首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The adsorption of doubly lipidated full-length N-Ras protein on 1,2-dipalmitoyl-sn-phosphatidylcholine (DPPC) monolayers was studied by lateral pressure analysis, grazing incidence X-ray diffraction (GIXD), and specular reflectivity (XR). N-Ras protein adsorbs to the DPPC monolayer (lateral pressure of 20 mN/m) from the subphase thereby increasing the lateral pressure in the monolayer by 4 mN/m. The protein insertion does not alter the tilt angle and structure of the lipid molecules at the air/water interface but influences the electron density profile of the monolayer. Further, electron density differences into the subphase were observed. The Fresnel normalized reflectivity could be reconstructed in the analysis using box models yielding electron density profiles of the DPPC monolayer in the absence and in the presence of N-Ras protein. The electron density profiles of the DPPC monolayer in the presence of Ras showed clear intensity variations in the headgroup/glycerol/upper chain region, the so-called interface region where previous bilayer studies had confirmed Ras binding. Dedicated to Prof. K. Arnold on the occasion of his 65th birthday.  相似文献   

2.
Interactions of phospholipid monolayers with carbohydrates   总被引:10,自引:0,他引:10  
Surface pressure studies of phospholipid monomolecular films of dimyristoylphosphatidylcholine (DMPC) and dipalmitoylphosphatidylcholine (DPPC) formed at an air/water interface have been made and the effects on the films studied when various carbohydrates are present in the subphase. The results obtained show that at a given temperature, the area per molecule of DPPC increases with increasing concentration of the carbohydrate in the subphase. The carbohydrate which has the greatest expanding effect on the phospholipid monolayer is glycerol, followed in turn by trehalose, sucrose, glucose, raffinose, and inositol. The mechanism of monolayer expansion by glycerol is different from that observed in other carbohydrates, as the following experiments demonstrate. Below the phase transition temperature of DPPC, the area per molecule of DPPC at a pressure of 12.5 dyn/cm is the same with and without glycerol in the subphase. However, when the monolayer is heated to a temperature above the phase transition temperature for DPPC, the area/molecule on glycerol is considerably greater than the area/molecule on water at the same surface pressure. Cooling the monolayer back to the lower temperature produces an area/molecule of DPPC which is identical on both water and glycerol subphases. Glycerol therefore has no effect on the low-temperature (condensed) monolayers but causes expansion of the high-temperature (expanded) monolayers. By contrast with glycerol, both trehalose and sucrose interact with the DPPC monolayer producing an increased area/molecule over that observed on water, both with low-temperature (condensed) monolayers and with the high-temperature (expanded) monolayers. The efficiency of these carbohydrates at expanding the monolayer films (with the exception of glycerol) shows a strong correlation with their ability to stabilize membrane structure and function at low water contents.  相似文献   

3.
4.
Epifluorescence microscopy combined with a surface balance was used to study monolayers of dipalmitoylphosphatidylcholine (DPPC)/egg phosphatidylglycerol (PG) (8:2, mol/mol) plus 17 wt % SP-B or SP-C spread on subphases containing SP-A in the presence or absence of 5 mM Ca(2+). Independently of the presence of Ca(2+) in the subphase, SP-A at a bulk concentration of 0.68 microg/ml adsorbed into the spread monolayers and caused an increase in the molecular areas in the films. Films of DPPC/PG formed on SP-A solutions showed a pressure-dependent coexistence of liquid-condensed (LC) and liquid-expanded (LE) phases. Apart from these surface phases, a probe-excluding phase, likely enriched in SP-A, was seen in the films between 7 mN/m < or = pi < or = 20 mN/m. In monolayers of SP-B/(DPPC/PG) spread on SP-A, regardless of the presence of calcium ions, large clusters of a probe-excluding phase, different from probe-excluding lipid LC phase, appeared and segregated from the LE phase at near-zero surface pressures and coexisted with the conventional LE and LC phases up to approximately 35 mN/m. Varying the levels of either SP-A or SP-B in films of SP-B/SP-A/(DPPC/PG) revealed that the formation of the probe-excluding clusters distinctive for the quaternary films was influenced by the two proteins. Concanavalin A in the subphase could not replace SP-A in its ability to modulate the textures of films of SP-B/(DPPC/PG). In films of SP-C/SP-A/(DPPC/PG), in the absence of calcium, regions consisting of a probe-excluding phase, likely enriched in SP-A, were detected at surface pressures between 2 mN/m and 20 mN/m in addition to the lipid LE and LC phases. Ca(2+) in the subphase appeared to disperse this phase into tiny probe-excluding particles, likely comprising Ca(2+)-aggregated SP-A. Despite their strikingly different morphologies, the films of DPPC/PG that contained combinations of SP-B/SP-A or SP-C/SP-A displayed similar distributions of LC and LE phases with LC regions occupying a maximum of 20% of the total monolayer area. Combining SP-A and SP-B reorganized the morphology of monolayers composed of DPPC and PG in a Ca(2+)-independent manner that led to the formation of a separate potentially protein-rich phase in the films.  相似文献   

5.
The effect of monolayer domain formation on the electrostatic coupling of cytochrome c from the subphase to a monolayer at the air/water interface was studied using a combination of neutron reflection (NR) and infrared reflection absorption spectroscopy (IRRAS) techniques. The monolayers consisted of a binary mixture of the zwitterionic phosphatidylcholine and the anionic phosphatidylglycerol. For a monolayer of dipalmitoylphosphatidylcholine (DPPC) and dimyristoylphosphatidylglycerol (DMPG, 30 mol%), which exhibits a non-ideal mixing of the two lipid components, we observed a significantly higher protein coupling to the liquid-condensed phase compared to the liquid-expanded state. In contrast, this higher protein binding was not observed when the two lipids had identical chain lengths (nearly ideal mixing). Similarly, for an equimolar mixture of DPPC and DMPG, we did not observe significant differences in the protein binding for the two phase states. The results strongly suggest that the domain formation in a condensed monolayer under non-ideal lipid mixing conditions is crucial for the cytochrome c binding strength. Furthermore, this study demonstrates the significant advantages of gathering information on protein-monolayer coupling by the combined use of a dedicated IRRAS set-up with the NR technique.  相似文献   

6.
The stoichiometric palmitoyllysophosphatidylcholine (lysoPC)/gramicidin (4:1, mol/mol) lamellar complex (Killian, J.A., De Kruijff, B., Van Echteld, C.J.A., Verkleij, A.J., Leunissen-Bijvelt, J. and De Gier, J. (1983) Biochim. Biophys. Acta 728, 141-144) is a useful model system to investigate the various aspects of lipid protein interactions. To study the effect of gramicidin on local order and motion of 1-palmitoyl-sn-glycero-3-phosphocholine (lysoPC) we employed 31P and 2H nuclear magnetic resonance (NMR) using selectively deuterated lysoPC's and we compared the results to those obtained for lysoPC in bilayers with cholesterol (1:1, mol/mol) and dipalmitoylphosphatidylcholine (DPPC) (1:4, mol/mol). 2H-NMR experiments on acyl chain deuterated lysoPC showed similar quadrupole splittings in the liquid crystalline state for the lysoPC/DPPC and the lysoPC/gramicidin samples. In the lysoPC/cholesterol sample an increase of the quadrupole splitting was found. T1 measurements showed that gramicidin decreases the lysoPC acyl chain motion, especially at the C12 position. In the lysoPC/cholesterol sample an increase of motion was observed as compared to lysoPC in fluid bilayers of DPPC. 31P-NMR and 2-H-NMR measurements of lysoPC, deuterated at the alpha- and beta-position of the choline moiety, indicated an increase in headgroup flexibility in all samples as compared to the parent compound DPPC. In addition, a change in headgroup conformation was observed. The alpha- and beta-segments in all samples exhibited concerted motion. It was found that also in the polar headgroup gramicidin induces a decrease of the rate of motion.  相似文献   

7.
Binding of the positively charged drug chlorpromazine to phospholipid monolayers was investigated. A preferential uptake was observed near the phase transtion of the corresponding lipid. Cholesterol considerably diminishes the chlorpromazine uptake, again particularly near a lipid phase transition. The binding properties depend on the chlorpromazine concentration in the subphase. A critical concentration is 5·10-5M, where higher uptake occurs in the liquid condensed than in the liquid expanded state of the monolayer at pressures of about 10 mN/m. Dipalmitoylphosphatidylcholine monolayers spread on a subphase containing chlorpromazine are comparable to monolayers at higher temperature but in the absence of chlorpromazine. These data are in agreement with previous fluorescence and electron paramagnetic resonance experiments on lipid bilayer membranes (Luxnat and Galla 1986).Abbreviations CPZ chlorpromazine - DPPC dipalmitoylphosphatidylcholine - DMPC dimyristoylphosphatidylcholine - LE liquid expanded - LC liquid condensed  相似文献   

8.
SP-C, a pulmonary surfactant-specific protein, aids the spreading of the main surfactant phospholipid L-alpha-dipalmitoylphosphatidylcholine (DPPC) across air/water interfaces, a process that has possible implications for in vivo function. To understand the molecular mechanism of this process, we have used external infrared reflection-absorption spectroscopy (IRRAS) to determine DPPC acyl chain conformation and orientation as well as SP-C secondary structure and helix tilt angle in mixed DPPC/SP-C monolayers in situ at the air/water interface. The SP-C helix tilt angle changed from approximately 24 degrees to the interface normal in lipid bilayers to approximately 70 degrees in the mixed monolayer films, whereas the acyl chain tilt angle of DPPC decreased from approximately 26 degrees in pure lipid monolayers (comparable to bilayers) to approximately 10 degrees in the mixed monolayer films. The protein acts as a "hydrophobic lever" by maximizing its interactions with the lipid acyl chains while simultaneously permitting the lipids to remain conformationally ordered. In addition to providing a reasonable molecular mechanism for protein-aided spreading of ordered lipids, these measurements constitute the first quantitative determination of SP-C orientation in Langmuir films, a paradigm widely used to simulate processes at the air/alveolar interface.  相似文献   

9.
The interaction of four long-chain nicotinates, compounds that are of interest as potential chemopreventive agents, with dipalmitoylphosphatidylcholine (DPPC) was investigated in monolayers at the air-water interface and in fully hydrated bilayers. For the monolayer studies, the compression isotherms of mixtures of the respective nicotinate with DPPC were recorded at various compositions on a hydrochloric acid subphase (pH 1.9-2.1, 37 +/- 2 degrees C). The headgroup of the nicotinates (24-29 A2/molecule) is larger than that of the hydrophobic tail (20 A2/molecule). The pure nicotinates exhibit a temperature- and chain length-dependent transition from an expanded to a condensed phase. Analysis of the concentration dependence of the average molecular area at constant film pressure and the concentration dependence of the breakpoint of the phase transition from the expanded to the condensed state suggests that all four DPPC-nicotinate mixtures are partially miscible at the air-water interface. Although a complex phase behavior with several phase transitions was observed, differential scanning calorimetry studies of the four mixtures are also indicative of the partial miscibility of DPPC and the respective nicotinate. Overall, the complex phase behavior most likely results from the head-tail mismatch of the nicotinates and the geometric packing constraints in the two-component lipid bilayer.  相似文献   

10.
Fluorocarbon gases (gFCs) were found to inhibit the liquid-expanded (LE)/liquid-condensed (LC) phase transition of dipalmitoyl phosphatidylcholine (DPPC) Langmuir monolayers. The formation of domains of an LC phase, which typically occurs in the LE/LC coexistence region upon compression of DPPC, is prevented when the atmosphere above the DPPC monolayer is saturated with a gFC. When contacted with gFC, the DPPC monolayer remains in the LE phase for surface pressures lower than 38 mN m(-1), as assessed by compression isotherms and fluorescence microscopy (FM). Moreover, gFCs can induce the dissolution of preexisting LC phase domains and facilitate the respreading of the DPPC molecules on the water surface, as shown by FM and grazing incidence x-ray diffraction. gFCs have thus a highly effective fluidizing effect on the DPPC monolayer. This gFC-induced fluidizing effect was compared with the fluidizing effect brought about by a mixture of unsaturated lipids and proteins, namely the two commercially available lung surfactant substitutes, Curosurf and Survanta, which are derived from porcine and bovine lung extracts, respectively. The candidate FCs were chosen among those already investigated for biomedical applications, and in particular for intravascular oxygen transport, i.e., perfluorooctyl bromide, perfluorooctylethane, bis(perfluorobutyl)ethene, perfluorodecalin, and perfluorooctane. The fluidizing effect is most effective with the linear FCs. This study suggests that FCs, whose biocompatibility is well documented, may be useful in lung surfactant substitute compositions.  相似文献   

11.
The structure and dynamics of a single GM1 (Gal5-β1,3-GalNAc4-β1,4-(NeuAc3-α2,3)-Gal2-β1,4-Glc1-β1,1-Cer) embedded in a DPPC bilayer have been studied by MD simulations. Eleven simulations, each of 10 ns productive run, were performed with different initial conformations of GM1. Simulations of GM1-Os in water and of a DPPC bilayer were also performed to delineate the effects of the bilayer and GM1 on the conformational and orientational dynamics of each other. The conformation of the GM1 headgroup observed in the simulations is in agreement with those reported in literature; but the headgroup is restricted when embedded in the bilayer. NeuAc3 is the outermost saccharide towards the water phase. Glc1 and Gal2 prefer a parallel, and NeuAc3, GalNac4 and Gal5 prefer a perpendicular, orientation with respect to the bilayer normal. The overall characteristics of the bilayer are not affected by the presence of GM1; however, GM1 does influence the DPPC molecules in its immediate vicinity. The implications of these observations on the specific recognition and binding of GM1 embedded in a lipid bilayer by exogenous proteins as well as proteins embedded in lipids have been discussed.  相似文献   

12.
The interaction of p-10,12-pentacosadiyne-1-n-phenylamide alpha-D-mannopyranoside (MPDA) with protein concanavalin A (Con A) was studied at the air/water interface. The expansion of molecular area of PDA (10,12-pentacosadiynoic acid)/MPDA mixed monolayer after injection of Con A in subphase shows strong interaction between Con A and the monolayer. The maximum expansion of molecular area decreases as the molar ratio of MPDA increases due to the steric hindrance effect. By using enzyme mannosidase to cut-off the mannoside headgroup of MPDA, expansion of molecular area was greatly reduced, indicating that the binding of Con A is specific to the mannoside headgroup. The kinetics of the binding fits to the first order bimolecular reaction model. Fluorescence quenching of fluorescein isothiocyanate labeled Con A after injection into the subphase gives a direct proof of the molecular recognition.  相似文献   

13.
The characteristics of the fluorescent dye, merocyanine 540 (MC-540), incorporated in monolayers of 1,2-dipalmitoyl-phosphatidylcholine (DPPC), and 1-palmitoyl-2-oleoylphosphatidylcholine (POPC) were studied in different states of molecular packing. Conditions for phase separation in these monolayers were defined by their pressure/area (pi-A) isotherms. Within the liquid expanded (LE) and the liquid condensed (LC) coexisting phases of DPPC monolayers, low light level epifluorescence microscopy revealed 'dark' discoid domains embedded in a 'bright' matrix. Under the same conditions, and at temperatures as low as 12 degrees C, the pi-A isotherms of POPC demonstrate the existence of a single phase, and no fluorescent domains were observed. Fluorescence spectra of MC-540 labelled monolayers, recorded in different structural states, reveal three distinct emission peaks: a 572 nm peak, present for monolayer packing conditions at low surface pressures; a 585 nm peak, similar to that obtained from dye molecules in fluid phase lipid bilayers, and observed here within the respective area/molecule ranges of 54-62 A2 and 62-69 A2 for monolayers of DPPC and POPC with diminishing intensity at increasing surface pressure; and finally, a peak at 560 nm, which predominates in densely packed POPC monolayers. Our results are interpreted on the basis of dye partitioning between monolayer and subphase, and different orientations of the dye with respect to the monolayer in various structural states. The usefulness of MC-540 to differentiate lipid packing in cell membranes is discussed.  相似文献   

14.
Cholesterol, stigmastanol, and stigmastanyl-phosphorylcholine (ST-PC) were incorporated into model membranes composed of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) or 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC). POPC and ST-PC were deuterated at the lipid headgroup, DOPC at the cis-double bonds. The influence of the three sterols on the motion and conformation of the lipid headgroups and the hydrocarbon chains was monitored with 2H- and 31P-NMR. All three sterols were freely miscible with the lipid matrix in concentrations of up to 50 mol% without inducing phase separations or nonbilayer structures. However, the molecules exert quite different effects on the phospholipid bilayer. Cholesterol and stigmastanol are largely buried in the hydrocarbon part of the membrane, distinctly restricting the flexing motions of the fatty acyl chains whereas the conformation of the phospholipid headgroups is little affected. In contrast, ST-PC is anchored with its headgroup in the layer of phospholipid dipoles, preventing an extensive penetration of the sterol ring into the hydrocarbon layer. Hence ST-PC has almost no effect on the hydrocarbon chains but induces a characteristic conformational change of the phospholipid headgroups. The 2H- and 31P-NMR spectra of mixed phospholipid/ST-PC membranes further demonstrate that the PC headgroup of ST-PC has a similar orientation as the surrounding phosphatidylcholine headgroups. For both types of molecules the -P-N+ dipole is essentially parallel to the membrane surface. Addition of ST-PC induces a small rotation of the POPC headgroup towards the water phase.  相似文献   

15.
Derivatives of the sodium salt of dimyristoylphosphatidylinositol (DMPI) have been synthesized specifically deuterated in the headgroup. A 50:50 (molar) mixture of DMPI with dimyristoylphosphatidylcholine (DMPC) hydrated to the level of 16 waters/lipid gives a biomembrane-like Lalpha phase at 50 degrees C. Comparison of the neutron diffraction scattering profiles for deuterated and undeuterated membranes allowed the depth of each deuterium (hydrogen) within the bilayer to be determined to +/-0.5 A. This gave the orientation of the inositol ring which lies more-or-less along the bilayer normal projecting directly out into the water. This orientation is similar to that of the sugar residue in glycolipids and confirms previous models for PI. On the assumption that the (P)O-DAG bond is more-or-less parallel to the bilayer normal, it is consistent with a roughly trans, trans, trans, gauche- conformation for the glyceryl-phosphate-inositol link. In the case of DMPI, it is the C4-hydroxy group which is most fully extended into the water layer, but when this is phosphorylated, the inositol ring turns over and tilts so that the C5-hydroxy group is now the one furthest extended into the water layer. Hence, at each stage in the pathway PI --> PI-4P --> PI-4,5-P2, it is the hydroxy position most exposed to the water which undergoes phosphorylation. Whereas the orientation of the inositol ring in DMPI can be seen simply as maximizing its hydration, the tilt of the ring in DMPI-4P cannot be explained in this way. It is suggested that it is due to an electrostatic interaction.  相似文献   

16.
Taneva SG  Keough KM 《Biochemistry》2000,39(20):6083-6093
Surface balance techniques were used to study the interactions of surfactant protein SP-A with monolayers of surfactant components preformed at the air-water interface. SP-A adsorption into the monolayers was followed by monitoring the increase in the surface pressure Deltapi after injection of SP-A beneath the films. Monolayers of dipalmitoylphosphatidylcholine (DPPC):egg phosphatidylglycerol (PG) (8:2, mol/mol) spread at initial surface pressure pi(i) = 5 mN/m did not promote the adsorption of SP-A at a subphase concentration of 0.68 microg/mL as compared to its adsorption to the monolayer-free surface. Surfactant proteins, SP-B or SP-C, when present in the films of DPPC:PG spread at pi(i) = 5 mN/m, enhanced the incorporation of SP-A in the monolayers to a similar extent; the Deltapi values being dependent on the levels of SP-B or SP-C, 3-17 wt %, in the lipid films. Calcium in the subphase did not affect the intrinsic surface activity of SP-A but reduced the Deltapi values produced by the adsorption of the protein to all the preformed films independently of their compositions and charges. The divalent ions likely modified the interaction of SP-A with the monolayers through their effects on the conformation, self-association, and charge state of SP-A. Values of Deltapi produced by adsorption of SP-A to the films of DPPC:PG with or without SP-B or SP-C were a function of the initial surface pressure of the films, pi(i). In the range of pressures 5 相似文献   

17.
The 2H-NMR spectra of 50 wt.% aqueous multilamellar dispersions of dipalmitoylphosphatidylcholine (DPPC) containing either selectively deuterated 1-decanol (25 mol%) or [2H17]-1-octanol (25 mol%) have been measured as a function of temperature. Both alkanols are potent anesthetics. A detailed carbon-deuterium bond order parameter profile of 1-decanol in liquid crystalline phospholipid dispersions at 50 degrees C was determined from the quadrupolar splittings of 1-decanols deuterated at eight different positions. A maximum order parameter SCD = 0.20 was obtained for [5,5-2H2]-1-decanol, with labels at both ends of the 1-decanol exhibiting reduced order parameters. Explanations for the reduced order towards the hydroxyl group of 1-decanol are discussed in terms of either increased amplitudes of motion or geometric effects due to hydrogen bonding. By comparing the order parameter profile of sn-2 chain deuterated phosphatidylcholine dispersions containing 25 mol% 1-decanol (J.L. Thewalt, S.R. Wassall, H. Gorrissen and R.J. Cushley, Biochim. Biophys. Acta, 817 (1985) 355) with the profile of deuterated 1-decanol in DPPC, we estimate that decanol is approximately parallel to the C-3 to C-13 region of the phosphatidylcholine's sn-2 chain. Variation of the spectral moments M1 with temperature indicates that both 1-decanol and 1-octanol are sensitive to the packing of the lipid in which they are dissolved. Below the phase transition temperature, the 2H-NMR spectra of either 1-decanol (selectively deuterated) or 1-octanol (perdeuterated) are broad powder patterns, characteristic of axially symmetric rotation about the alcohol's long axis. This is in contrast to the 2H-NMR spectra obtained from deuterated phosphatidylcholine under similar conditions, which implies that the phospholipid acyl chain conformations are more restricted than those of the alcohol at these temperatures. From the M1 behavior of the various alkanol chain segments with temperature, the gel to liquid crystalline phase transition is seen to initiate in the middle of the DPPC/1-alkanol bilayer.  相似文献   

18.
The fine details of the phase transition of dipalmitoylphosphoglycerocholine (DPPC) monolayers at air/NaCl solution interfaces were investigated at 21 +/- 1 degrees C by using the fluorescence after photobleaching technique employing 12-(9-anthroyloxy)stearic acid as fluorescent probe. The mode of compression of the monolayer (i.e., continuous compression or successive additions of the lipid at fixed area) together with the ionic strength of the subphase (0.1 or 1.0 M NaCl) were particularly studied. The photobleaching results show that the lateral diffusion coefficient of the probe molecules decreases drastically within the liquid-condensed phase, i.e., from the end of the liquid-expanded-liquid-condensed phase transition to the beginning of the solid-condensed phase. The molecular areas at which the phase transition occurs under the various experimental conditions, together with a parallel analysis of the hydration states and related molecular areas of the DPPC molecules in multilayers, strongly suggest that the steric hindrance associated with the hydration water of the polar head of DPPC molecules in the monolayer is responsible for the drastic decrease in diffusion coefficient in the liquid-condensed phase. Furthermore, the fluorescence characteristics of the probe molecules also show that, together with the aforementioned reorganization of the polar head, a structural reorganization of the aliphatic chains of the lipid molecules also takes place in the liquid-condensed phase. The liquid-condensed phase therefore appears as a transition region from liquid to solid phases in which the lipid molecules present a significant decrease in their lateral diffusion related to a structural reorganization of both their polar and aliphatic components.  相似文献   

19.
M Tarek  K Tu  M L Klein    D J Tobias 《Biophysical journal》1999,77(2):964-972
Molecular dynamics simulations have been used to investigate the structure of hybrid bilayers (HB) formed by dipalmitoylphosphatidylcholine (DPPC) lipid monolayers adsorbed on a hydrophobic alkanethiol self-assembled monolayer (SAM). The HB system was studied at 20 degrees C and 60 degrees C, and the results were compared with recent neutron reflectivity measurements (Meuse, C. W., S. Krueger, C. F. Majkrzak, J. A. Dura, J. Fu, J. T. Connor, and A. L. Plant. 1998. Biophys. J. 74:1388) and previous simulations of hydrated multilamellar bilayers (MLB) of DPPC (Tu, K., D. J. Tobias, and M. L. Klein. 1995. Biophys. J. 69:2558; and 1996. 70:595). The overall structures of the HBs are in very good agreement with experiment. The structure of the SAM monolayer is hardly perturbed by the presence of the DPPC overlayer. The DPPC layer presents characteristics very similar to the MLB gel phase at low temperature and to the liquid crystal phase at high temperature. Subtle changes have been found for the lipid/water interface of the HBs compared to the MLBs. The average phosphatidylcholine headgroup orientation is less disordered, and this produces changes in the electric properties of the HB lipid/water interface. These changes are attributed to the fact that the aqueous environment of the lipids in these unilamellar films is different from that of MLB stacks. Finally, examination of the intramolecular and whole-molecule dynamics of the DPPC molecules in the fluid phase HB and MLB membranes revealed that the reorientations of the upper part of the acyl chains (near the acyl ester linkage) are slower, the single molecule protrusions are slightly damped, and the lateral rattling motions are significantly reduced in the HB compared with the MLB.  相似文献   

20.
Rapid adsorption of surfactant material to the air/liquid interface of the lung is essential for maintaining normal lung function. The detailed mechanism of this process, however, remains unclear. In this study, we elucidate the influence of lipid saturation grade and headgroup charge of surface layer lipids on surfactant protein (SP)-induced vesicle insertion into monolayers spread at the air/water interface of a film balance. We used dipalmitoylphosphatidlycholine (DPPC),1,2-dipalmitoyl-sn-glycero-3-phosphoglycerol (DPPG), 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoglycerol (POPG) as monolayer lipids doped with either hydrophobic surfactant-specific protein SP-B or SP-C (0.2 and 0.4 mol %, respectively). Vesicles consisting of DPPC/DPPG (4:1, mol ratio) were injected into a stirred subphase to quantify adsorption kinetics. Based on kinetic film balance and fluorescence measurements, a refined model describing distinct steps of vesicle adsorption to surfactant monolayers is presented. First, in a protein-independent step, lipids from vesicles bridged to the interfacial film by Ca2+ ions are inserted into defects of a disordered monolayer at low surface pressures. Second, in a SP-facilitated step, active material insertion involving an SP-B- or SP-C-induced flip-flop of lipids occurs at higher surface pressures. Negatively charged lipids obviously influence the threshold pressures at which this second protein-mediated adsorption mechanism takes place.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号