首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
Because benzene, toluene, ethylbenzene, and xylenes (BTEX) and ethanol are important contaminants present in Brazilian gasoline, it is essential to develop technology that can be used in the bioremediation of gasoline-contaminated aquifers. This paper evaluates the performance of a horizontal-flow anaerobic immobilized biomass (HAIB) reactor fed with water containing gasoline constituents under denitrifying conditions. Two HAIB reactors filled with polyurethane foam matrices (5 mm cubes, 23 kg/m3 density and 95 % porosity) for biomass attachment were assayed. The reactor fed with synthetic substrate containing protein, carbohydrates, sodium bicarbonate and BTEX solution in ethanol, at an Hydraulic retention time (HRT) of 13.5 h, presented hydrocarbon removal efficiencies of 99 % at the following initial concentrations: benzene 6.7 mg/L, toluene 4.9 mg/L, m-xylene and p-xylene 7.2 mg/L, ethylbenzene 3.7 mg/L, and nitrate 60 mg N/L. The HAIB reactor fed with gasoline-contaminated water at an HRT of 20 h showed hydrocarbon removal efficiencies of 96 % at the following initial concentrations: benzene, 4.9 mg/L; toluene, 7.2 mg/L; m-xylene, 3.7 mg/L; and nitrate 400 mg N/L. Microbiological observations along the length of the HAIB reactor fed with gasoline-contaminated water confirmed that in the first segment of the reactor, denitrifying metabolism predominated, whereas from the first sampling port on, the metabolism observed was predominantly methanogenic.  相似文献   

2.
Removal of three typical aromatic hydrocarbons, benzene, biphenyl and naphthalene by an anaerobic filter (AF) reactor under continuous mode and denitrifying conditions was studied. Results showed that the AF reactor could degrade these aromatic hydrocarbons effectively under above-mentioned conditions. When influent wastewater contained 900 mg COD/l and about 60 mg (total aromatic hydrocarbons)/l, 90% and 84% removal efficiency could be achieved for them respectively. When COD/NO3 -N ratio (C/N) was in the range 5–30, the removal of benzene was slightly influenced by C/N and it remained stable at about 90%. However, degradation of naphthalene, biphenyl and total COD was greatly influenced by C/N, and highest removal was achieved at C/N = 15, it was 90%, 85% and 82% for COD, naphthalene and biphenyl, respectively. Degradation of these three aromatic hydrocarbons followed the order: benzene > naphthalene > biphenyl.  相似文献   

3.
An expanded granular sludge bed (EGSB) reactor was adopted to incubate bio-granules that could simultaneously convert 4.8 kg-S m?3 d?1 of sulfide in 97% efficiency; 2.6 kg-N m?3 d?1 of nitrate in 92% efficiency; and 2.7 kg-C m?3 d?1 acetate in 95% efficiency. Mass balance calculation of sulfur, nitrogen, and carbon over the EGSB reactor confirmed the performance results. This noted reactor performance is much higher than those reported in literature. Stoichiometric relation suggests that the nitrate was reduced to nitrite via autotrophic denitrification pathway, then the formed nitrite was converted via heterotrophic denitrification pathway to N2.  相似文献   

4.
This work conducted a denitrifying sulfide removal (DSR) test in an expanded granular sludge bed (EGSB) reactor at sustainable loadings of 6.09 kg m−3 day−1 for sulfide, 3.11 kg m−3 day−1 for nitrate–nitrogen, and 3.27 kg m−1 day−1 for acetate–carbon with >93% efficiency, which is significantly higher than those reported in literature. Strains Pseudomonas sp., Nitrincola sp., and Azoarcus sp. very likely yield heterotrophs. Strains Thermothrix sp. and Sulfurovum sp. are the autotrophs required for the proposed high-rate EGSB-DSR system. The EGSB-DSR reactor experienced two biological breakdowns, one at loadings of 4.87, 2.13, and 1.82 kg m−3 day−1; reactor function was restored by increasing nitrate and acetate loadings. Another breakdown occurred at loadings of up to 8.00, 4.08, and 4.50 kg m−1 day−1; the heterotrophic denitrification pathway declined faster than the autotrophic pathway. The mechanism of DSR breakdown is as follows. High sulfide concentration inhibits heterotrophic denitrifiers, and the system therefore accumulates nitrite. Autotrophic denitrifiers are then inhibited by the accumulated nitrite, thereby leading to breakdown of the DSR process.  相似文献   

5.

Biodecolorization and biodegradation of azo dyes are a challenge due to their recalcitrance and the characteristics of textile effluents. This study presents the use of Halomonas sp. in the decolorization of azo dyes Reactive Black 5 (RB5), Remazol Brilliant Violet 5R (RV5), and Reactive Orange 16 (RO16) under high alkalinity and salinity conditions. Firstly, the effect of air supply, pH, salinity and dye concentration was evaluated. Halomonas sp. was able to remove above 84% of all dyes in a wide range of pH (6–11) and salt concentrations (2–10%). The decolorization efficiency of RB5, RV5, and RO16 was found to be ≥ 90% after 24, 13 and 3 h, respectively, at 50 mg L−1 of dyes. The process was monitored by HPLC-DAD, finding a reduction of dyes along the time. Further, Halomonas sp. was immobilized in volcanic rocks and used in a packed bed reactor for 72 days, achieving a removal rate of 3.48, 5.73, and 8.52 mg L−1 h−1, for RB5, RV5 and RO16, respectively, at 11.8 h. The study has confirmed the potential of Halomonas sp. to decolorize azo dyes under high salinity and alkalinity conditions and opened a scope for future research in the treatment of textile effluents.

  相似文献   

6.
极端条件下异养硝化-好氧反硝化菌脱氮的研究进展   总被引:5,自引:0,他引:5  
异养硝化-好氧反硝化(HN-AD)是对传统自养硝化异养反硝化理论的丰富与突破。HN-AD菌在好氧条件下可快速实现氨氮、硝态氮(NO_3~–-N)、亚硝态氮(NO_2~–-N)三氮同步脱除。它们不仅具有分布范围广、适应能力强、代谢通路特殊等特点,而且还具有世代时间短、脱氮速率快、高活性持久等独特优势,在高盐、低温、高氨氮等极端条件表现出了巨大的脱氮潜力,因此在废水生物脱氮领域受到广泛关注。文中在介绍HN-AD菌属类别及代谢机理的基础上,重点总结了在高盐、低温、高氨氮等极端条件下进行氨氮脱除的HN-AD种属,系统分析了它们在极端条件下的脱氮特性及潜力,并简述了HN-AD菌在极端条件下的工艺应用研究进展,最后展望了HN-AD脱氮技术的应用前景和研究方向。  相似文献   

7.
Laccase was produced from Streptomyces psammoticus under solid-state fermentation. The enzyme was partially purified by ammonium sulphate precipitation and was immobilized in alginate beads by entrapment method. Calcium alginate beads retained 42.5% laccase activity, while copper alginate beads proved a better support for laccase immobilization by retaining 61% of the activity. Phenol and colour removal from a phenol model solution was carried out using immobilized laccase. Batch experiments were performed using packed bed bioreactor, containing immobilized beads. Reusability of the immobilized matrix was studied for up to 8 successive runs, each run with duration of 6 h. The system removed 72% of the colour and 69.9% of total phenolics from the phenol model solution after the initial run. The immobilized system maintained 50% of its efficiency after eight successive runs. The degradation of phenolic compounds by immobilized laccase was evaluated and confirmed by Thin layer chromatography and nuclear magnetic resonance spectroscopy.  相似文献   

8.
Anaerobic ammonium oxidation discovered in a denitrifying fluidized bed reactor   总被引:103,自引:0,他引:103  
Abstract Until now, oxidation of ammonium has only been known to proceed under aerobic conditions. Recently, we observed that NH4+ was disappearing from a denitrifying fluidized bed reactor treating effluent from a methanogenic reactor. Both nitrate and ammonium consumption increased with concomitant gas production. A maximum ammonium removal rate of 0.4 kg N · m−3 · d−1 (1.2 mM/h) was observed. The evidence for this anaerobic ammonium oxidation was based on nitrogen and redox balances in continuous-flow experiments. It was shown that for the oxidation of 5 mol ammonium, 3 mol nitrate were required, resulting in the formation of 4 mol dinitrogen gas. Subsequent batch experiments confirmed that the NH4+ conversion was nitrate dependent. It was concluded that anaerobic ammonium oxidation is a new process in which ammonium is oxidized with nitrate serving as the electron acceptor under anaerobic conditions, producing dinitrogen gas. This biological process has been given the name ‘Anammox” (anaerobic ammonium oxidation), and has been patented.  相似文献   

9.
A packed bed reactor (PBR) was fed with nitrate containing synthetic wastewater or effluent from a sequencing batch reactor used for nitrification. The C source introduced into the PBR consisted of volatile fatty acids (VFAs) produced from anaerobic acidogenesis of food wastes. When nitrate loading rates ranged from 0.50 to 1.01 kg N/m3·d, the PBR exhibited 100∼98.8% NO3 -N removal efficiencies and nitrite concentrations in the effluent ranged from 0 to 0.6 NO2 -N mg/L. When the PBR was further investigated to determine nitrate removal activity along the bed height using a nitrate loading rate less than 1.01 kg N/m3·d, 100% nitrate removal efficiency was observed. Approximately 83.2% nitrate removal efficiency was observed in the lower 50% of the packed-bed height. When reactor performance at a C/N ratio of 4 and a C/N ratio of 5 was compared, the PBR showed better removal efficiency (96.5%) of nitrate and less nitrite concentration in the effluent at the C/N ratio of 5. VFAs were found to be a good alternative to methanol as a carbon source for denitrification of a municipal wastewater containing 40 mg-N/L.  相似文献   

10.
High levels of nitrate are present in groundwater migrating from the former waste disposal ponds at the Y-12 National Security Complex in Oak Ridge, TN. A field-scale denitrifying fluidized bed reactor (FBR) was designed, constructed, and operated with ethanol as an electron donor for the removal of nitrate. After inoculation, biofilms developed on the granular activated carbon particles. Changes in the bacterial community of the FBR were evaluated with clone libraries (n=500 partial sequences) of the small-subunit rRNA gene for samples taken over a 4-month start-up period. Early phases of start-up operation were characterized by a period of selection, followed by low diversity and predominance by Azoarcus-like sequences. Possible explanations were high pH and nutrient limitations. After amelioration of these conditions, diversification increased rapidly, with the appearance of Dechloromonas, Pseudomonas, and Hydrogenophaga sequences. Changes in NO3, SO4, and pH also likely contributed to shifts in community composition. The detection of sulfate-reducing-bacteria-like sequences closely related to Desulfovibrio and Desulfuromonas in the FBR have important implications for downstream applications at the field site.  相似文献   

11.
Summary An upflow packed bed reactor with lava stones as support for the microbial growth proved to be very useful for the denitrification of industrial waste water by Thiobacillus denitrificans. The application of the plug flow principle allowed higher concentrations of nitrate to be employed than in a stirred tank reactor because inhibitory concentrations of sulfate from thiosulfate oxidation built up only in the upper part of the column — if at all. In experiments with synthetic media nitrate solutions of different strength (NO 3 g/l: 1.8; 3.0; 4.3; 6.1) were tested, each at 5 different residence times (5; 3.3; 2.5; 2.0; 1.7 h). The combination of the two parameters which still allowed 95% denitrification was 3 g NO 3 - /l and 2.5 h residence time; this corresponded to a volumetric nitrate loading of about 25 kg/m3·d. Higher nitrate loadings led to incomplete denitrification coupled with the occurence of nitrite in the outflow. Below the critical loading rate nitrite accumulated only in the lower part of the column and was then gradually reduced. Experiments with simulated middle active waste from processing nuclear fuel which contained numerous heavy metals yielded similar results. — Although pure inorganic media were fed into the reactor the microflora developing as a dense layer covering the lava stones consisted not only of T. denitrificans but also of heterotrophic denitrifiers, mainly Pseudomonas aeruginosa.  相似文献   

12.
A previous three phase fluidized sand bed reactor design was improved by adding a draft tube to improve fluidization and submerged effluent tubes for sand separation. The changes had little influence on the oxygen transfer coefficients(K L a), but greatly reduced the aeration rate required for sand suspension. The resulting 12.5 dm3 reactor was operated with 1 h liquid residence time, 10.2dm3/min aeration rate, and 1.7–2.3 kg sand (0.25–0.35 mm diameter) for the degradation of phenol as sole carbon source. The K La of 0.015 s–1 gave more than adequate oxygen transfer to support rates of 180g phenol/h · m3 and 216 g oxygen/h · m3. The biomass-sand ratios of 20–35 mg volatiles/g gave estimated biomass concentrations of 3–6 g volatiles/dm3. Offline kinetic measurements showed weak inhibition kinetics with constants ofK s=0.2 mg phenol/dm3, K o2=0.5 mg oxygen/dm3 and KinI= 122.5 mg phenol/dm3. Very small biofilm diffusion effects were observed. Dynamic experiments demonstrated rapid response of dissolved oxygen to phenol changes below the inhibition level. Experimentally simulated continuous stagewise operation required three stages, each with 1 h residence time, for complete degradation of 300 mg phenol/dm3 · h.  相似文献   

13.
In this study, we report on a butanol production process by immobilized Clostridium acetobutylicum in a continuous packed bed reactor (PBR) using Tygon® rings as a carrier. The medium was a solution of lactose (15–30 g/L) and yeast extract (3 g/L) to emulate the cheese whey, an abundant lactose-rich wastewater. The reactor was operated under controlled conditions with respect to the pH and to the dilution rate. The pH and the dilution rate ranged between 4 and 5, the dilution rate between 0.54 and 2.4 h?1 (2.5 times the maximum specific growth rate assessed for suspended cells). The optimal performance of the reactor was recorded at a dilution rate of 0.97 h?1: the butanol productivity was 4.4 g/Lh and the selectivity of solvent in butanol was 88%w.  相似文献   

14.
A microbial consortium attached onto a polyethylene support was used to evaluate the simultaneous oxidation of sulfide and phenol by denitrification. The phenol, sulfide and nitrate loading rates applied to an inverse fluidized bed reactor were up to 168 mg phenol–C/(l d), 37 mg S2?/(l d) and 168 mg NO3?–N/(l d), respectively. Under steady state operation the consumption efficiencies of phenol, sulfide and nitrate were 100%. The N2 yield (g N2/g NO3?–N) was 0.89. The phenol was mineralized resulting in a yield of 0.82 g bicarbonate–C/g phenol–C and sulfide was completely oxidized to sulfate with a yield of 0.99 g SO42?–S/g S2?. 16S rRNA gene-based microbial community analysis of the denitrifying biofilm showed the presence of Thauera aromatica, Thiobacillus denitrificans, Thiobacillus sajanensis and Thiobacillus sp. This is the first work reporting the simultaneous oxidation of sulfide and phenol in a denitrifying biofilm reactor.  相似文献   

15.
Sulfide oxidation under chemolithoautotrophic denitrifying conditions   总被引:4,自引:0,他引:4  
Chemolithoautotrophic denitrifying microorganisms oxidize reduced inorganic sulfur compounds coupled to the reduction of nitrate as an electron acceptor. These denitrifiers can be applied to the removal of nitrogen and/or sulfur contamination from wastewater, groundwater, and gaseous streams. This study investigated the physiology and kinetics of chemolithotrophic denitrification by an enrichment culture utilizing hydrogen sulfide, elemental sulfur, or thiosulfate as electron donor. Complete oxidation of sulfide to sulfate was observed when nitrate was supplemented at concentrations equal or exceeding the stoichiometric requirement. In contrast, sulfide was only partially oxidized to elemental sulfur when nitrate concentrations were limiting. Sulfide was found to inhibit chemolithotrophic sulfoxidation, decreasing rates by approximately 21-fold when the sulfide concentration increased from 2.5 to 10.0 mM, respectively. Addition of low levels of acetate (0.5 mM) enhanced denitrification and sulfate formation, suggesting that acetate was utilized as a carbon source by chemolithotrophic denitrifiers. The results of this study indicate the potential of chemolithotrophic denitrification for the removal of hydrogen sulfide. The sulfide/nitrate ratio can be used to control the fate of sulfide oxidation to either elemental sulfur or sulfate.  相似文献   

16.
Anaerobic biodegradation of atrazine by the bacterial isolate M91-3 was characterized with respect to mineralization, metabolite formation, and denitrification. The ability of the isolate to enhance atrazine biodegradation in anaerobic sediment slurries was also investigated. The organism utilized atrazine as its sole source of carbon and nitrogen under anoxic conditions in fixed-film (glass beads) batch column systems. Results of HPLC and TLC radiochromatography suggested that anaerobic biotransformation of atrazine by microbial isolate M91-3 involved hydroxyatrazine formation. Ring cleavage was demonstrated by 14CO2 evolution. Denitrification was confirmed by detection of 15N2 in headspace samples of K15NO3-amended anaerobic liquid cultures. In aquatic sediments, mineralization of uniformly ring-labeled [14C]atrazine occurred in both M91-3-inoculated and uninoculated sediment. Inoculation of sediments with M91-3 did not significantly enhance anaerobic mineralization of atrazine as compared to uninoculated sediment, which suggests the presence of indigenous organisms capable of anaerobic atrazine biodegradation. Results of this study suggest that the use of M91-3 in a fixed-film bioreactor may have applications in the anaerobic removal of atrazine and nitrate from aqueous media. Received: 3 September 1997 / Received revision: 4 December 1997 / Accepted: 2 January 1998  相似文献   

17.
Abstract

Biosorption of malathion from aqueous solution was studied using Bacillus sp. S14 immobilised on calcium alginate (3%) using a packed bed column reactor at a temperature of 25 °C and a pH of 7.0. The experiments were conducted to study the effect of important design parameters such as bed height, flow rate and influent malathion concentration. Maximum removal capacity (57%) was found at 4 mL min-1 flow rate, 6.0 cm bed height and 25 mg L-1 influent malathion concentration. The Adam-Bohart model, Wolborska model, Thomas model, Yoon-Nelson model were employed to determine characteristic parameters such as saturation concentration, external mass transfer coefficient, Thomas rate constant, the maximum solid phase concentration of the solute, rate constant, and the time required for 50% adsorbate breakthrough time, which are all useful for process design. Experimental data were well fitted with Adam–Bohart model at the lower region of effluent/influent malathion concentration values but at higher region values data fitted well with the Thomas and Yoon-Nelson models.  相似文献   

18.
Polyvinyl alcohol was biodegraded under denitrifying conditions with a microbial community originated from a municipal wastewater treatment plant. The derived microbial consortium was capable of polyvinyl alcohol degradation under both denitrifying and aerobic conditions. The community dynamics was monitored by temperature gradient gel electrophoresis, and a principal utilizing organism was identified and assigned as Steroidobacter sp. PD. The possible role of Steroidobacter sp. PD was also investigated by sequencing the 16S rDNA clone library prepared from the degrading community. qPCR analysis showed that the fraction of the microorganism in the community was very low initially (0.02%) and had reached to about 16% by the end of the biodegradation experiment. The study revealed that polyvinyl alcohol can be biodegraded in a water environment not only under aerobic but also under denitrifying conditions.  相似文献   

19.
Summary A recirculated packed bed batch reactor has been designed for the production of 6-aminopenicillanic acid. It was observed that the flow rate of penicillin G solution is a rate limiting step for its hydrolysis. Under the conditions used, the maximum rate of hydrolysis of penicillin G was observed at a flow rate of 3.0 L/min.  相似文献   

20.
Aims:  An integrated dual reactor system for continuous production of lactic acid by Lactobacillus delbrueckii using biofilms developed on reticulated polyurethane foam (PUF) is demonstrated.
Methods and Results:  Lactobacillus delbrueckii was immobilized on PUF, packed in a bioreactor and used in lactic acid fermentation. The rate of lactic acid production was significantly high with a volumetric productivity of 5 g l−1 h−1 over extended period of time. When coupled to a bioreactor, the system could be operated as dual reactor for over 1000 h continuously without augmentation of inoculum and no compromise on productivity.
Conclusions:  Polyurethane foams offer an excellent support for biofilm formation.
Significance and Impact of the Study:  The system was very robust and could be operated for prolonged period at a volumetric productivity of 4–6 g l−1 h−1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号