首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 781 毫秒
1.
Resistin is an adipokine that has not been extensively studied in cattle but is produced by adipocytes in greater amounts in lactating versus non-lactating cattle. Seven experiments were conducted to determine the effect of resistin on proliferation, steroidogenesis, and gene expression of theca and granulosa cells from small (1-5mm) and/or large (8-22 mm) cattle follicles. Resistin had no effect on IGF-I-induced proliferation of large-follicle theca cells or small-follicle granulosa cells, but decreased IGF-I-induced proliferation of large-follicle granulosa cells. Resistin weakly stimulated FSH plus IGF-I-induced estradiol production by large-follicle granulosa cells, but had no effect on IGF-I- or insulin-induced progesterone and androstenedione production by theca cells or progesterone production by granulosa cells of large follicles. In small-follicle granulosa cells, resistin attenuated the stimulatory effect of IGF-I on progesterone and estradiol production of small-follicle granulosa cells. RT-PCR measuring abundance of side-chain cleavage enzyme (CYP11A1), aromatase (CYP19A1), FSH receptor (FSHR) and LH receptor (LHCGR) mRNA in large- and small-follicle granulosa cells indicated that resistin reduced the stimulatory effect of IGF-I on CPY11A1 mRNA abundance in large-follicle granulosa cells but had no effect on CYP19A1, FSHR or LHCGR mRNA abundance in large- or small-follicle granulosa cells. Resistin had no effect on CYP11A1, CYP17A1 or LHCGR mRNA abundance in theca cells. These results indicate that resistin preferentially inhibits steroidogenesis of undifferentiated (small follicle) granulosa cells and inhibits proliferation of differentiated (large follicle) granulosa cells, indicating that the ovarian response to resistin is altered during follicular development.  相似文献   

2.
Shidaifat F 《Theriogenology》2001,56(4):591-599
Growth factors are said to play a significant role in the development of ovarian follicles. We wished to measure the content of one growth factor, activin-A in goat ovarian follicles, and study its effect on goat granulosa cells steroidogenesis. The follicular fluid content of activin-A from small, medium and large antral follicles was determined by two-site enzyme immunoassay. The results showed that activin-A concentration in the follicular fluid increased as the size of the follicle increased and, thus, may act as a local regulator of follicle development. To examine this possibility, the effect of increasing concentration of activin-A (0, 1, 10, 100 ng/mL) on differentiated goat granulosa cells steroidogenesis was evaluated in vitro for 48 hours in a chemically defined medium. Activin-A treatment resulted in a significant inhibition of progesterone production concomitant with a significant stimulation of estradiol production. These results were confirmed by time-effect of 50 ng/mL activin-A on goat granulosa cells steroidogenesis for 24, 48 and 72 hours. Granulosa cells displayed differential steroidogenic responses to activin-A, estradiol production becoming enhanced and progesterone production suppressed. Based on these findings, it appears that activin-A is a local regulator of goat granulosa cell steroidogenesis, and may act to promote granulosa cell differentiation and inhibit its luteinization.  相似文献   

3.
The objectives of this study were to determine if heme oxygenase (HO), which catalyzes the degradation of heme and the formation of carbon monoxide (CO), is localized in the rat ovary and, if so, to determine if hemin (a substrate for HO) or chromium mesoporphyrin (CrMP, an inhibitor of HO), alter basal or gonadotropin-induced steroidogenesis. The hypothesis was that CO produced endogenously by HO suppresses steroid hormone production by the ovary similar to the action of nitric oxide. For the histological localization of HO, sections of ovaries obtained from mature Holtzman Sprague-Dawley rats were immunostained for two of the HO isoforms, HO-1 and HO-2. Theca cells and granulosa cells of follicles and luteal cells stained for HO-1, whereas the ovarian stroma showed a low intensity of staining. Theca, granulosa cells, and corpora lutea as well as the ovarian stroma exhibited HO-2 staining. HO-2 immunostaining appeared more intense for theca cells than granulosa cells. In the study of steroidogenesis, three daily injections of hemin stimulated basal- and gonadotropin-induced androstenedione and estradiol secretion from ovaries of pregnant mare serum gonadotropin-treated immature rats in vitro, but had no effect on progesterone production. A similar treatment with CrMP suppressed basal- and gonadotropin-induced secretion of progesterone and androstenedione, but had no effect on estradiol production. These data, taken together, show the existence of HO in the rat ovary and suggest a possible stimulatory role of endogenous CO in the production of ovarian steroids.  相似文献   

4.
Androgens have been reported to stimulate progesterone production by granulosa cells of several species, and to act synergistically with FSH in stimulation of progesterone accumulation by rat granulosa cells. Studies were undertaken to examine the effect of androgens on FSH-stimulated progesterone production in culture by granulosa cells derived from prepubertal pig ovaries. When included in 24-h culture with FSH, both androstenedione and testosterone caused a reduction in progesterone accumulation, but dihydrotestosterone and androsterone did not. Granulosa cells were cultured for 24 h with FSH and [14C]progesterone with or without testosterone; testosterone did not affect the rate of overall metabolism of [14C]progesterone and it was therefore concluded that testosterone inhibited progesterone synthesis, rather than enhancing its catabolism. 17 beta-Estradiol also inhibited FSH-stimulated progesterone accumulation. To determine whether the action of testosterone was mediated by conversion to estradiol, granulosa cells were cultured with FSH and testosterone with or without an aromatase inhibitor (4-acetoxy-androstenedione). The aromatase inhibitor failed to prevent the testosterone-induced reduction in progesterone accumulation, although it markedly inhibited estradiol accumulation. These results indicate that theca-derived androgens can inhibit FSH-stimulated progesterone production by granulosa cells in the prepubertal pig, independently of estradiol.  相似文献   

5.
Isolated swine granulosa cells incubated in chemically defined medium in vitro responded to synthetically pure human somatomedin C/IGF-I in a dose and time-dependent fashion with increased pregnenolone, progesterone and estradiol biosynthesis. These stimulatory actions were not mimicked by growth hormone, proinsulin, desoctapeptide insulin, epidermal growth factor, or fibroblast growth factor. Moreover, somatomedin C/IGF-I augmented the steroidogenic response of granulosa cells to exogenously supplied sterol substrate in the form of low-density lipoprotein, and amplified the stimulatory actions of the classical ovarian effector hormones, estradiol and follicle-stimulating hormone, in a synergistic fashion. The ability of somatomedin C/IGF-I to stimulate estradiol production on the one hand, and to act synergistically with estradiol to stimulate progesterone biosynthesis on the other hand, suggests a unique intrafollicular mechanism for amplifying progestin biosynthetic capacity in granulosa cells.  相似文献   

6.
Angiogenin is a member of the ribonuclease A superfamily of proteins that has been implicated in stimulating angiogenesis but whether angiogenin can directly affect ovarian granulosa or theca cell function is unknown. Therefore, the objective of these studies was to determine the effect of angiogenin on proliferation and steroidogenesis of bovine granulosa and theca cells. In experiments 1 and 2, granulosa cells from small (1 to 5 mm diameter) follicles and theca cells from large (8 to 22 mm diameter) follicles were cultured to evaluate the dose-response effect of recombinant human angiogenin on steroidogenesis. At 30 and 100 ng/ml, angiogenin inhibited (P<0.05) granulosa cell progesterone production and theca cell androstenedione production but did not affect (P>0.10) granulosa cell estradiol production or theca cell progesterone production, and did not affect numbers of granulosa or theca cells. In experiments 3 and 4, granulosa and theca cells from both small and large follicles were cultured with 300 ng/ml of angiogenin to determine if size of follicle influenced responses to angiogenin. At 300 ng/ml, angiogenin increased large follicle granulosa cell proliferation but decreased small follicle granulosa cell progesterone and estradiol production and large follicle theca cell progesterone production. In experiments 5 and 6, angiogenin stimulated (P<0.05) proliferation and DNA synthesis in large follicle granulosa cells. In experiment 7, 300 ng/ml of angiogenin increased (P<0.05) CYP19A1 messenger RNA (mRNA) abundance in granulosa cells but did not affect CYP11A1 mRNA abundance in granulosa or theca cells and did not affect CYP17A1 mRNA abundance in theca cells. We conclude that angiogenin appears to target both granulosa and theca cells in cattle, but additional research is needed to further understand the mechanism of action of angiogenin in granulosa and theca cells, as well as its precise role in folliculogenesis.  相似文献   

7.
8.
The purpose of the study was to examine the effect of luteal macrophage conditioned medium (LMCM) on progesterone and estradiol production by cultured granulosa cells. Porcine granulosa cells were cultured for 48 h with or without LMCM in the absence or presence of 100 ng/ml LH, FSH or prolactin. Progesterone and estradiol concentrations were measured by radioimmunoassay. Granulosa cells were analyzed histochemically and immunocytochemically for the activity and presence of Δ5, 3β-hydroxysteroid dehydrogenase (3β-HSD), respectively. LMCM stimulated basal and LH-, FSH- or prolactin-induced progesterone secretion. Similarly, LMCM augmented basal and stimulated activity of 3β-HSD in the examined cells. In contrast, LMCM decreased LH- and prolactin-induced estradiol secretion but increased FSH-induced estradiol secretion. These data demonstrate the clear stimulatory effect of LMCM on granulosal progesterone production. It is concluded that substances secreted by macrophages modulate gonadotropin effect on follicular progesterone secretion in a paracrine manner via 3β-HSD activity.  相似文献   

9.
Little is known regarding the hormonal regulation of granulosa cell steroidogenesis and the ovarian insulin-like growth factor (IGF) system in the mare. The objectives of this study were to determine, first, if estradiol, insulin, and/or FSH affect steroid production by equine granulosa cells (experiment 1) and, second, if the components of the IGF system are produced by equine granulosa cells in culture as well as whether estradiol, insulin, and/or FSH affects IGF and/or IGF-binding protein (IGFBP) production by equine granulosa cells (experiment 2). Granulosa cells from small (6-15 mm), medium (16-25 mm), and large (25-48 mm) follicles were collected from cyclic mares (n = 14), cultured for 2 days in medium containing 10% fetal calf serum, washed, and then treated for an additional 2 days in serum-free medium with or without added hormones. In experiment 1, large-follicle granulosa cells produced less progesterone and more estradiol than did medium- and/or small-follicle granulosa cells (P < 0.05). Progesterone production was inhibited (P < 0.05) by FSH and insulin in small- and medium- but not in large-follicle granulosa cells; estradiol was without effect. Insulin increased (P < 0.05) estradiol production in small- and medium-follicle granulosa cells but had no effect in large-follicle granulosa cells. In experiment 2, IGF-I production was inhibited (P < 0.05) by insulin across all follicle sizes but was not affected by estradiol or FSH. Granulosa cells of medium and large follicles produced more IGF-II than did granulosa cells of small follicles (P < 0.05). Insulin and FSH inhibited (P < 0.05) IGF-II production by granulosa cells of large and medium but not of small follicles; estradiol was without effect. Only IGFBP-2 and -5 were produced by equine granulosa cells. Production of IGFBP-2 was less (P < 0.10) in granulosa cells of large versus those of small and medium follicles, whereas medium-follicle granulosa cells produced more (P < 0.05) IGFBP-5 than did small- or large-follicle granulosa cells. Averaged across follicle sizes, estradiol increased (P < 0.05) IGFBP-2 production, FSH increased (P < 0.10) IGFBP-2 and -5 production, and insulin was without effect. These results indicate that IGF-I, IGF-II, IGFBP-2, and IGFBP-5 are produced by equine granulosa cells and that insulin, FSH, and estradiol play a role in the regulation of steroidogenesis and the IGF system of equine granulosa cells.  相似文献   

10.
In mammals, IGFs are important for the proliferation and steroidogenesis of ovarian cells. Metformin is an insulin sensitizer molecule used for the treatment of the infertility of women with polycystic ovary syndrome. It is, however, unclear whether metformin acts on ovarian cells. Adenosine 5' monophosphate-activated protein kinase (AMPK) is involved in metformin action in various cell types. We investigated the effects of metformin on bovine granulosa cell steroidogenesis in response to IGF1 and FSH, and studied AMPK in bovine ovaries. In granulosa cells from small follicles, metformin (10 mM) reduced production of both progesterone and estradiol and decreased the abundance of HSD3B, CYP11A1, and STAR proteins in presence or absence of FSH (10(-8) M) and IGF1 (10(-8) M). In cows, the different subunits of AMPK are expressed in various ovarian cells including granulosa and theca cells, corpus luteum, and oocytes. In bovine granulosa cells from small follicles, metformin, like AICAR (1 mM) a pharmaceutical activator of AMPK, increased phosphorylation of both Thr172 of AMPK alpha and Ser 79 of ACACA (Acetyl-CoA Carboxylase). Both metformin and AICAR treatment reduced progesterone and estradiol secretion in presence or absence of FSH and IGF1. Metformin decreased phosphorylation levels of MAPK3/MAPK1 and MAPK14 in a dose- and time-dependent manner. The adenovirus-mediated production of dominant negative AMPK abolished the effects of metformin on secretion of progesterone and estradiol and on MAPK3/MAPK1 phosphorylation but not on MAPK14 phosphorylation. Thus, in bovine granulosa cells, metformin decreases steroidogenesis and MAPK3/MAPK1 phosphorylation through AMPK activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号