首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
The functional consequences of the differences in lipid composition and structure between the two leaflets of the plasma membrane were investigated. Fluorescence of 1,6-diphenylhexa-1,3,5-triene(DPH), quenching, and differential polarized phase fluorimetry demonstrated selective fluidization by local anaesthetics of individual leaflets in isolated LM-cell plasma membranes. As measured by decreased limiting anisotropy of DPH fluorescence, cationic (prilocaine) and anionic (phenobarbital and pentobarbital) amphipaths preferentially fluidized the cytofacial and exofacial leaflets respectively. Unlike prilocaine, procaine, also a cation, fluidized both leaflets of these membranes equally. Pentobarbital stimulated 5'-nucleotidase between 0.1 and 5 mM and inhibited at higher concentrations, whereas phenobarbital only inhibited, at higher concentrations. Cationic drugs were ineffective. Two maxima of (Na+ + K+)-ATPase activation were obtained with both anionic drugs. Only one activation maximum was obtained with both cationic drugs. The maximum in activity below 1 mM for all four drugs clustered about a single limiting anisotropy value in the cytofacial leaflet, whereas there was no correlation between activity and limiting anisotropy in the exofacial leaflets. Therefore, although phenobarbital and pentobarbital below 1 mM fluidized the exofacial leaflet more than the cytofacial leaflet, the smaller fluidization in the cytofacial leaflet was functionally significant for (Na+ + K+)-ATPase. Mg2+-ATPase was stimulated at 1 mM-phenobarbital, unaffected by pentobarbital and slightly stimulated by both cationic drugs at concentrations fluidizing both leaflets. Thus the activity of (Na+ + K+)-ATPase was highly sensitive to selective fluidization of the leaflet containing its active site, whereas the other enzymes examined were little affected by fluidization of either leaflet.  相似文献   

2.
The effects of polyunsaturated fatty acids and lipid peroxidation on LM fibroblast plasma membrane individual leaflet sterol distribution and structural order were examined. The cytofacial (inner) leaflet was more rigid and contained more sterol than the exofacial (outer) leaflet. The static (limiting anisotropy) and dynamic (rotational relaxation time) structural components of diphenylhexatriene (DPH) motion in each leaflet were determined by phase and modulation fluorometry measurements combined with leaflet-specific quenching by trinitrophenyl groups. Polyunsaturated fatty acids, incorporated into the membrane phospholipids by culture medium supplementation, decreased the limiting anisotrophy of DPH in the cytofacial but not the exofacial leaflet thereby abolishing the transbilayer difference in fluidity. Peroxidation by Fe(II) + H2O2 resulted in a rigidification (increase in limiting anisotropy and rotational relaxation time) of the plasma membrane exofacial leaflet, regardless of whether the membranes contained saturated and monounsaturated fatty acids or were enriched in either linoleate or linolenate. The structure of the cytofacial leaflet reported by DPH was unaffected. Plasma membrane transbilayer sterol distribution, measured by leaflet-specific quenching of dehydroergosterol fluorescence, indicated that 20-28% of the sterol was localized in the exofacial leaflet. Polyunsaturated fatty acid supplementation of LM fibroblasts resulted in a complete reversal of plasma membrane transbilayer sterol distribution (72-76% exofacial leaflet). Sterol transbilayer distribution between the membrane leaflets was completely resistant to alteration by exposure to crosslinking agents and peroxidation in control plasma membranes and by peroxidation in linoleate- or linolenate-supplemented membranes.  相似文献   

3.
Acute and Chronic Effects of Ethanol on Transbilayer Membrane Domains   总被引:3,自引:1,他引:2  
Alcohols, including ethanol, have a specific effect on transbilayer and lateral membrane domains. Recent evidence has shown that alcohols in vitro have a greater effect on fluidity of one leaflet as compared to the other. The present study examined effects of chronic ethanol consumption on fluidity of synaptic plasma membrane (SPM) exofacial and cytofacial leaflets using trinitrobenzenesulfonic acid (TNBS) labeling and differential polarized fluorometry of 1,6-diphenyl-1,3,5-hexatriene (DPH). Mice were administered ethanol or a control liquid diet for 3 weeks. Animals were killed and SPM prepared. The exofacial leaflet of SPM was significantly more fluid than the cytofacial leaflet in both groups, as indicated by limiting anisotropy of DPH. However, differences between the two leaflets were much smaller in the ethanol-treated group. Ethanol at concentrations seen clinically had a greater effect in vitro on the more fluid exofacial leaflet. This asymmetric effect of ethanol was significantly diminished in the exofacial leaflet of the ethanol-treated mice. Chronic ethanol consumption has a specific effect on membranes. Membrane functions that may be regulated by asymmetry of fluidity and lipid distribution may be altered by chronic ethanol consumption.  相似文献   

4.
The lipid composition and transbilayer distribution of plasma membrane isolated from primary tumor (L-929, LM, A-9 and C3H) and nine metastatic cell lines cultured under identical conditions was examined. Cultured primary tumor and metastatic cells differed two-fold in sterol/phospholipid molar ratios. There was a direct correlation between plasma membrane anionic phospholipid (phosphatidylinositol and phosphatidylserine) content and plasma membrane sterol/phospholipid ratio. This finding may bear on the possible link between oncogenes and inositol lipids. The fluorescent sterol, dehydroergosterol, was incorporated into primary tumor and metastatic cell lines. Selective quenching of outer monolayer fluorescence by covalently linked trinitrophenyl groups demonstrated an asymmetric transbilayer distribution of sterol in the plasma membranes. The inner monolayer of the plasma membranes from both cultured primary and metastatic tumor cells was enriched in sterol as compared with the outer monolayer. Consistent with this, the inner monolayer was distinctly more rigid as determined by the limiting anisotropy of 1,6-diphenyl-1,3,5-hexatriene. Dehydroergosterol fluorescence was temperature dependent and sensitive to lateral phase separations in phosphatidylcholine vesicles and in LM cell plasma membranes. Dehydroergosterol detected phase separations near 24 degrees C in the outer monolayer and at 21 degrees C and 37 degrees C in the inner monolayer of LM plasma membranes. Yet, no change in transbilayer sterol distribution was detected in ascending or descending temperature scans between 4 and 45 degrees C. Alterations in plasma membrane phospholipid polar head group composition by choline analogues (N,N-dimethylethanolamine, N-methylethanolamine, and ethanolamine) also did not perturb transbilayer sterol asymmetry. Treatment with phenobarbital or prilocaine, drugs that selectively fluidize the outer and inner monolayer of LM plasma membranes, respectively, did not change dehydroergosterol transbilayer distribution.  相似文献   

5.
The fluidity of the exofacial (outer) and cytofacial (inner) leaflets of human proximal small intestinal brush-border membrane vesicles was studied by selective quenching by trinitrophenyl groups, steady-state fluorescence polarization, and differential polarized phase fluorometry techniques, utilizing the lipid soluble fluorophore 1,6-diphenyl-1,3,5-hexatriene. Differences in the hemileaflet's phospholipid composition were also analyzed by trinitrophenylation of aminophospholipids and phospholipase A2 treatment of these preparations. The results of these studies demonstrated that the inner leaflet of these membranes was less fluid than its outer counterpart. Phosphatidylserine was located mainly in the inner hemileaflet, whereas phosphatidylethanolamine and phosphatidylcholine were more symmetrically distributed between the hemileaflets of this membrane. Moreover, in vitro addition of 2-[(2-methoxyethoxy)ethyl]-cis-8-(2-octylcyclopropyl)octanoate (final concentration, 7.5 microM) preferentially fluidized the cytofacial leaflet and concomitantly increased Na(+)-gradient-dependent D-glucose uptake, but decreased Na+, K+-dependent L-glutamic acid uptake in these membrane vesicles. In vitro addition of benzyl alcohol (final concentration, 25 mM) preferentially fluidized the exofacial leaflet and decreased leucine aminopeptidase activity in these preparations. These results, therefore, demonstrate that the hemileaflets of human small intestinal brush-border membranes have different phospholipid compositions and fluidities. Alterations of either the exofacial or cytofacial leaflet fluidity, moreover, modulate protein-mediated activities in a distinct manner.  相似文献   

6.
Abstract: Previous studies examining age differences in membrane fluidity and cholesterol content have reported on the average or total change in membrane structure, respectively. However, a membrane consists of an exofacial leaflet and a cytofacial leaflet that differ in fluidity and cholesterol distribution. The purpose of the present experiments was to determine fluidity and cholesterol distribution of the exofacial and cytofacial leaflets of brain synaptic plasma membranes (SPMs) from 3–4-, 14–15-, and 24–25-month-old C57BL/6NNIA mice by using trinitrobenzenesulfonic acid (TNBS)-quenching techniques and fluorescent probes. The exofacial leaflet of SPMs from young mice was significantly more fluid compared with the cytofacial leaflet. The large difference in fluidity between the two leaflets was abolished in SPMs of the oldest age group. Total SPM cholesterol and the cholesterol-to-phospholipid molar ratio did not differ among the three different age groups of mice. However, considerable differences were observed in the distribution of cholesterol in the two SPM leaflets. The exofacial leaflet contained substantially less cholesterol than did the cytofacial leaflet (13 vs. 87%, respectively) in SPMs of young mice. This asymmetric distribution of cholesterol was significantly modified with increasing age. There was an approximately twofold increase in exofacial leaflet cholesterol in the oldest group compared with the youngest age group. Transbilayer fluidity and cholesterol asymmetry were altered in SPMs of older mice. This approach is a new and different way of viewing how aging modifies membrane structure. Age differences in SPM leaflet structure may be an important factor regulating activity of certain membrane proteins.  相似文献   

7.
W D Sweet  F Schroeder 《FEBS letters》1988,229(1):188-192
Sterols are asymmetrically distributed between the leaflets of animal cell plasma membranes. Although transbilayer migration of sterols is extremely rapid, s to min, previous experimental manipulations have not altered their transmembrane steady-state distribution. However, the effect of polyunsaturated fatty acids has not been reported. When cultured in a lipid-free, chemically defined culture medium, LM fibroblasts do not synthesize polyunsaturated fatty acids but will incorporate polyunsaturated fatty acids into their plasma membranes if supplied in the medium. Sterol transbilayer distribution in LM plasma membranes was determined from quenching of fluorescence of dehydroergosterol by trinitrophenyl groups selectively attached to the exofacial leaflet. When cells are cultured in lipid-free media, 28.1% of the plasma membrane sterol is located in the exofacial (outside) leaflet. In contrast, when cells are cultured with linoleate- or linolenate-supplemented medium, 71.8% and 75.5% of the plasma membrane sterol is exofacial, respectively.  相似文献   

8.
Abstract: Both apolipoprotein E (apoE) and the low-density lipoprotein (LDL) receptor are present in brain; however, little is known regarding the function of these proteins in brain, in particular with respect to brain cholesterol. The role of apoE and the LDL receptor in modulating the transbilayer or asymmetric distribution of cholesterol in the exofacial and cytofacial leaflets of synaptic plasma membranes (SPMs) was examined in mutant mice deficient in apoE, the LDL receptor, or both proteins by using the fluorescent sterol dehydroergosterol and fluorescent quenching procedures. Fluidity of the exofacial and cytofacial leaflets was also measured. Cholesterol asymmetry of SPMs was altered in the mutant mice, with the largest effect observed in the LDL receptor-deficient mice. There was an approximately twofold increase in the percent distribution of cholesterol in the exofacial leaflet of the LDL receptor-deficient mice (32%) compared with C57BL/6J mice (15%). Mice deficient in apoE or both proteins also showed a significantly higher percent distribution of cholesterol (23 and 26%, respectively) in the exofacial leaflet compared with the C57BL/6J mice. Although the percent distribution of cholesterol was highest in the exofacial leaflet of the LDL receptor-deficient mice, fluidity of the exofacial leaflet of that group was significantly lower. However, the cholesterol-to-phospholipid ratio of SPMs of the LDL receptor-deficient mice was significantly lower, and this difference was largely the result of a significant increase in the total amount of SPM phospholipid. This study demonstrates for the first time that SPM lipid structure is altered in mice deficient in apoE or the LDL receptor. Although the mechanism that maintains the asymmetric distribution of cholesterol in plasma membranes is not well understood, data of the present experiments indicate that both apoE and the LDL receptor are involved in maintaining the transbilayer distribution of cholesterol.  相似文献   

9.
Transbilayer effects of ethanol on fluidity of brain membrane leaflets   总被引:5,自引:0,他引:5  
Previous work on membrane effects of ethanol focused on fluidization of the bulk membrane lipid bilayer. That work was extended in the present study to an examination of ethanol's effect on lipid domains. Two independent methods were developed to examine the effects of ethanol on the inner and outer leaflets of synaptic plasma membranes (SPM). First, differential polarized phase and modulation fluorometry and selective quenching of diphenyl-1,3,5-hexatriene (DPH) were used to examine individual leaflets. Both limiting anisotropy and rotational relaxation time of DPH in SPM indicated that the outer leaflet was more fluid than the inner leaflet. Second, plasma membrane sidedness selective fluorescent DPH derivatives, cationic 1-[4-(trimethylammonio)phenyl]-6-phenylhexa-1,3,5-triene (TMA-DPH) and anionic 3-[p-6-phenyl)-1,3,5-hexatrienyl]phenylpropionic acid (PRO-DPH), confirmed this transmembrane fluidity difference. TMA-DPH and PRO-DPH preferentially localized in the inner and outer leaflets of SPM, respectively. Ethanol in vitro had a greater fluidizing effect in the outer leaflet as compared to the inner leaflet. Thus, ethanol exhibits a specific rather than nonspecific fluidizing action within transbilayer SPM domains. This preferential fluidization of the SPM outer leaflet may have a role in ethanol affecting transmembrane signaling in the nervous system.  相似文献   

10.
Polysialic acids are linear polysaccharides composed of sialic acid monomers. These polyanionic chains are usually membrane-bound, and are expressed on the surfaces of neural, tumor and neuroinvasive bacterial cells. We used toluidine blue spectroscopy, the Langmuir monolayer technique and fluorescence spectroscopy to study the effects of membrane surface potential and transmembrane potential on the binding of polysialic acids to lipid bilayers and monolayers. Polysialic acid free in solution was added to the bathing solution to assess the metachromatic shift in the absorption spectra of toluidine blue, the temperature dependence of the fluorescence anisotropy of DPH in liposomes, the limiting molecular area in lipid monolayers, and the fluorescence spectroscopy of oxonol V in liposomes. Our results show that both a positive surface potential and a positive transmembrane potential inside the vesicles can facilitate the binding of polysialic acid chains to model lipid membranes. These observations suggest that these membrane potentials can also affect the polysialic acid-mediated interaction between cells.  相似文献   

11.
Lipids are essential for the structural and functional integrity of membranes. Membrane lipids are not randomly distributed but are localized in different domains. A common characteristic of these membrane domains is their association with cholesterol. Lipid rafts and caveolae are examples of cholesterol enriched domains, which have attracted keen interest. However, two other important cholesterol domains are the exofacial and cytofacial leaflets of the plasma membrane. The two leaflets that make up the bilayer differ in their fluidity, electrical charge, lipid distribution, and active sites of certain proteins. The synaptic plasma membrane (SPM) cytofacial leaflet contains over 85% of the total SPM cholesterol as compared with the exofacial leaflet. This asymmetric distribution of cholesterol is not fixed or immobile but can be modified by different conditions in vivo: (i) chronic ethanol consumption; (ii) statins; (iii) aging; and (iv) apoE isoform. Several potential candidates have been proposed as mechanisms involved in regulation of SPM cholesterol asymmetry: apoE, low-density lipoprotein receptor, sterol carrier protein-2, fatty acid binding proteins, polyunsaturated fatty acids, P-glycoprotein and caveolin-1. This review examines cholesterol asymmetry in SPM, potential mechanisms of regulation and impact on membrane structure and function.  相似文献   

12.
Phospholipid-sterol interactions were investigated using parinaric acid fluorescence spectroscopy. Cholesterol and cholesterol analogues which were modified in the sterol nucleus or side chain were added at 50 mol % to multilamellar vesicles of model phospholipids selected to be representative of major components in an LM cell plasma membrane. These included sphingomyelins and saturated and monounsaturated phosphatidylcholines and phosphatidylethanolamines. Based on the changes in cis-parinaric acid steady-state fluorescence polarization observed with addition of sterol, 50 mol % cholesterol abolished the phase transition of all the model phospholipids. Dihydrocholesterol and trans-22-dehydrocholesterol behaved like cholesterol in the two systems studied. 24-Methylcholesterols interacted well with all phospholipids except phosphatidylethanolamine which contained an unsaturated fatty acid. 24-Alkyl,trans-22-dehydrocholesterols abolished the phase transition in only two systems: sphingomyelins and phosphatidylcholines possessing relatively short saturated acyl chains. Since steady-state anisotropy is a function of fluorescence lifetime, rotational diffusion rates, and limiting anisotropy, we determined these parameters for two of the phospholipid systems. The results show that steady-state anisotropy values for phospholipid-sterol interactions correlate closely with limiting anisotropy and to a lesser extent with rotational relaxation time. The behavior of the sterols in the model phospholipids are used to interpret 1) fluorescence polarization measurements made with phospholipids extracted from LM cell plasma membranes, and 2) changes in membrane lipid composition which accompany growth of LM cells on various sterols.  相似文献   

13.
Using a coarse-grained lipid and peptide model, we show that the free energy stabilization of amyloid-β in heterogeneous lipid membranes is predicted to have a dependence on asymmetric distributions of cholesterol compositions across the membrane leaflets. We find that a highly asymmetric cholesterol distribution that is depleted on the exofacial leaflet but enhanced on the cytofacial leaflet of the model lipid membrane thermodynamically favors membrane retention of a fully embedded Aβ peptide. However, in the case of cholesterol redistribution that increases concentration of cholesterol on the exofacial layer, typical of aging or Alzheimer’s disease, the free energy favors peptide extrusion of the highly reactive N-terminus into the extracellular space that may be vulnerable to aggregation, oligomerization, or deleterious oxidative reactivity.  相似文献   

14.
Using a coarse-grained lipid and peptide model, we show that the free energy stabilization of amyloid-β in heterogeneous lipid membranes is predicted to have a dependence on asymmetric distributions of cholesterol compositions across the membrane leaflets. We find that a highly asymmetric cholesterol distribution that is depleted on the exofacial leaflet but enhanced on the cytofacial leaflet of the model lipid membrane thermodynamically favors membrane retention of a fully embedded Aβ peptide. However, in the case of cholesterol redistribution that increases concentration of cholesterol on the exofacial layer, typical of aging or Alzheimer’s disease, the free energy favors peptide extrusion of the highly reactive N-terminus into the extracellular space that may be vulnerable to aggregation, oligomerization, or deleterious oxidative reactivity.  相似文献   

15.
Fluorescence probe molecules, trans-parinaric acid and 1,6-diphenylhexatriene, were utilized to characterize the structure of plasma membranes, microsomes and mitochondria from B16 melanoma cells. High metastatic B16-F10 and low metastatic B16-F1 melanoma cell lines had markedly different membrane structures. The fluorescence polarization, fluorescence lifetime and limiting anisotropy of trans-parinaric acid were significantly lower (P < 0.05) in all three membrane fractions of the B16-F1 cell line than in the corresponding membranes of the B16-F10 cell line. These data indicated less restriction to rotational motion in the solid lipid domains of B16-F1 cell membranes preferentially sensed by trans-parinaric acid. The limiting anisotropy of both trans-parinaric acid and 1,6-diphenyl-1,3,5-hexatriene was significantly lower in the outer monolayer than the inner monolayer of the plasma membrane of B16-F1 cells but not in B16-F10 cells. A breakpoint in Arrhenius plots of fluorescence near 30–34°C indicated the presence of a phase separation that was assigned to the inner monolayer of the plasma membrane. However, no differences in this breakpoint temperature were noted between the B16-F1 and B16-F10 melanoma membranes. Thus, more fluid solid membrane domains and a distinct transbilayer fluidity difference were characteristic of plasma membranes from low metastatic B16-F1 melanoma cells in contrast to high metastatic B16-F10 melanoma cells.  相似文献   

16.
R Gilmore  N Cohn  M Glaser 《Biochemistry》1979,18(6):1050-1056
Phospholipids were isolated from mitochondrial, microsomal, and plasma membranes of LM cells and fractionated into individual phospholipid classes on silicic acid columns. The fatty acid composition and the rotational relaxation time of 1,6-diphenyl-1,3,5-hexatriene (DPH) were determined for each phospholipid class. Sphingomyelin was the only phospholipid isolated from LM cell membranes that showed a phase transition within the temperature range investigated, 5-40 degrees C. The rotational relaxation times for DPH were lowest in phosphatidylcholine in all the membrane fractions. Phosphatidylcholine isolated from the three membrane fractions of choline-supplemented cells had similar rotational relaxation times and phosphatidylcholine isolated from microsomal membranes of linoleate-supplemented cells had lower rotational relaxation times. The results indicate that the differences in the rotational relaxation times of DPH between mitochondrial, microsomal, and plasma membrane phospholipids could be explained primarily by differences in the polar head-group composition, while differences in the fatty acid composition had only a minor effect. This provides a basis for understanding how the different lipid components in these cells contribute to membrane fluidity.  相似文献   

17.
R A Parente  B R Lentz 《Biochemistry》1985,24(22):6178-6185
We have investigated the behavior of 1-palmitoyl-2-[[2-[4- (6-phenyl-trans-1,3,5-hexatrienyl)phenyl]ethyl]carbonyl]-3-sn -phosphatidylcholine (DPHpPC) in synthetic, multilamellar phosphatidylcholine vesicles. This fluorescent phospholipid has photophysical properties similar to its parent fluorophore, diphenylhexatriene (DPH). DPHpPC preferentially partitioned into fluid phase lipid (Kf/s = 3.3) and reported a lower phase transition temperature as detected by fluorescence anisotropy than that observed by differential scanning calorimetry. Calorimetric measurements of the bilayer phase transition in samples having different phospholipid to probe ratios demonstrated very slight changes in membrane phase transition temperature (0.1-0.2 degree C) and showed no measurable change in transition width. Nonetheless, measurements of probe fluorescence properties suggested that DPHpPC disrupts its local environment in the membrane and may even induce perturbed probe-rich local domains below the phospholipid phase transition. Temperature profiles of steady-state fluorescence anisotropy, limiting anisotropy, differential tangent, and rotational rate were similar to those of DPH below the main lipid phase transition but indicated more restricted rotational motion above the lipid phase transition temperature. As for DPH, the fluorescence decay of DPHpPC could be described by either a single or double exponential both above and below the DPPC phase transition. The choice seemed dependent on the treatment of the sample. The intensity-weighted average lifetime of DPHpPC was roughly 1.5 ns shorter than that of DPH. In summary, the measured properties of DPHpPC and its lipid-like structure make it a powerful probe of membrane structure and dynamics.  相似文献   

18.
Intramolecular excimer formation of 1,3-di(1-pyrenyl)propane (Py-3-Py) and fluorescence polarization of 1,6-diphenyl-1,3,5-hexatriene (DPH) were used to evaluate the effect of ethanol on the rate and range of the lateral mobility and the range of the rotational mobility of bulk bilayer structures of the plasma membrane vesicles (ATCC-PMV) isolated from cultured hybridoma cells (ATCC TIB 216). In a concentration-dependent manner, ethanol increased the excimer to monomer fluorescence intensity ratio (I/I) of Py-3-Py in the ATCC-PMV and decreased the anisotropy (r), limiting anisotropy (r) and order parameter (S) of DPH in the ATCC-PMV. This indicates that ethanol increased both the lateral and rotational mobility of the probes in the ATCC-PMV. Selective quenching of DPH by trinitrophenyl groups was utilized to examine the range of transbilayer asymmetric rotational diffusion of the ATCC-PMV. The anisotropy (r), limiting anisotropy (r ) and order parameter (S) of DPH in the inner monolayer were 0.024, 0.032, and 0.069, respectively, greater than calculated for the outer monolayer of the ATCC-PMV. Selective quenching of DPH by trinitrophenyl groups was also used to examine the transbilayer asymmetric effects of ethanol on the range of the rotational mobility of the ATCC-PMV. Ethanol had a greater increasing effect on the range of the rotational mobility of the outer monolayer as compared to the inner monolayer of the ATCC-PMV. It has been proven that ethanol exhibits a selective rather than nonselective fluidizing effect within the transbilayer domains of the ATCC-PMV.This paper was supported in part by a research grant from the Korea Science and Engineering Foundation (KOSEF 88-1013-01) and from the Korea Research Foundation (1991–1993).  相似文献   

19.
Differential polarized phase fluorometry has been used to investigate the depolarizing rotations of 1,6-diphenyl-1,3,5-hexatriene (DPH) in isotropic solvents and in lipid bilayers. For DPH dissolved in isotropic solvents, there is a precise agreement between the observed and predicted values for maximum differential tangents, indicating that in these media DPH is a free isotropic rotator. In lipid bilayers the tangent defects (i.e., the differences between the calculated and the observed maximum differential tangents) are too large to be explained by anisotropy in the depolarizing rotations but are accounted for by hindered isotropic torsional motions for the fluorophore [Weber, G (1978) Acta Phys. Pol A 54, 173]. This theory describes the depolarizing rotations of the fluorophore by its rotational rate R (in radians/second) and the limiting fluorescence anisotropy (r) at times long compared with the fluorescence lifetime. Through the combined use of both steady-state anisotropy measurements and differential phase measurements, we have demonstrated that one may obtain unique solutions for both R and r. For DPH embedded in vesicles prepared from dimyristoyl-, dipalmitoyl-, and distearoylphosphatidylcholines, the depolarizing motions are highly hindered at temperatures below the transition temperature (Tc) but are unhindered above Tc. The apparent rotational rates of the probe do not change significantly at Tc. These data suggest that the changes observed in the steady-state anisotropy near Tc derive primarily from changes in the degree to which the probe's rotations are hindered, and only to a small extent from changes in rotational rate. For DPH embedded in bilayers that contained 25 mol % cholesterol, no clear transition occurred and the rotations appeared to be hindered at all temperatures. The rotational motions of DPH embedded in dioleolyphosphatidylcholine were found to be far less hindered, but the rotational rates were similar to those obtained in the saturated phosphatidylcholines. Finally, the data show that in an anisotropic environment, such as that of a lipid bilayer, steady-state fluorescence anisotropy measurements alone cannot yield quantitatively meaningful rotational rates. Extrapolation of steady-state aniosotropy data to the quantitation of membrane viscosity is therefore difficult, if not invalid; however, qualitative comparisons can be useful.  相似文献   

20.
Ethanol-induced structural changes in membranes have in some studies been attributed to an increase in total membrane cholesterol. Consistent changes in cholesterol content, however, have not been observed in membranes of ethanol consuming animals and alcoholic patients. This study examined the hypotheses that cholesterol was asymmetrically distributed in synaptic plasma membranes (SPM) and that chronic ethanol consumption alters the transbilayer distribution of cholesterol. Dehydroergosterol, a fluorescent cholesterol analogue was used to examine sterol distribution and exchange in chronic ethanol-treated and pair-fed control groups. The cytofacial leaflet was found to have significantly more dehydroergosterol as compared to the exofacial leaflet. This asymmetric distribution was significantly reduced by chronic ethanol consumption as was sterol transport. Total cholesterol content did not differ between the two groups. Chronic ethanol consumption appeared to alter transbilayer sterol distribution as determined by the incorporation and distribution of dehydroergosterol in SPM. The changes in transbilayer sterol distribution are consistent with recent reports on the asymmetric effects of ethanol in vitro ((1988) Biochim. Biophys. Acta 946, 85-94) and in vivo ((1989) J. Neurochem. 52, 1925-1930) on membrane leaflet structure. The results of this study also underscore the importance of examining membrane lipid domains in addition to the total content of different lipids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号