首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
2.
Ginkgo biloba extract EGb761 has been shown to protect against β-amyloid peptide (Aβ)-induced neurotoxicity but the specific mechanisms remain unclear. In the present study, effects of EGb761 and two of its constituents, quercetin and ginkgolide B, on the cytotoxic action of Aβ (1-42) were tested with human neuroblastoma SH-SY5Y cells. We found that EGb761 was able to block Aβ (1-42)-induced cell apoptosis, reactive oxygen species (ROS) accumulation, mitochondrial dysfunction and activation of c-jun N-terminal kinase (JNK), extracellular signal-regulated kinase 1/2 (ERK1/2) and Akt signaling pathways. Both quercetin and ginkgolide B may be involved in the inhibitory effects of EGb761 on JNK, ERK1/2 and Akt signaling pathways. Ginkgolide B also helped to improve mitochondrial functions but quercetin failed to show this effect. Additional experiments suggest that, protective effects of EGb761 against Aβ toxicity may be associated with its antioxidant and platelet activating factor (PAF) antagonist activities. Quercetin but not ginkgolide B is one of the constituents responsible for the antioxidant action of EGb761. Both quercetin and ginkgolide B may be involved in the PAF antagonist activity of EGb761. Overall, actions of individual EGb761 components provide further insights into direct mechanisms underlying the neuroprotective effects of EGb761.  相似文献   

3.
Ginkgo biloba extract (EGb 761) exerts a neuroprotective effect against ischemic brain injury through an anti-apoptotic mechanism. Parvalbumin is a calcium buffering protein that plays an important role in modulating intracellular calcium concentration and regulating apoptotic cell death. The aim of this study was to investigate whether EGb 761 affects parvalbumin expression in cerebral ischemic injury. Adult male Sprague-Dawley rats were treated with vehicle or EGb 761 (100 mg/kg) prior to middle cerebral artery occlusion (MCAO) and cerebral cortex tissues were collected 24 h after MCAO. A proteomic approach revealed a reduction in parvalbumin expression in the vehicle-treated animals, whereas EGb 761 pretreatment attenuates the ischemic injury-induced decrease in parvalbumin expression. RT-PCR and Western blot analyses clearly confirmed the fact that EGb 761 prevents the injury-induced decrease in parvalbumin. Moreover, the results of immunohistochemical staining showed that the number of parvalbumin-positive cells was lower in vehicle-treated animals than in sham-operated animals, and EGb 761 averted this decrease. Thus, these results suggest that the maintenance of parvalbumin expression is associated with the neuroprotective function of EGb 761 against neuronal damage induced by ischemia.  相似文献   

4.
5.
We have previously reported neuroprotective properties of Ginkgo biloba/EGb 761® (EGb 761) in transient and permanent mouse models of brain ischemia. In a quest to extend our studies on EGb 761 and its constituents further, we used a model of transient global ischemia induced delayed hippocampal neuronal death and inflammation. Mice pretreated with different test drugs for 7 days were subjected to 8-min bilateral common carotid artery occlusion (tBCCAO) at day 8. After 7 days of reperfusion, mice brains were dissected out for TUNEL assay and immunohistochemistry. In situ detection of fragmented DNA (TUNEL staining) showed that out of all test drugs, only EGb 761 (13.6% ± 3.2) pretreatment protected neurons in the hippocampus against global ischemia (vs. vehicle, 85.1% ± 9.9; p < 0.05). Immunofluorescence-based studies demonstrated that pretreatment with EGb 761 upregulated the expression levels of heme oxygenase 1 (HO1), nuclear factor erythroid 2-related factor 2 (Nrf2), and vascular endothelial growth factor (VEGF) as compared to the vehicle group. In addition, increased number of activated astrocytes and microglia in the vehicle group was observed to be significantly lower in the EGb 761 pretreated group. Together, these results suggest that EGb 761 is a multifunctional neuroprotective agent, and the protection is in part associated with activation of the HO1/Nrf2 pathway, upregulation of VEGF and downregulation of inflammatory mediators such as astrocytes and microglia.  相似文献   

6.
The Ca(2+)-sensing receptor (CaR) stimulates a number of phospholipase activities, but the specific phospholipases and the mechanisms by which the CaR activates them are not defined. We investigated regulation of phospholipase A(2) (PLA(2)) by the Ca(2+)-sensing receptor (CaR) in human embryonic kidney 293 cells that express either the wild-type receptor or a nonfunctional mutant (R796W) CaR. The PLA(2) activity was attributable to cytosolic PLA(2) (cPLA(2)) based on its inhibition by arachidonyl trifluoromethyl ketone, lack of inhibition by bromoenol lactone, and enhancement of the CaR-stimulated phospholipase activity by coexpression of a cDNA encoding the 85-kDa human cPLA(2). No CaR-stimulated cPLA(2) activity was found in the cells that expressed the mutant CaR. Pertussis toxin treatment had a minimal effect on CaR-stimulated arachidonic acid release and the CaR-stimulated rise in intracellular Ca(2+) (Ca(2+)(i)), whereas inhibition of phospholipase C (PLC) with completely inhibited CaR-stimulated PLC and cPLA(2) activities. CaR-stimulated PLC activity was inhibited by expression of RGS4, an RGS (Regulator of G protein Signaling) protein that inhibits Galpha(q) activity. CaR-stimulated cPLA(2) activity was inhibited 80% by chelation of extracellular Ca(2+) and depletion of intracellular Ca(2+) with EGTA and inhibited 90% by treatment with W7, a calmodulin inhibitor, or with KN-93, an inhibitor of Ca(2+), calmodulin-dependent protein kinases. Chemical inhibitors of the ERK activator, MEK, and a dominant negative MEK, MEK(K97R), had no effect on CaR-stimulated cPLA(2) activity but inhibited CaR-stimulated ERK activity. These results demonstrate that the CaR activates cPLA(2) via a Galpha(q), PLC, Ca(2+)-CaM, and calmodulin-dependent protein kinase-dependent pathway that is independent the ERK pathway.  相似文献   

7.
We evaluated whether combined treatment with selegiline, a selective MAO-B inhibitor, and EGb 761, a standard extract of Ginkgo biloba, has synergistic effects against ischemic reperfusion injury (IRI) in gerbils. Interestingly, we observed that pretreatment with EGb 761 significantly attenuated selegiline-induced hyperactivity. This finding paralleled striatal fos-related antigen immunoreactivity (FRA-IR) in mice. Four minutes of bilateral carotid artery occlusion caused substantial cell loss in the CA1 of the hippocampus 5 days post-ischemic insult. Pretreatment with EGb 761, with or without selegiline, significantly attenuated this neuronal loss. Combined treatment with EGb 761 plus selegiline was more efficacious in preventing this loss. Synaptosomal formations of protein carbonyl, lipid peroxidation (malondialdehyde (MDA) + 4-hydroxyalkenal (4-HDA)), and reactive oxygen species (ROS) in the hippocampus remained elevated 5 days post-ischemic insult. The antioxidant effects appeared to be most significant in the group treated with EGb 761 plus selegiline. This combined treatment produced more significant attenuation of IRI-induced alterations in intramitochondrial calcium accumulation, the mitochondrial transmembrane potential, and mitochondrial Mn-superoxide dismutase-like immunoreactivity (Mn-SOD-IR) than either treatment alone. Our results suggest that co-administration of EGb 761 and selegiline produces significant neuroprotective effects via suppression of oxidative stress and mitochondrial dysfunction without affecting neurological function.  相似文献   

8.
In several neurological disorders including cerebral ischaemia, glutamate has been implicated as a neurotoxic agent in the mechanisms leading to neuronal cell death. The role of corticotrophin-releasing hormone (CRH), the 41-amino acid peptide, which activates the HPA axis in response to stressful stimuli, remains controversial. In this study, we report that CRH in low physiological concentrations (2 pM), prevented glutamate-induced neurotoxicity via receptor-mediated mechanisms when administered to organotypic hippocampal cultures both during and after the glutamate-induced insult. Detailed investigations on the mechanisms mediating this neuroprotective effect showed that activation of the adenylate cyclase pathway and induction of MAP kinase phosphorylation mediate the CRH action. In addition we showed that CRH can inhibit the phosphorylation of JNK/SAPK by glutamate. Most importantly, we showed that CRH can afford neuroprotection against neurotoxicity up to 12 h following the insult, suggesting that CRH is acting at a late stage in the neuronal death cycle, and this might be important in the development of novel neuroprotective agents in order to improve neuronal survival following the insult.  相似文献   

9.
10.
EGb761 produces reversible inhibition of both monoamine oxidase (MAO) isoforms in the central nervous system. 1-Methyl-4-phenylpyridinium (MPP+) neurotoxicity is prevented by treatment with the MAO inhibitor pargyline. We investigated EGb761's effect on striatal MAO activity during MPP+ neurotoxicity. C-57 black mice were pretreated with EGb761 (10 mg/kg) daily for 17 days followed by administration of MPP+ (0.72 mg/kg). MPP+ enhanced striatal MAO (30%) activity at 6 h, and EGb761 prevented this effect. MAO-B activity in striatum was enhanced (70%) 6 h after MPP+ administration and was reduced to almost normal levels in EGb761 + MPP+ group compared to MPP+ group. Pretreatment with EGb761 partially prevented (32%) the striatal dopamine-depleting effect of MPP+ and prevented the reduction in striatal tyrosine hydroxylase activity (100%). Results suggest that EGb761 supplements may be effective in reducing MAO activity as well as enhancement in dopamine metabolism, thereby preventing MPP+-neurotoxicity.  相似文献   

11.
Serine/threonine protein phosphatases are important mediators of general cellular function as well as neurodegenerative processes. We have previously shown inhibition of protein phosphatases to be as neurotoxic as glutamate-induced neuronal death but resistant to neuroprotection by estrogens. In this study, the mechanism by which phosphatase inhibition via okadaic acid (OA) induced neurotoxicity is explored. Neurons were exposed to OA or glutamate in the presence or absence of various protein kinases inhibitors, and/or one of four estrogens. Both OA and glutamate induced cell death via increased reactive oxygen species, protein carbonylation, lipid peroxidation, caspase-3 activity, and mitochondrial dysfunction. All estrogens attenuated glutamate-mediated responses, but not OA-induced responses. In addition, inhibition of protein kinase C and mitogen-activated protein kinase pathway was neuroprotective against glutamate but not OA toxicity. Interestingly, inhibition of mitogen-activated protein kinase pathway with PD98096 or U0126 caused a decrease in reactive oxygen species production suggesting that activation of ERK1/2 could further exacerbate the oxidative stress caused by glutamate-induced toxicity; however, these inhibitors had no effect on OA-induced toxicity. Collectively, these results indicate that both glutamate and OA neurotoxicities are mediated by persistent activation of ERK1/2 and/or protein kinase C and a resulting oxidative stress, and that protein phosphatase activity is an important and necessary aspect of estrogen-mediated neuroprotection.  相似文献   

12.
银杏叶提取物(ginkgo biloba extract-761,EGb-761)注射液在中国常作为辅助药物被用于治疗脑卒中,但是,其潜在的细胞和药理机制尚未完全了解。该研究旨在探讨EGb-761是否通过调节缺血性脑卒中半暗带神经元的自噬从而发挥保护作用。采用雄性SD大鼠大脑中动脉闭塞(middle cerebral artery occlusion,MCAO)再灌注模型,将MCAO大鼠随机分为5组,分别为Sham组、MCAO+saline组、MCAO+EGb组、MCAO+EGb+3-MA组和MCAO+3-MA组。脑缺血大鼠用EGb-761药物腹腔注射7天后,并使用自噬抑制剂3-MA侧脑室注射进行干预,分别通过蛋白免疫印迹法(WB)、实时荧光定量PCR(quantitative real-time PCR,qRT-PCR)和免疫荧光检测缺血半暗带的脑组织,以检测自噬的表达。另外,根据脑梗死体积、神经功能缺损和TUNEL检测神经元凋亡水平,以评估治疗效果。结果表明,与MCAO+saline相比,MCAO+EGb组的EGb-761显著提高了神经元自噬水平,同时,明显减轻了神经功能缺损、脑梗死面积和神经元凋亡。此外,相对于MCAO+EGb组,MCAO+EGb+3-MA组中的3-MA抵消了EGb增强神经元自噬的功效,并且仅使用3-MA继续加重了神经损伤。因此,EGB-761通过特异性促进脑缺血半暗带神经元自噬发挥神经保护作用。  相似文献   

13.
We examined the role of p38, p42, and p44 mitogen-activated protein kinase (MAPK) isoforms and cytosolic phospholipase A(2) (cPLA(2)) activation in human eosinophil adhesion to plate-coated fibronectin (FN). In the control state, eosinophil adhesion was maximal, with 10 microg/ml FN at 30 min, and decreased after 60-90 min. Western blot analysis demonstrated that p44/42 MAPK (extracellular signal-regulated kinase (ERK)1/2) and cPLA(2) were phosphorylated during adhesion to FN, whereas p38 MAPK phosphorylation was unchanged. Preincubation of eosinophils with U0126 or PD98059, two structurally unrelated MAPK kinase inhibitors, or arachidonic trifluoromethyl ketone, a cPLA(2) inhibitor, blocked eosinophil adhesion to FN. By contrast, eosinophil adhesion was unaffected by SB203580, a p38 MAPK inhibitor. Pretreatment of eosinophils with okadaic acid, a serine/threonine phosphatase inhibitor, at the concentrations that induced ERK1/2 and cPLA(2) phosphorylation caused an increase in maximal eosinophil adhesion to FN for >60 min. MAPK kinase inhibition but not p38 inhibition also blocked FN-mediated F-actin redistribution in eosinophils and prevented cPLA(2) phosphorylation caused by adhesion to FN. These results demonstrate that ERK1/2 mediating cPLA(2) activation is essential for eosinophil adhesion to FN.  相似文献   

14.
15.
1. The neuroprotective effect of Ginkgo biloba extract (EGb 761) against transient forebrain ischemia following 7 days of reperfusion was studied in male Wistar rats after four-vessel occlusion for 20 min.2. NeuN, a neuronal specific nuclear protein was used for immunohistochemical detection of surviving pyramidal neurons in the hippocampus, as well as counterstaining with hematoxylin in the same sections for detection of neurons that underwent delayed neuronal death and for glial nuclei staining. GFAP immunohistochemistry was used for detection of astrocytes in the studied area of CA1 region.3. In the group of rats pretreated 7 days with Ginkgo biloba extract (EGb 761), following 20 min of ischemia and 7 days of reperfusion without EGb 761, increased number of NeuN immunoreactive cells were counted in the most vulnerable CA1 pyramidal layer of hippocampus. On the other hand, the group of rats with 7 days of EGb 761 pretreatment following 20 min of ischemia and 7 days of reperfusion with EGb 761 showed decreased number of surviving NeuN immunoreactive CA1 pyramidal cells in comparison with the first above-mentioned experimental group.4. Increased number of reactive astrocytes immunolabeled for GFAP (Glial fibrilary acidic protein) was observed in both experimental groups in the stratum oriens and stratum lacunosum and moleculare.5. Twenty minutes of ischemia is lethal for most population of CA1 pyramidal cell layer. Our results showed that prophylactic oral administration of Ginkgo biloba extract (EGb 761) in the dose 40 mg/kg/day during the 7 days protects the most vulnerable CA1 pyramidal cells against 20 min of ischemia.  相似文献   

16.
Luo Y 《Life sciences》2006,78(18):2066-2072
Alzheimer's disease (AD) is affecting larger and larger proportions of our population as lifespan increases. Thus, the means to prevent or reduce the rate of this disorder is a high priority for medical research. A standardized extract of Ginkgo biloba leaves EGb 761 is a popular dietary supplement taken by the general public to enhance mental focus and by the elderly to delay onset of age-related loss of cognitive function. EGb 761 has been used for treatment of certain cerebral dysfunctions and dementias associated with aging and AD. Substantial evidence indicates that EGb 761 has neuroprotective effects. But, mechanisms of action of the components of the extract are, unfortunately, poorly understood. Research in my laboratory focuses on understanding mechanisms of action of the components of the herbal extract EGb 761 in protection against Alzheimer's disease. We have demonstrated that EGb 761 inhibited amyloid beta aggregation in vitro and attenuates reactive oxidative species (ROS) in a model organism - the round worm Caenorhabditis elegans. Furthermore, EGb 761 eased its toxicity in the transgenic C. elegans. We also found that only a certain size of the amyloid beta aggregates is toxic to the worms. These findings suggest that EGb 761 has a clear therapeutic potential for prevention and/or treatment of AD. A better understanding of the mechanisms of neuroprotection by EGb 761 will be important for designing therapeutic strategies, for basic understanding of the underlying neurodegenerative processes, and for a better understanding of the effectiveness and complexity of this herbal medicine.  相似文献   

17.
In this study, the effect of bilobalide, a purified terpene lactone component of the Ginkgo biloba extract (EGb 761), and EGb 761 against ischemic injury and against glutamate-induced excitotoxic neuronal death was compared. In the case of ischemic injury, neuronal loss and the levels of mitochondrial DNA (mtDNA)-encoded cytochrome oxidase (COX) subunit III mRNA in the hippocampal regions of gerbils was measured. A significant increase in neuronal death and a significant decrease in COX III mRNA were observed in the hippocampal CA1 neurons at 7-days of reperfusion after 5 min of transient global forebrain ischemia. Oral administration of EGb 761 at 25, 50 and 100 mg/kg/day and bilobalide at 3 and 6 mg/kg/day for 7 days before ischemia progressively protected hippocampal CA1 neurons against ischemia-induced neuronal death and reductions in COX III mRNA. In rat cerebellar neuronal cultures, addition of bilobalide or EGb 761 protected in a dose-dependent manner against glutamate-induced excitotoxic neuronal death [effective concentration (EC50) = 5 microg/ml (12 microM) forbilobalide and 100 microg/ml for EGb 761]. These results suggest thatboth EGb 761 and bilobalide protect against ischemia-induced neuronal death in vivo and glutamate-induced neuronal death in vitro by synergistic mechanisms involving anti-excitotoxicity, inhibition of free radical generation, scavenging of reactive oxygen species, and regulation of mitochondrial gene expression.  相似文献   

18.
Identifying prosurvival mechanisms in stressed neuronal cells would provide protective strategies to hinder neurodegeneration. Recent evidence shows that vascular endothelial growth factor (VEGF), a well-established mitogen in endothelial cells, can mediate neuroprotection against damaging insults through the activation of its cognate receptor VEGFR2. In addition, growth factor receptor signaling pathways have been shown to crosstalk with cAMP-dependent Protein Kinase A (PKA) to protect neuronal cells from harmful stimuli. Whether a relationship exists between VEGFR2 and PKA in mediating neuroprotection under stressful conditions is unknown. Using SK-N-SH neuronal cells as a model system, we show that serum deprivation induces an upregulation in VEGF and VEGFR2 that concomitantly serves as a prosurvival signaling pathway. Inhibitor studies revealed that PKA functioned concurrently with VEGFR2 pathway to signal the activation of the extracellular signal-regulated protein kinases (ERK1/2) as protection against caspase-3/7 activation and a subsequent cell death. The loss in cell viability induced by VEGFR2 and PKA inhibition was prevented by caspase inhibition or overexpression of ERK1. Overexpression of the antiapoptotic protein Bcl-xL also promoted survival when VEGFR2 function was blocked. However, the protection elicited by all three treatments were prevented by the inclusion of a selective inhibitor of mitogen-activated protein kinase kinase (MEK), the upstream kinase that activates ERK1/2. Taken together, these findings suggested that PKA and VEGFR2 converge at the MEK/ERK1/2 pathway to protect serum starved neuronal cells from a caspase-dependent cell death. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

19.
Phospholipase D (PLD) has been implicated in a variety of cellular processes, including inflammation, secretion, and respiratory burst. Two distinct PLD isoforms, designated PLD1 and PLD2, have been cloned; however, the regulatory mechanism for each PLD isoform is not clear. In our present study we investigated how PLD2 activity is regulated in mouse lymphocytic leukemia L1210 cells, which mainly contain PLD2, and in PLD2 -transfected COS-7 cells. Intriguingly, A23187, a calcium ionophore that induces calcium influx, potently stimulates PLD activity in these two cell lines, suggesting that Ca2+ might be implicated in the regulation of the PLD2 activity. In addition to the A23187-induced PLD2 activation, A23187 also increases PLA2-mediated arachidonic acid release, and the A23187-stimulated PLD2 and PLA2 activities could be blocked by pretreatment of the cells with cytosolic calcium-dependent PLA2 (cPLA2) inhibitors, such as arachidonyl trifluoromethyl ketone and methyl arachidonyl fluorophosphonate in these two cell lines. Moreover, the A23187-induced PLD2 and PLA2 activities could be inhibited by cotransfection with antisense cPLA2 oligonucleotide. These results suggest a role for cPLA2 in the regulation of PLD2 activity in vivo. The inhibitory effect of arachidonyl trifluoromethyl ketone on the A23187-induced PLD2 activity could be recovered by addition of exogenous lysophosphatidylcholine. This study is the first to demonstrate that PLD2 activity is up-regulated by Ca2+ influx and that cPLA2 may play a key role in the Ca2+-dependent regulation of PLD2 through generation of lysophosphatidylcholine.  相似文献   

20.
Ischemic postconditioning is a very effective way how to prevent delayed neuronal death. Effect of Ginkgo biloba extract (EGb 761; 40 mg/kg) posttreatment was studied on the rat model of transient forebrain ischemia and ischemia/postconditioning. Global ischemia was produced by four-vessel occlusion in Wistar male rats. Two experimental protocols were used: (a) 10 min of ischemia/7 days of reperfusion with or without EGb 761 treatment or (b) 10 min of ischemia/2 days of reperfusion/5 min of ischemia (postconditioning), following 5 days of reperfusion. EGb 761 was applied as follows: 30 min before 10 min of ischemia then 5 h, 1 and 2 days after 10 min of ischemia. Fluoro Jade B, marker for neuronal degeneration, was used for quantitative analysis of the most vulnerable hippocampal CA1 neurons. Cognitive and memory functions were tested by Morris water maze, as well. Administration of EGb 761 30 min before 10 min of ischemia or 5 h after ischemia has rather no protective effect on neuronal survival in CA1 region. Ten minutes of ischemia following ischemic postconditioning after 2 days of reperfusion trigger a significant neuroprotection of CA1 neurons, but it is abolished by EGb 761 posttreatment. Ischemia/postconditioning group showed a significant improvement of learning and memory on the seventh day of reperfusion. Protection of the most vulnerable CA1 neurons after ischemia/postconditioning is abolished by exogenous antioxidant treatment used in different time intervals after initial ischemia. Moreover, combination of EGb 761 administration with repeated stress (5 min ischemia used as postconditioning) causes cumulative injury of CA1 neurons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号