to the highly conserved central domain of these proteins, which contains a putative ATP-binding site. A C-terminal segment analogous to the less-well-conserved domain, involved in DNA binding of NtrC and NifA, is also present in HrpS. These similarities suggest that HrpS is a regulatory protein. In line with this prediction is the finding that a functional hrpS gene is necessary for the activation of another hrp locus during the plant-bacterium interaction.  相似文献   

14.
The gene encoding for the CMP-NeuNAc synthetase enzyme of Neisseria meningitidis group B was cloned by complementation of a mutant of Escherichia coli defective for this enzyme. The gene (neuA) was isolated on a 4.1-kb fragment of meningococcal chromosomal DNA. Determination of the nucleotide sequence of this fragment revealed the presence of three genes, termed neuA, neuB, and neuC, organized in a single operon. The presence of a truncated ctrA gene at one end of the cloned DNA and a truncated gene encoding for the meningococcal sialyltransferase at the other confirmed that the cloned DNA corresponded to region A and part of region C of the meningococcal capsule gene cluster. The predicted amino acid sequence of the meningococcal NeuA protein was 57% homologous to that of NeuA, the CMP-NeuNAc synthetase encoded by E. coli K1. The predicted molecular mass of meningococcal NeuA protein was 24.8 kDa, which was 6 kDa larger than that formerly predicted (U. Edwards and M. Frosch, FEMS Microbiol. Lett. 96:161-166, 1992). Purification of the recombinant meningococcal NeuA protein together with determination of the N-terminal amino acid sequence confirmed that this 24.8-kDa protein was indeed the meningococcal CMP-NeuNAc synthetase. The predicted amino acid sequences of the two other encoded proteins were homologous to those of the NeuC and NeuB proteins of E. coli K1, two proteins involved in the synthesis of NeuNAc. These results indicate that common steps exist in the biosynthesis of NeuNAc in these two microorganisms.  相似文献   

15.
A Pseudomonas stutzeri gene (nosA) encoding an outer membrane protein was cloned into the broad-host-range vector pRK290 and expressed in a mutant lacking the protein. Deletion analysis identified the approximate extent of the nosA region which was sequenced, and it was found to contain an open reading frame encoding 683 amino acids including a presumed signal sequence of 44 amino acids. The putative processed form had a molecular weight of 70,218, characteristics typical of outer membrane proteins, and considerable amino acid sequence homology with Escherichia coli BtuB. A short stretch of amino acids was homologous with the E. coli TonB-dependent outer membrane proteins, BtuB, IutA, FepA, and FhuA, suggesting a homologous function: interaction with a periplasmic protein or uptake of a specific substrate.  相似文献   

16.
The SEN1 gene, which is essential for growth in the yeast Saccharomyces cerevisiae, is required for endonucleolytic cleavage of introns from all 10 families of precursor tRNAs. A mutation in SEN1 conferring temperature-sensitive lethality also causes in vivo accumulation of pre-tRNAs and a deficiency of in vitro endonuclease activity. Biochemical evidence suggests that the gene product may be one of several components of a nuclear-localized splicing complex. We have cloned the SEN1 gene and characterized the SEN1 mRNA, the SEN1 gene product, the temperature-sensitive sen1-1 mutation, and three SEN1 null alleles. The SEN1 gene corresponds to a 6,336-bp open reading frame coding for a 2,112-amino-acid protein (molecular mass, 239 kDa). Using antisera directed against the C-terminal end of SEN1, we detect a protein corresponding to the predicted molecular weight of SEN1. The SEN1 protein contains a leucine zipper motif, consensus elements for nucleoside triphosphate binding, and a potential nuclear localization signal sequence. The carboxy-terminal 1,214 amino acids of the SEN1 protein are essential for growth, whereas the amino-terminal 898 amino acids are dispensable. A sequence of approximately 500 amino acids located in the essential region of SEN1 has significant similarity to the yeast UPF1 gene product, which is involved in mRNA turnover, and the mouse Mov-10 gene product, whose function is unknown. The mutation that creates the temperature-sensitive sen1-1 allele is located within this 500-amino-acid region, and it causes a substitution for an amino acid that is conserved in all three proteins.  相似文献   

17.
Here we report the characterization of an Escherichia coli gene (agn43) which encodes the principal phase-variable outer membrane protein termed antigen 43 (Ag43). The agn43 gene encodes a precursor protein of 107 kDa containing a 52-amino-acid signal sequence. Posttranslational processing generates an alpha43 subunit (predicted Mr of 49,789) and a C-terminal domain (beta43) with features typical of a bacterial integral outer membrane protein (predicted Mr of 51, 642). Secondary structure analysis predicts that beta43 exists as an 18-stranded beta barrel and that Ag43 shows structural organization closely resembling that of immunoglobulin A1 protease type of exoprotein produced by pathogenic Neisseria and Haemophilus spp. The correct processing of the polyprotein to alpha43 and beta43 in OmpT, OmpP, and DegP protease-deficient E. coli strains points to an autocatalytic cleavage mechanism, a hypothesis supported by the occurrence of an aspartyl protease active site within alpha43. Ag43, a species-specific antigen, possesses two RGD motifs of the type implicated in binding to human integrins. The mechanism of reversible phase variation was studied by immunochemical analysis of a panel of well-defined regulatory mutants and by analysis of DNA sequences upstream of agn43. Evidence strongly suggests that phase variation is regulated by both deoxyadenosine methylase (Dam) and by OxyR. Thus, oxyR mutants are locked on for Ag43 expression, whereas dam mutants are locked off for Ag43 expression. We propose a novel mechanism for the regulation of phase switching in which OxyR competes with Dam for unmethylated GATC sites in the regulatory region of the agn43 gene.  相似文献   

18.
ATP-binding cassette transporter G2 (ABCG2) gene encodes a protein that has a wide variety of substrates and is responsible for the active secretion of clinically and toxicologically important molecules into milk. Although known in many species, this marks the first time this gene product has been reported in goats. In this study, we cloned and sequenced goat ABCG2 gene complete coding sequence and predicted its putative translated protein structure with implicative functional domains. One six-transmembrane span on C-terminal region and at least one coiled-coil domain on N-terminal were predicted and compared primarily with those of other closely related species. In addition, three conserved cysteines (in positions 595, 606, and 611) were determined toward the C-terminal of goat’s ABCG2. Two known functional motifs were identified in goat’s protein through comparative studies with other species. The goat ABCG2 relative expression profile revealed that the gene expression was a function of lactation stage and parallel to goat lactation curve.  相似文献   

19.
Bordetella pertussis produces a porin protein which is a prominent outer membrane component found in both virulent and avirulent strains. N-terminal amino acid analysis of purified B. pertussis porin was performed and this amino acid sequence was used to design an oligonucleotide that was then utilized to screen a lambda gt11 library containing randomly sheared fragments of DNA from B. pertussis strain 347. One clone, lambda BpPor, was identified and subcloned into pUC18. A portion of the DNA insert in this subclone, pBpPor1, was sequenced and shown to contain the N-terminal region of the structural porin gene. This truncated gene sequence was used to design an additional oligonucleotide that was used to identify a clone, pBpPor2, which overlapped with pBpPor1 and contained a termination codon. The structural gene deduced from this sequence would encode a 365-amino-acid polypeptide with a predicted mass of 39,103 daltons. The predicted product also contains a signal sequence of 20 residues that is similar to that found in other porin genes. The predicted B. pertussis porin protein sequence contains regions that are homologous to regions found in porins expressed by Neisseria species and Escherichia coli, including the presence of phenylalanine as the carboxy-terminal amino acid. DNA hybridization studies indicated that both virulent and avirulent strains of B. pertussis contain only one copy of this gene and that Bordetella bronchiseptica and Bordetella parapertussis contain a similar gene.  相似文献   

20.
A DNA fragment of Serratia marcescens directing an extracellular serine protease (Mr, 41,000) was cloned in Escherichia coli. The cloned fragment caused specific excretion of the protease into the extracellular medium through the outer membrane of E. coli host cells in parallel with their growth. No excretion of the periplasmic enzymes of host cells occurred. The cloned fragment contained a single open reading frame of 3,135 base pairs coding a protein of 1,045 amino acids (Mr 112,000). Comparison of the 5' nucleotide sequence with the N-terminal amino acid sequence of the protease indicated the presence of a typical signal sequence. The C-terminal amino acid of the enzyme was found at position 408, as deduced from the nucleotide sequence. Artificial frameshift mutations introduced into the coding sequence for the assumed distal polypeptide after the C terminus of the protease caused complete loss of the enzyme production. It was concluded that the Serratia serine protease is produced as a 112-kilodalton proenzyme and that its N-terminal signal peptide and a large C-terminal part are processed to cause excretion of the mature protease through the outer membrane of E. coli cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号