共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Taste papillae are ectodermal specializations that serve to house and distribute the taste buds and their renewing cell populations in specific locations on the tongue. We previously showed that Sonic hedgehog (Shh) has a major role in regulating the number and spatial pattern of fungiform taste papillae on embryonic rat tongue, during a specific period of papilla formation from the prepapilla placode. Now we have immunolocalized the Shh protein and the Patched receptor protein (Ptc), and have tested potential roles for Shh in formation of the tongue, emergence of papilla placodes, development of papilla number and size, and maintenance of papillae after morphogenesis is advanced. Cultures of entire embryonic mandible or tongues from gestational days 12 to 18 [gestational or embryonic days (E)12-E18] were used, in which tongues and papillae develop with native spatial, temporal, and molecular characteristics. The Shh signaling pathway was disrupted with addition of cyclopamine, jervine, or the 5E1 blocking antibody. Shh and Ptc proteins are diffuse in prelingual tissue and early tongue swellings, and are progressively restricted to papilla placodes and then to regions of developing papillae. Ptc encircles the dense Shh immunoproduct in papillae at various stages. When the Shh signal is disrupted in cultures of E12 mandible, tongue formation is completely prevented. At later stages of tongue culture initiation, Shh signal disruption alters development of tongue shape (E13) and results in a repatterned fungiform papilla distribution that does not respect normally papilla-free tongue regions (E13-E14). Only a few hours of Shh signal disruption can irreversibly alter number and location of fungiform papillae on anterior tongue and elicit papilla formation on the intermolar eminence. However, once papillae are well formed (E16-E18), Shh apparently does not have a clear role in papilla maintenance, nor does the tongue retain competency to add fungiform papillae in atypical locations. Our data not only provide evidence for inductive and morphogenetic roles for Shh in tongue and fungiform papilla formation, but also suggest that Shh functions to maintain the interpapilla space and papilla-free lingual regions. We propose a model for Shh function at high concentration to form and maintain papillae and, at low concentration, to activate between-papilla genes that maintain a papilla-free epithelium. 相似文献
3.
Ming-Fu Chiang Hsin-Hong Chen Chih-Wen Chi Chun-I Sze Ming-Ling Hsu Hui-Ru Shieh Chin-Ping Lin Jo-Ting Tsai Yu-Jen Chen 《Experimental biology and medicine (Maywood, N.J.)》2015,240(3):392-399
WW domain containing oxidoreductase, designated WWOX, FOR or WOX1, is a known pro-apoptotic factor when ectopically expressed in various types of cancer cells, including glioblastoma multiforme (GBM). The activation of sonic hedgehog (Shh) signaling, especially paracrine Shh secretion in response to radiation, is associated with impairing the effective irradiation of cancer cells. Here, we examined the role of Shh signaling and WOX1 overexpression in the radiosensitivity of human GBM cells. Our results showed that ionizing irradiation (IR) increased the cytoplasmic Shh and nuclear Gli-1 content in GBM U373MG and U87MG cells. GBM cells with exogenous Shh treatment exhibited similar results. Pretreatment with Shh peptides protected U373MG and U87MG cells against IR in a dose-dependent manner. Cyclopamine, a Hedgehog/Smoothened (SMO) inhibitor, reversed the protective effect of Shh in U87MG cells. Cyclopamine increased Shh plus IR-induced H2AX, a marker of DNA double-strand breaks, in these cells. To verify the role of Shh signaling in the radiosensitivity of GBM cells, we tested the effect of the Gli family zinc finger 1 (Gli-1) inhibitor zerumbone and found that it could sensitize GBM cells to IR. We next examined the role of WOX1 in radiosensitivity. Overexpression of WOX1 enhanced the radiosensitivity of U87MG (possessing wild type p53 or WTp53) but not U373MG (harboring mutant p53 or MTp53) cells. Pretreatment with Shh peptides protected both WOX1-overexpressed U373MG and U87MG cells against IR and increased the cytoplasmic Shh and nuclear Gli-1 content. Zerumbone enhanced the radiosensitivity of WOX1-overexpressed U373MG and U87MG cells. In conclusion, overexpression of WOX1 preferentially sensitized human GBM cells possessing wild type p53 to radiation therapy. Blocking of Shh signaling may enhance radiosensitivity independently of the expression of p53 and WOX1. The crosstalk between Shh signaling and WOX1 expression in human glioblastoma warrants further investigation. 相似文献
4.
5.
6.
7.
A. Ishizuya-Oka · S. Ueda · T. Amano · S. Damjanovski · M. Stolow · Y.-B. Shi · T. Inokuchi 《Differentiation; research in biological diversity》2001,69(1):27-37
Sonic hedgehog (Shh) was isolated from the Xenopus laevis intestine as an early thyroid hormone (TH) response gene. To investigate possible roles of TH-upregulated expression of Shh during metamorphosis, we raised a polyclonal antibody against Xenopus Shh and immunohistochemically examined the relationship between Shh expression and the larval-to-adult intestinal remodeling at the cellular level. Our results indicate that the epithelial-specific expression of Shh in the intestine spatiotemporally correlates well with active proliferation and/or initial differentiation of the secondary (adult) epithelial primordia that originate from stem cells, but not with apoptosis of the primary (larval) epithelium. Given the similar transformations of the stomach during metamorphosis, we also analyzed Shh expression in this organ and found similar correlations in the stomach, although the position of the adult epithelial primordia and their final differentiation in the stomach are different from those in the intestine. Furthermore, we show here that Shh expression is organ-autonomously induced by TH and its correlation with the adult epithelial development is reproduced in vitro in both the intestine and the stomach. More importantly, addition of recombinant Shh protein to the culture medium results in developmental anomalies of both organs. However, differentiation of the adult epithelium is more severely inhibited by exogenous Shh in the intestine than in the stomach. These results suggest that TH-upregulated expression of Shh plays important roles in the postembryonic gastrointestinal remodeling, but its roles are at least partially different between the intestine and the stomach. 相似文献
8.
9.
10.
11.
Sonic hedgehog signaling regulates Gli3 processing, mesenchymal proliferation, and differentiation during mouse lung organogenesis 总被引:4,自引:0,他引:4
Lack of Sonic hedgehog (Shh) signaling, mediated by the Gli proteins, leads to severe pulmonary hypoplasia. However, the precise role of Gli genes in lung development is not well established. We show Shh signaling prevents Gli3 proteolysis to generate its repressor forms (Gli3R) in the developing murine lung. In Shh(-/-) or cyclopamine-treated wild-type (WT) lung, we found that Gli3R level is elevated, and this upregulation appears to contribute to defects in proliferation and differentiation observed in the Shh(-/-) mesenchyme, where Gli3 is normally expressed. In agreement, we found Shh(-/-);Gli3(-/-) lungs exhibit enhanced growth potential. Vasculogenesis is also enhanced; in contrast, bronchial myogenesis remains absent in Shh(-/-);Gli3(-/-) compared with Shh(-/-) lungs. Genes upregulated in Shh(-/-);Gli3(-/-) relative to Shh(-/-) lung include Wnt2 and, surprisingly, Foxf1 whose expression has been reported to be Shh-dependent. Cyclins D1, D2, and D3 antibody labelings also reveal distinct expression patterns in the normal and mutant lungs. We found significant repression of Tbx2 and Tbx3, both linked to inhibition of cellular senescence, in Shh(-/-) and partial derepression in Shh(-/-); Gli3(-/-) lungs, while Tbx4 and Tbx5 expressions are less affected in the mutants. Our findings shed light on the role of Shh signaling on Gli3 processing in lung growth and differentiation by regulating several critical genes. 相似文献
12.
13.
Reichenbach B Delalande JM Kolmogorova E Prier A Nguyen T Smith CM Holzschuh J Shepherd IT 《Developmental biology》2008,318(1):52-64
The zebrafish enteric nervous system (ENS), like those of all other vertebrate species, is principally derived from the vagal neural crest cells (NCC). The developmental controls that govern the migration, proliferation and patterning of the ENS precursors are not well understood. We have investigated the roles of endoderm and Sonic hedgehog (SHH) in the development of the ENS. We show that endoderm is required for the migration of ENS NCC from the vagal region to the anterior end of the intestine. We show that the expression of shh and its receptor ptc-1 correlate with the development of the ENS and demonstrate that hedgehog (HH) signaling is required in two phases, a pre-enteric and an enteric phase, for normal ENS development. We show that HH signaling regulates the proliferation of vagal NCC and ENS precursors in vivo. We also show the zebrafish hand2 is required for the normal development of the intestinal smooth muscle and the ENS. Furthermore we show that endoderm and HH signaling, but not hand2, regulate gdnf expression in the intestine, highlighting a central role of endoderm and SHH in patterning the intestine and the ENS. 相似文献
14.
Weiliang He Lili Cui Cong Zhang Xiangjian Zhang Junna He Yanzhao Xie Yanxia Chen 《Experimental cell research》2017,350(1):83-90
Oxidative stress has been demonstrated to be involved in the etiology of several neurobiological disorders. Sonic hedgehog (Shh), a secreted glycoprotein factor, has been implicated in promoting several aspects of brain remodeling process. Mitochondria may play an important role in controlling fundamental processes in neuroplasticity. However, little evidence is available about the effect and the potential mechanism of Shh on neurite outgrowth in primary cortical neurons under oxidative stress. Here, we revealed that Shh treatment significantly increased the viability of cortical neurons in a dose-dependent manner, which was damaged by hydrogen peroxide (H2O2). Shh alleviated the apoptosis rate of H2O2-induced neurons. Shh also increased neuritogenesis injuried by H2O2 in primary cortical neurons. Moreover, Shh reduced the generation of reactive oxygen species (ROS), increased the activities of SOD and and decreased the productions of MDA. In addition, Shh protected mitochondrial functions, elevated the cellular ATP levels and amelioratesd the impairment of mitochondrial complex II activities of cortical neurons induced by H2O2. In conclusion, all these results suggest that Shh acts as a prosurvival factor playing an essential role to neurite outgrowth of cortical neuron under H2O2 -induced oxidative stress, possibly through counteracting ROS release and preventing mitochondrial dysfunction and ATP as well as mitochondrial complex II activities against oxidative stress. 相似文献
15.
16.
Mary Redmond Hutson Faustina N. Sackey Katherine Lunney Margaret L. Kirby 《Developmental biology》2009,335(2):367-373
Cardiac neural crest cells (CNCC) migrate into the caudal pharynx and arterial pole of the heart to form the outflow septum. Ablation of the CNCC results in arterial pole malalignment and failure of outflow septation, resulting in a common trunk overriding the right ventricle. Unlike preotic cranial crest, the postotic CNCC do not normally regenerate. We applied the hedgehog signaling inhibitor, cyclopamine (Cyc), to chick embryos after CNCC ablation and found normal heart development at day 9 suggesting that the CNCC population was reconstituted. We ablated the CNCC, and labeled the remaining neural tube with DiI/CSRE and applied cyclopamine. Cells migrated from the neural tube in the CNCC-ablated, cyclopamine-treated embryos but not in untreated CNCC-ablated embryos. The newly generated cells followed the CNCC migration pathways, expressed neural crest markers and supported normal heart development. Finally, we tested whether reducing hedgehog signaling caused redeployment of the dorsal–ventral axis of the injured neural tube, allowing generation of new neural crest-like cells. The dorsal neural tube marker, Pax7, was maintained 12 h after CNCC ablation with Cyc treatment but not in the CNCC-ablated alone. This disruption of dorsal–ventral neural patterning permits a new wave of migratory cardiac neural crest-like cells. 相似文献
17.
Previous studies have implicated Sonic hedgehog (Shh) as an important regulator of pharyngeal region development. Here we show that Shh is differentially expressed within the pharyngeal endoderm along the anterior-posterior axis. In Shh-/- mutants, the pharyngeal pouches and arches formed by E9.5 and marker expression showed that initial patterning was normal. However, by E10.5-E11.0, the first arch had atrophied and the first pouch was missing. Although small, the second, third, and fourth arches and pouches were present. The expression patterns of Fgf8, Pax1, and Bmp4 suggested that pouch identity was abnormal at E10.5 and that Shh is a negative regulator of these genes in the pouches. Despite the loss of pouch identity and an increase in mesenchymal cell death, arch identity markers were expressed normally. Our data show that a Shh-dependent patterning mechanism is required to maintain pouch patterning, independent or downstream of arch identity. Changes in the distribution of Bmp4 and Gcm2 in the third pouch endoderm and subsequent organ phenotypes in Shh-/- mutants suggested that exclusion of Shh from the third pouch is required for dorsal-ventral patterning and for parathyroid specification and organogenesis. Furthermore, this function for Shh may be opposed by Bmp4. Our data suggest that, as in the posterior gut endoderm, exclusion of Shh expression from developing primordia is required for the proper development of pharyngeal-derived organs. 相似文献
18.
Sareina C. -Y. Wu Justin Grindley Glenn E. Winnier Linda Hargett Brigid L. M. Hogan 《Mechanisms of development》1998,70(1-2):3-13
Cloning and sequencing of mouse Mf2 (mesoderm/mesenchyme forkhead 2) cDNAs revealed an open reading frame encoding a putative protein of 492 amino acids which, after in vitro translation, binds to a DNA consensus sequence. Mf2 is expressed at high levels in the ventral region of newly formed somites, in sclerotomal derivatives, in lateral plate and cephalic mesoderm and in the first and second branchial arches. Other regions of mesodermal expression include the developing tongue, meninges, nose, whiskers, kidney, genital tubercule and limb joints. In the nervous system Mf2 is transcribed in restricted regions of the mid- and forebrain. In several tissues, including the early somite, Mf2 is expressed in cell populations adjacent to regions expressing sonic hedgehog (Shh) and in explant cultures of presomitic mesoderm Mf2 is induced by Shh secreted by COS cells. These results suggest that Mf2, like other murine forkhead genes, has multiple roles in embryogenesis, possibly mediating the response of cells to signaling molecules such as SHH. 相似文献
19.
In this review, we highlight recent literature concerning the signaling mechanisms underlying the development of two neural birth defects, holoprosencephaly and coloboma. Holoprosencephaly, the most common forebrain defect, occurs when the cerebral hemispheres fail to separate and is typically associated with mispatterning of embryonic midline tissue. Coloboma results when the choroid fissure in the eye fails to close. It is clear that Sonic hedgehog (Shh) signaling regulates both forebrain and eye development, with defects in Shh, or components of the Shh signaling cascade leading to the generation of both birth defects. In addition, other intercellular signaling pathways are known factors in the incidence of holoprosencephaly and coloboma. This review will outline recent advances in our understanding of forebrain and eye embryonic pattern formation, with a focus on zebrafish studies of Shh and retinoic acid pathways. Given the clear overlap in the mechanisms that generate both diseases, we propose that holoprosencephaly and coloboma can represent mild and severe aspects of single phenotypic spectrum resulting from aberrant forebrain development. This article is part of a Special Issue entitled Zebrafish Models of Neurological Diseases. 相似文献
20.
Martyn T. Cobourne Guilherme M. Xavier Louise Hagan Zoe Webster 《Developmental biology》2009,331(1):38-49
Nevoid basal cell carcinoma syndrome (NBCCS) is an autosomal dominant or spontaneous disorder characterized by multiple cutaneous basal cell carcinomas, odontogenic keratocysts, skeletal anomalies and facial dysmorphology, including cleft lip and palate. Causative mutations for NBCCS occur in the PTCH1 gene on chromosome 9q22.3-q31, which encodes the principle receptor for the Hedgehog signalling pathway. We have investigated the molecular basis of craniofacial defects seen in NBCCS using a transgenic mouse model expressing Shh in basal epithelium under a Keratin-14 promoter. These mice have an absence of flat bones within the skull vault, hypertelorism, open-bite malocclusion, cleft palate and arrested tooth development. Significantly, increased Hedgehog signal transduction in these mice can influence cell fate within the craniofacial region. In medial edge epithelium of the palate, Shh activity prevents apoptosis and subsequent palatal shelf fusion. In contrast, high levels of Shh in odontogenic epithelium arrests tooth development at the bud stage, secondary to a lack of cell proliferation in this region. These findings illustrate the importance of appropriately regulated Hedgehog signalling during early craniofacial development and demonstrate that oro-facial clefting and hypodontia seen in NBCCS can occur as a direct consequence of increased Shh signal activity within embryonic epithelial tissues. 相似文献