首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Durian is economically important for local livelihoods in Indonesia. Our study investigated the identity of pollinators of semi‐wild durian and subsequently estimated the economic contribution of these pollination services. We conducted pollination exclusion experiments and deployed camera traps at durian trees from October 2017 to January 2018 in an area where the local economy depends on durian production in West Sulawesi, Indonesia. Durian flowers in the experiment that were accessible to bats had significantly higher fruit set compared with flowers that were completely closed to animal visitors or those that could only be visited by insects, suggesting that bats were the primary durian pollinator. The small, highly nectarivorous cave nectar bat (Eonycteris spelaea) visited more inflorescences (= 25) and had visits of much longer duration ( = 116.87 sec/visit) than the two species of flying foxes: Pteropus alecto (n = 7 inflorescences visited,  = 11.07 sec/visit) and Acerodon celebensis (= 6 inflorescences visited,  = 11.60 sec/visit). Visits by large and small bats were influential in differentiating successful durian fruit production from unsuccessful. Using a bioeconomic approach, we conservatively estimate that bat pollination services are valued at ~$ 117/ha/fruiting season. By demonstrating an ecological link between bats and the local economy, this research provides an urgent message for Southeast Asian governments regarding the need to promote bat conservation in order to increase the production of durian grown under semi‐wild conditions. Abstract in Indonesia is available with online material.  相似文献   

2.
Fire is a process that shaped and maintained most terrestrial ecosystems worldwide. Changes in land use and patterns of human settlement have altered fire regimes and led to fire suppression resulting in numerous undesirable consequences spanning individual species and entire ecosystems. Many obvious and direct consequences of fire suppression have been well studied, but several, albeit less obvious, costs of alteration to fire regimes on wildlife are unknown. One such phenomenon is the response of carnivores to fire events—something we refer to as pyric‐carnivory. To investigate the prevalence of pyric‐carnivory in raptors, we monitored 25 prescribed fires occurring during two different seasons and across two different locations in tallgrass prairie of the central United States. We used paired point counts occurring before and during prescribed fires to quantify the use of fires by raptors. We found a strong attraction to fires with average maximum abundance nearly seven times greater during fires than prior to ignitions (before:  = 2.90, SE = 0.42; during:  = 20.20; SE = 3.29) and an average difference between fire events and immediately before fires of 15.2 (±2.69) raptors. This result was driven by Swainson's hawks (Buteo swainsoni), which were the most abundant (n = 346) of the nine species we observed using fires. Our results illustrate the importance of fire as integral disturbance process that effects wildlife behavior through multiple mechanisms that are often overshadowed by the predominant view of fire as a tool used for vegetation management.  相似文献   

3.
In most plants, constitutes the major source of nitrogen, and its assimilation into amino acids is mainly achieved in shoots. Furthermore, recent reports have revealed that reduction of translocation from roots to shoots is involved in plant acclimation to abiotic stress. NPF2.3, a member of the NAXT (nitrate excretion transporter) sub‐group of the NRT1/PTR family (NPF) from Arabidopsis, is expressed in root pericycle cells, where it is targeted to the plasma membrane. Transport assays using NPF2.3‐enriched Lactococcus lactis membranes showed that this protein is endowed with transport activity, displaying a strong selectivity for against Cl?. In response to salt stress, translocation to shoots is reduced, at least partly because expression of the root stele transporter gene NPF7.3 is decreased. In contrast, NPF2.3 expression was maintained under these conditions. A loss‐of‐function mutation in NPF2.3 resulted in decreased root‐to‐shoot translocation and reduced shoot content in plants grown under salt stress. Also, the mutant displayed impaired shoot biomass production when plants were grown under mild salt stress. These mutant phenotypes were dependent on the presence of Na+ in the external medium. Our data indicate that NPF2.3 is a constitutively expressed transporter whose contribution to translocation to the shoots is quantitatively and physiologically significant under salinity.  相似文献   

4.
Microbial sulfur cycling in marine sediments often occurs in environments characterized by transient chemical gradients that affect both the availability of nutrients and the activity of microbes. High turnover rates of intermediate valence sulfur compounds and the intermittent availability of oxygen in these systems greatly impact the activity of sulfur‐oxidizing micro‐organisms in particular. In this study, the thiosulfate‐oxidizing hydrothermal vent bacterium Thiomicrospira thermophila strain EPR85 was grown in continuous culture at a range of dissolved oxygen concentrations (0.04–1.9 mM) and high pressure (5–10 MPa) in medium buffered at pH 8. Thiosulfate oxidation under these conditions produced tetrathionate, sulfate, and elemental sulfur, in contrast to previous closed‐system experiments at ambient pressure during which thiosulfate was quantitatively oxidized to sulfate. The maximum observed specific growth rate at 5 MPa pressure under unlimited O2 was 0.25 hr?1. This is comparable to the μmax (0.28 hr?1) observed at low pH (<6) at ambient pressure when T. thermophila produces the same mix of sulfur species. The half‐saturation constant for O2 () estimated from this study was 0.2 mM (at a cell density of 105 cells/ml) and was robust at all pressures tested (0.4–10 MPa), consistent with piezotolerant behavior of this strain. The cell‐specific was determined to be 1.5 pmol O2/cell. The concentrations of products formed were correlated with oxygen availability, with tetrathionate production in excess of sulfate production at all pressure conditions tested. This study provides evidence for transient sulfur storage during times when substrate concentration exceeds cell‐specific and subsequent consumption when oxygen dropped below that threshold. These results may be common among sulfur oxidizers in a variety of environments (e.g., deep marine sediments to photosynthetic microbial mats).  相似文献   

5.
Thanks to the understanding of the relationships between the residence lifetime τM of the coordinated water molecules to macrocyclic Gd‐complexes and the rotational mobility τR of these structures, and according to the theory for paramagnetic relaxation, it is now possible to design macromolecular contrast agents with enhanced relaxivities by optimizing these two parameters through ligand structural modification. We succeeded in accelerating the water exchange rate by inducing steric compression around the water binding site, and by removing the amide function from the DOTA‐AA ligand [1,4,7,10‐tetraazacyclododecane‐1,4,7,10‐tetraacetic acid mono(p‐aminoanilide)] ( L ) previously designed. This new ligand 10[2(1‐oxo‐1‐p‐propylthioureidophenylpropyl]‐1,4,7,10‐tetraazacyclodecane‐1,4,7‐tetraacetic acid ( L 1 ) was then covalently conjugated to API [O‐(aminopropyl)inulin] to get the complex API ‐(GdL 1 )x with intent to slow down the rotational correlation time (τR) of the macromolecular complex. The evaluation of the longitudinal relaxivity at different magnetic fields and the study of the 17O‐NMR at variable temperature of the low‐molecular‐weight compound ( GdL 1 ) showed a slight decrease of the τM value ( = 331 ns vs.  = 450 ns for the Gd L complex). Consequently to the increase of the size of the API ‐(GdL 1 )x complex, the rotational correlation time becomes about 360 times longer compared to the monomeric GdL 1 complex (τR = 33,700 ps), which results in an enhanced proton relaxivity.  相似文献   

6.
Improving the accuracy of estimates of forest carbon exchange is a central priority for understanding ecosystem response to increased atmospheric CO2 levels and improving carbon cycle modelling. However, the spatially continuous parameterization of photosynthetic capacity (Vcmax) at global scales and appropriate temporal intervals within terrestrial biosphere models (TBMs) remains unresolved. This research investigates the use of biochemical parameters for modelling leaf photosynthetic capacity within a deciduous forest. Particular attention is given to the impacts of seasonality on both leaf biophysical variables and physiological processes, and their interdependent relationships. Four deciduous tree species were sampled across three growing seasons (2013–2015), approximately every 10 days for leaf chlorophyll content (ChlLeaf) and canopy structure. Leaf nitrogen (NArea) was also measured during 2014. Leaf photosynthesis was measured during 2014–2015 using a Li‐6400 gas‐exchange system, with A‐Ci curves to model Vcmax. Results showed that seasonality and variations between species resulted in weak relationships between Vcmax normalized to 25°C () and NArea (R2 = 0.62, < 0.001), whereas ChlLeaf demonstrated a much stronger correlation with (R2 = 0.78, < 0.001). The relationship between ChlLeaf and NArea was also weak (R2 = 0.47, < 0.001), possibly due to the dynamic partitioning of nitrogen, between and within photosynthetic and nonphotosynthetic fractions. The spatial and temporal variability of was mapped using Landsat TM/ETM satellite data across the forest site, using physical models to derive ChlLeaf. TBMs largely treat photosynthetic parameters as either fixed constants or varying according to leaf nitrogen content. This research challenges assumptions that simple NArea– relationships can reliably be used to constrain photosynthetic capacity in TBMs, even within the same plant functional type. It is suggested that ChlLeaf provides a more accurate, direct proxy for and is also more easily retrievable from satellite data. These results have important implications for carbon modelling within deciduous ecosystems.  相似文献   

7.
Animal populations can be affected by environmental disturbances in many ways including demographic and behavioral changes. This can affect interspecies associations for regularly interacting sympatric species, like bottlenose and spotted dolphins in the Bahamas (observed since 1985 and interspecies associations analyzed since 1993). After two hurricanes in 2004 each species lost roughly 30% of their respective communities resulting in differing social structure and behavioral changes. During mixed species encounters (MSE) group sizes for spotted dolphins ( = 14.1 ± 9.2) were significantly larger than bottlenose dolphins ( = 6.0 ± 7.3; F = 11.74, df = 1, P < 0.001), however, t‐tests revealed no differences between aggressive vs. affiliative encounters. Sexual/aggressive behavior regularly seen previously was not observed posthurricanes and aggressive encounters were greatly reduced. Generally results were similar to prehurricane data including high resightings of spotted dolphins with male alliances prevalent (including new juvenile alliances seen only posthurricane), and individualized bottlenose participation with few male alliances. However temporal associations varied compared to prehurricane. Interspecies association and behavior patterns were altered and likely affected by the changes in intraspecies association patterns following the hurricanes. However both species still participated in MSE, suggesting this is an important component of their ability to coexist as sympatric species.  相似文献   

8.
The mean crowding has previously been measured under the assumption that all quadrats or habitat units have the same size, even though the actual habitat units such as seeds or leaves are generally variable in size. A new index, ‘adjusted mean crowding’, which is adjusted for this variability can be given as where Q is the total number of habitat units in the whole area, xj the number of individuals in the jth habitat unit, and aj is defined as the ‘relative size’ of the jth habitat unit, i.e. ay=yy/(∑yj/Q) where yj is the actually measured size of the jth habitat unit. It is expected that and for the uniform distribution and the random distribution ‘per unit size’, respectively. The comparison between and regressions ( analysis) for the egg distribution pattern of Callosobruchus chinensis or C. maculatus proved that the regression is biased by a positive correlation between the egg number per seed and seed size rather than by a density-dependent change in the ovipositional behavior.  相似文献   

9.
Comparisons of to can provide insights into the evolutionary processes that lead to differentiation, or lack thereof, among the phenotypes of different groups (e.g., populations, species), and these comparisons have been performed on a variety of taxa, including humans. Here, I show that for neutrally evolving (i.e., by genetic drift, mutation, and gene flow alone) quantitative characters, the two commonly used estimators have somewhat different interpretations in terms of coalescence times, particularly when the number of groups that have been sampled is small. A similar situation occurs for estimators. Consequently, when observations come from only a small number of groups, which is not an unusual situation, it is important to match estimators appropriately when comparing to .  相似文献   

10.
Ectotherms frequently thermoregulate behaviorally to improve physiological processes such as digestion and growth, but basking and other thermoregulatory activities can also increase predation risk. Organismal and environmental characteristics can, in some species, influence predation risk associated with thermoregulation and thereby relax or tighten constraints on thermoregulatory behavior, physiological performance, and, ultimately, life history traits. Providing one of the first such investigations in turtles, we examine whether behavior and thermal environment modulate a thermoregulation–predation risk trade‐off in juvenile gopher tortoises (Gopherus polyphemus). Young gopher tortoises experience very high predation pressure, and their declining species faces many challenges, including human‐induced increased shading of its environment. We hypothesized that in response to simulated predator approach, basking hatchling and juvenile tortoises would: (i) hide inside burrows; (ii) hide for shorter durations in cooler burrows presumably due to greater constraints on physiological performance; and (iii) spend greater time at the surface following disturbance in cool environments because individuals would need to bask more to maintain preferred body temperatures. Basking tortoises always hid inside burrows when approached and exhibited very long flight initiation distances ( = 45 m) that increased with age/size. Individuals fled into burrows even when it was not possible for them to see the approaching researcher, suggesting the use of vibrations (aerial/ground) to detect potential predators and a possible antipredator function for exceptionally large otoliths characteristic of the species. Tortoises hid for short durations ( = 18.3 min), especially in cool burrows, suggesting that they optimize hiding responses to balance physiological costs and antipredator benefits. Additionally, surface activity following disturbance consisted primarily of basking and correlated negatively with burrow temperature. These findings suggest that thermal environment influences predation risk in ectotherms whose surface activity is driven primarily by thermoregulatory requirements and highlight potential benefits of warm, well‐insolated habitats, such as endangered longleaf pine (Pinus palustris) ecosystems, for juvenile gopher tortoises.  相似文献   

11.
The dispersion pattern of the citrus blackfly (CBF)Aleurocanthus woglumi Ashby on urban citrus trees was studied in southern Florida. There was no usable correlation (r2=0.41) between the % of older leaves infested with CBF versus that on the newest mature flush, but there was a strong correlation (r2=0.87) between the % of leaves in the newest mature flush infested with CBF and loge, where is the number of egg spirals of CBF/leaf on the same leaves. CBF egg spirals are distributed among the flushes in groups rather than singly and the flushes are not over-dispersed. Visual surveys proved superior to sticky traps for the detection of CBF at low densities (<5% leaves infested) on citrus trees in an urban setting. A sampling procedure is described herein based upon visual surveys.  相似文献   

12.
13.
Population growth typically involves range expansion and establishment of new breeding sites, while the opposite occurs during declines. Although density dependence is widely invoked in theoretical studies of emigration and colonization in expanding populations, few empirical studies have documented the mechanisms. Still fewer have documented the direction and mechanisms of individual transfer in declining populations. Here, we screen large numbers of pups sampled on their natal rookeries for variation in mtDNA (n = 1106) and 16 microsatellite loci (n = 588) and show that new Steller sea lion breeding sites did not follow the typical paradigm and were instead colonized by sea lions from both a declining (Endangered) population and an increasing population. Dispersing individuals colonized rookeries in the distributional hiatus between two evolutionarily distinct ( = 0.222,  = 0.053, = 2) metapopulations recently described as separate subspecies. Hardy–Weinberg, mixed‐stock and relatedness analysis revealed levels of interbreeding on the new rookeries that exclude (i) assortative mating among eastern and western forms, and (ii) inbreeding avoidance as primary motivations for dispersal. Positive and negative density dependence is implicated in both cases of individual transfer. Migration distance limits, and conspecific attraction and performance likely influenced the sequence of rookery colonizations. This study demonstrates that resource limitation may trigger an exodus of breeding animals from declining populations, with substantial impacts on distribution and patterns of genetic variation. It also revealed that this event is rare because colonists dispersed across an evolutionary boundary, suggesting that the causative factors behind recent declines are unusual or of larger magnitude than normally occur.  相似文献   

14.
Ectomycorrhizal (EcM) fungal communities may be shaped by both deterministic and stochastic processes, potentially influencing ecosystem development and function. We evaluated community assembly processes for EcM fungi of Pseudotsuga menziesii among 12 sites up to 400 km apart in southwest British Columbia (Canada) by investigating species turnover (β‐diversity) in relation to soil nitrogen (N) availability and physical distance. We then examined functional traits for an N‐related niche by quantifying net fluxes of , and protons on excised root tips from three contrasting sites using a microelectrode ion flux measurement system. EcM fungal communities were well aligned with soil N availability and pH, with no effect of site proximity (distance–decay curve) on species assemblages. Species turnover was significant (β1/2 = 1.48) along soil N gradients, with many more Tomentella species on high N than low N soils, in contrast to Cortinarius species. Ammonium uptake was greatest in the spring on the medium and rich sites and averaged over 190 nmol/m2/s for Tomentella species. The lowest uptake rates of were by nonmycorrhizal roots of axenically grown seedlings (10 nmol/m2/s), followed by Cortinarius species (60 nmol/m2/s). EcM roots from all sites displayed only marginal uptake of nitrate (8.3 nmol/m2/s). These results suggest uptake capacity is an important functional trait influencing the assembly of EcM fungal communities. The diversity of EcM fungal species across the region arguably provides critical belowground adaptations to organic and inorganic N supply that are integral to temperate rainforest ecology.  相似文献   

15.
To understand and forecast biological responses to climate change, scientists frequently use field experiments that alter temperature and precipitation. Climate manipulations can manifest in complex ways, however, challenging interpretations of biological responses. We reviewed publications to compile a database of daily plot‐scale climate data from 15 active‐warming experiments. We find that the common practices of analysing treatments as mean or categorical changes (e.g. warmed vs. unwarmed) masks important variation in treatment effects over space and time. Our synthesis showed that measured mean warming, in plots with the same target warming within a study, differed by up to 1.6 C (63% of target), on average, across six studies with blocked designs. Variation was high across sites and designs: for example, plots differed by 1.1 C (47% of target) on average, for infrared studies with feedback control (n = 3) vs. by 2.2 C (80% of target) on average for infrared with constant wattage designs (n = 2). Warming treatments produce non‐temperature effects as well, such as soil drying. The combination of these direct and indirect effects is complex and can have important biological consequences. With a case study of plant phenology across five experiments in our database, we show how accounting for drier soils with warming tripled the estimated sensitivity of budburst to temperature. We provide recommendations for future analyses, experimental design, and data sharing to improve our mechanistic understanding from climate change experiments, and thus their utility to accurately forecast species’ responses.  相似文献   

16.
Maintaining effective immune response is an essential factor in the survival of small populations. One of the most important immune gene regions is the highly polymorphic major histocompatibility complex (MHC). We investigated how a population bottleneck and recovery have influenced the diversity and selection in three MHC class II loci, DLA‐DRB1, DLA‐DQA1 and DLA‐DQB1, in the Finnish wolf population. We studied the larger Russian Karelian wolf population for comparison and used 17 microsatellite markers as reference loci. The Finnish and Karelian wolf populations did not differ substantially in their MHC diversities ( = 0.047, P = 0.377), but differed in neutral microsatellite diversities ( = 0.148, P = 0.008). MHC allele frequency distributions in the Finnish population were more even than expected under neutrality, implying balancing selection. In addition, an excess of nonsynonymous compared to synonymous polymorphisms indicated historical balancing selection. We also studied association between helminth (Trichinella spp. and Echinococcus canadensis) prevalence and MHC diversity at allele and SNP level. MHC‐heterozygous wolves were less often infected by Trichinella spp. and carriers of specific MHC alleles, SNP haplotypes and SNP alleles had less helminth infections. The associated SNP haplotypes and alleles were shared by different MHC alleles, which emphasizes the necessity of single‐nucleotide‐level association studies also in MHC. Here, we show that strong balancing selection has had similar effect on MHC diversities in the Finnish and Russian Karelian wolf populations despite significant genetic differentiation at neutral markers and small population size in the Finnish population.  相似文献   

17.
Increases in atmospheric CO2 levels and associated ocean changes are expected to have dramatic impacts on marine ecosystems. Although the Southern Ocean is experiencing some of the fastest rates of change, few studies have explored how Antarctic fishes may be affected by co‐occurring ocean changes, and even fewer have examined early life stages. To date, no studies have characterized potential trade‐offs in physiology and behavior in response to projected multiple climate change stressors (ocean acidification and warming) on Antarctic fishes. We exposed juvenile emerald rockcod Trematomus bernacchii to three PCO2 treatments (~450, ~850, and ~1,200 μatm PCO2) at two temperatures (?1 or 2°C). After 2, 7, 14, and 28 days, metrics of physiological performance including cardiorespiratory function (heart rate [fH] and ventilation rate [fV]), metabolic rate (), and cellular enzyme activity were measured. Behavioral responses, including scototaxis, activity, exploration, and escape response were assessed after 7 and 14 days. Elevated PCO2 independently had little impact on either physiology or behavior in juvenile rockcod, whereas warming resulted in significant changes across acclimation time. After 14 days, fH, fV and significantly increased with warming, but not with elevated PCO2. Increased physiological costs were accompanied by behavioral alterations including increased dark zone preference up to 14%, reduced activity by 12%, as well as reduced escape time suggesting potential trade‐offs in energetics. After 28 days, juvenile rockcod demonstrated a degree of temperature compensation as fV, , and cellular metabolism significantly decreased following the peak at 14 days; however, temperature compensation was only evident in the absence of elevated PCO2. Sustained increases in fV and after 28 days exposure to elevated PCO2 indicate additive (fV) and synergistic () interactions occurred in combination with warming. Stressor‐induced energetic trade‐offs in physiology and behavior may be an important mechanism leading to vulnerability of Antarctic fishes to future ocean change.  相似文献   

18.
Biochar management has been proposed as a possible tool to mitigate anthropogenic CO2 emissions, and thus far its impacts in forested environments remain poorly understood. We conducted a large‐scale, replicated field experiment using 0.05‐ha plots in the boreal region in northern Sweden to evaluate how soil and vegetation properties and processes responded to biochar application and the disturbance associated with burying biochar in the soil. We employed a randomized block design, where biochar and soil mixing treatments were established in factorial combination (i.e., control, soil mixing only, biochar only, and biochar and soil mixing; n = 6 plots of each). After two growing seasons, we found that biochar application enhanced net soil N mineralization rates and soil concentrations regardless of the soil mixing treatment, but had no impact on the availability of , the majority of soil microbial community parameters, or soil respiration. Meanwhile, soil mixing enhanced soil concentrations, but had negative impacts on net N mineralization rates and several soil microbial community variables. Many of the effects of soil mixing on soil nutrient and microbial community properties were less extreme when biochar was also added. Biochar addition had almost no effects on vegetation properties (except for a small reduction in species richness of the ground layer vegetation), while soil mixing caused significant reductions in graminoid and total ground layer vegetation cover, and enhanced seedling survival rates of P. sylvestris, and seed germination rates for four tree species. Our results suggest that biochar application can serve as an effective tool to store soil C in boreal forests while enhancing availability. They also suggest that biochar may serve as a useful complement to site preparation techniques that are frequently used in the boreal region, by enhancing soil fertility and reducing nutrient losses when soils are scarified during site preparation.  相似文献   

19.
20.
The effect of the H2SO4 concentration in the hydrolysis of sunflower‐stalk waste, at 95ºC and using a liquid/solid relation of 20, was studied. In a later stage, the hydrolysates were fermented at different temperatures with the aim of ethanol and xylitol production. A total conversion of the hemicellulose at the acid concentration of 0.5 mol/L was achieved; whereas an acid concentration of 2.5 mol/L was needed to reach the maximum value in the conversion of the cellulose fraction. The analysis of the hydrolysis kinetics has enabled to determine the apparent reaction order, which was 1.3. The hydrolysates from hydrolysis process with H2SO4 0.5 mol/L, once detoxified, were fermented at pH 5.5, temperatures 30, 40, and 50ºC with the yeast Hansenula polymorpha (ATCC 34438), resulting in a sequential uptake of sugars. In relation to ethanol and xylitol yields, the best results were observed at 50°C ( = 0.11 g/g;  = 0.12 g/g). Instantaneous xylitol yields were higher than in ethanol, at the three temperatures essayed. Different phenolic compounds were analyzed in the hydrolysates; hydroxytyrosol was the most abundant (3.79 mg/L). The recovery of these compounds entails the elimination of inhibitors in the fermentation process and the production of high value‐added antioxidant products.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号