首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The tongue of the cormorant Phalacrocorax carbo is a small, immobile structure with a length of 1.4 cm, situated in the middle part of the elongated lower bill. The uniquely shaped tongue resembles a mushroom, with a short base and an elongated dorsal part with sharpened anterior and posterior tips. A median crest can be observed on the surface of the tongue. Examination by light and scanning electron microscopy revealed that the whole tongue is formed by a dense connective tissue with many bundles of elastic fibers. The lingual mucosa is covered by a multilayered keratinized epithelium. The thickest, horny layer of the lingual epithelium was observed on the surface of the median crest and on the posterior tip of the tongue. Lingual glands are absent in cormorants. The framework of the tongue is composed of a hyoid cartilage incorporated into the base. The localization and structure of the tongue in the cormorant show that it is a rudimentary organ and that the lingual body, usually well-developed in birds, is conserved.  相似文献   

2.
The ostrich's tongue is situated in the posterior part of the oropharyngeal cavity and its length is only about a quarter of the beak cavity. The triangular shortened tongue has retained the usual division into the apex, the body and the root. There are no conical papillae between the body and the root of the tongue, and the presence of the flat fold with lateral processes sliding over the tongue root in the posterior part of the lingual body is a unique morphological feature. All lingual mucosa covers non-keratinised stratified epithelium, and the lamina propria of the mucosa is filled with mucous glands whose round or semilunar openings are found on both the dorsal and ventral surface of the tongue. The complex glands found in the lingual body are composed of alveoli and/or tubules. Moreover, simple tubular glands seen in the posterior part of the tongue root are an exception. Numerous observations have shown that the ostrich's tongue is a modified structure, though not a rudimentary one, whose main function is to produce the secretion moisturising the beak cavity surface and the ingested semidry plant food in this savannah species.  相似文献   

3.
Morphological characteristics of the tongue were studied in adult rhea (Rhea americana). The lingual surface and the surface of epithelium-connective tissue interface of rhea tongue were examined macroscopically and by light and scanning electron microscopy. The rhea tongue revealed a triangular aspect, without adjustment of the inferior bill formation, occupying approximately ? of the length of the oral cavity. Lingual papilla-like structures were not observed over the lingual surface. The tongue mucosa was composed of a thick non-keratinized stratified squamous epithelium in the dorsal and ventral part, supported by a connective tissue core. The submucosa contained numerous glands with cytoplasmic granules, and luminal secretion was positive for histochemical reaction to Alcian Blue in pH 2.5 and PAS, and negative to Alcian Blue in pH 0.5. Despite the rudimentary characteristic of the tongue in rhea, our results suggest an important role of tongue secretions in food lubrication and humidification during the swallowing process, based on the enormous quantity of lingual glands in the submucosa and the histochemical characteristics of their secretions.  相似文献   

4.
This investigation aimed to determine the morphological characteristics of the tongue, palate and laryngeal entrance of southern lapwing by gross anatomy and scanning electron microscopy. For this purpose, the organs of three birds were used as material. Numerous densely distributed acicular projections were found on the lingual apex. Papillary crest consisting of sharp conical papillae were observed between the body and root of the tongue. Conical papillae of the lateral border of the papillary crest were triangular in form, and other conical papillae of the papillary crest were shorter in form. There were no papillary projections or papillae on the smooth surfaces of the lingual body and radix. On the median part of the palate, larger conical papillae, which were directed caudally, also surrounded entrance of the choanal cleft. The transversal papillary rows of conical papillae were observed between the rostral and caudal parts of the choanal cleft and on the caudal border of the infundibular cleft. The laryngeal entrance was surrounded by smooth mucosa without conical papillae. However, in the caudal border of the glottic fissure, there was a conical papillary row formed by numerous conical papillae. There were no anatomical differences between female and male birds.  相似文献   

5.
During the course of human evolution, the retraction of the face underneath the braincase, and closer to the cervical column, has reduced the horizontal dimension of the vocal tract. By contrast, the relative size of the tongue has not been reduced, implying a rearrangement of the space at the back of the vocal tract to allow breathing and swallowing. This may have left a morphological signature such as a chin (mental prominence) that can potentially be interpreted in Homo. Long considered an autopomorphic trait of Homo sapiens, various extinct hominins show different forms of mental prominence. These features may be the evolutionary by-product of equivalent developmental constraints correlated with an enlarged tongue. In order to investigate developmental mechanisms related to this hypothesis, we compare modern 34 human infants against 8 chimpanzee fetuses, whom development of the mandibular symphysis passes through similar stages. The study sets out to test that the shared ontogenetic shape changes of the symphysis observed in both species are driven by the same factor – the space restriction at the back of the vocal tract and the associated arrangement of the tongue and hyoid bone. We apply geometric morphometric methods to extensive three-dimensional anatomical landmarks and semilandmarks configuration, capturing the geometry of the cervico-craniofacial complex including the hyoid bone, tongue muscle and the mandible. We demonstrate that in both species, the forward displacement of the mental region derives from the arrangement of the tongue and hyoid bone, in order to cope with the relative horizontal narrowing of the oral cavity. Because humans and chimpanzees share this pattern of developmental integration, the different forms of mental prominence seen in some extinct hominids likely originate from equivalent ontogenetic constraints. Variations in this process could account for similar morphologies.  相似文献   

6.
7.
The feeding mechanism of the South American lungfish, Lepidosiren paradoxa retains many primitive teleostome characteristics. In particular, the process of initial prey capture shares four salient functional features with other primitive vertebrates: 1) prey capture by suction feeding, 2) cranial elevation at the cranio-vertebral joint during the mouth opening phase of the strike, 3) the hyoid apparatus plays a major role in mediating expansion of the oral cavity and is one biomechanical pathway involved in depressing the mandible, and 4) peak hyoid excursion occurs after maximum gape is achieved. Lepidosiren also possesses four key morphological and functional specializations of the feeding mechanism: 1) tooth plates, 2) an enlarged cranial rib serving as a site for the origin of muscles depressing the hyoid apparatus, 3) a depressor mandibulae muscle, apparently not homologous to that of amphibians, and 4) a complex sequence of manipulation and chewing of prey in the oral cavity prior to swallowing. The depressor mandibulae is always active during mouth opening, in contrast to some previous suggestions. Chewing cycles include alternating adduction and transport phases. Between each adduction, food may be transported in or out of the buccal cavity to position it between the tooth plates. The depressor mandibulae muscle is active in a double-burst pattern during chewing, with the larger second burst serving to open the mouth during prey transport. Swallowing is characterized by prolonged activity in the hyoid constrictor musculature and the geniothoracicus. Lepidosiren uses hydraulic transport achieved by movements of the hyoid apparatus to position prey within the oral cavity. This function is analogous to that of the tongue in many tetrapods.  相似文献   

8.
To capture and swallow food on land, a sticky tongue supported by the hyoid and gill arch skeleton has evolved in land vertebrates from aquatic ancestors that used mouth-cavity-expanding actions of the hyoid to suck food into the mouth. However, the evolutionary pathway bridging this drastic shift in feeding mechanism and associated hyoid motions remains unknown. Modern fish that feed on land may help to unravel the physical constraints and biomechanical solutions that led to terrestrialization of fish-feeding systems. Here, we show that the mudskipper emerges onto land with its mouth cavity filled with water, which it uses as a protruding and retracting ‘hydrodynamic tongue’ during the initial capture and subsequent intra-oral transport of food. Our analyses link this hydrodynamic action of the intra-oral water to a sequence of compressive and expansive cranial motions that diverge from the general pattern known for suction feeding in fishes. However, the hyoid motion pattern showed a remarkable resemblance to newts during tongue prehension. Consequently, although alternative scenarios cannot be excluded, hydrodynamic tongue usage may be a transitional step onto which the evolution of adhesive mucosa and intrinsic lingual muscles can be added to gain further independence from water for terrestrial foraging.  相似文献   

9.
10.
The anatomy of the hyoid apparatus and positional changes of the hyoid bone during mastication and deglutition are described in the New Zealand White rabbit (Oryctolagus cuniculus). A testable model is constructed to predict the range of movement during function of the hyoid, a bone entirely suspended by soft tissue. Frame-by-frame analysis of a videofluorographic tape confirms the accuracy of the prediction through observation of hyoid bone excursion during oral behavior. During chewing, translation of the hyoid bone is diminutive and irregular, lacking a clearly discernible path of excursion. However, some movements of the hyoid occur with regularity. During fast opening, anterodorsal movement of the hyoid is interrupted with an abrupt posteroventral depression when the bolus is moved posteriorly toward the cheek teeth by the tongue. This clockwise rotation (when viewed from the right side) of the hyoid accompanies jaw opening and is reversed (posteroventral movement) for the jaw closing sequence. Lateral movements of the hyoid may be slightly coupled to mandibular rotation in the horizontal plane. The findings suggest that the hyoid bone maintains a relatively static position during the dynamics of chewing. The primary function would be to provide a stable base for the movements of the tongue. Another possible function would be to control the position of the larynx within the pharyngeal cavity. Some characteristic features of the rabbit hyoid apparatus may be consequential to relatively erect posture and a saltatory mode of locomotion.  相似文献   

11.
The present study contrasts available biological data and results of morphofunctional analyses of the bill and hyoid apparatus in motmots. It shows that these omnivorous birds, which take relatively large food items, possess osteomuscular peculiarities that enable them to process these items as a whole in order to soften or cut them, and make them suited for easy ingestion. For that, they use the crenate edges of their rhamphotheca. Their jaws work as a highly mobile saw-like system. Their mutual movements, enhanced by the fact that particular dispositions of the hyoid apparatus rise the tongue and the supported items high up into buccal cavity, facilitate an effective clamping of items that can be moved along the jaws and be quite appropriately processed.  相似文献   

12.
The Indochinese box turtle Cuora galbinifrons is regarded as a purely terrestrial species, but our results demonstrate that it can feed both on land and in water. The inverse relationship between the relative development of the hyoid apparatus and the tongue found in the most investigated chelonians is not valid in the Indochinese box turtle. Our morphological analysis of the feeding apparatus reveals that the palate shape and the design of the tongue are consistent with terrestrial feeders, but the construction of the hyoid complex is more characteristic of aquatic feeders. Previous studies have demonstrated that tongue enlargement negatively impacts the capacity of the turtles to suction feed. The present study focuses on the aquatic intraoral prey transport kinematic patterns. Our analysis is based on high-speed films with 250 fr/s and high-speed cineradiography with 50 fr/s. The aquatic intraoral food transport mechanisms differ depending on prey size: small items are transported predominantly by “inertial suction”, whereas larger items are moved by the tongue—normally a clear terrestrial strategy. As the genus Cuora is ancestrally aquatic, the use of lingual food transport in the aquatic environment is presumably an aberrant modus typical only for the most terrestrial among the Asian box turtles.  相似文献   

13.
Swordfish (Xiphias gladius L. 1758) is a predatory and migratory fish. Its characteristic feature is a flat and sharp upper jaw forming a “sword”. The adaptation of vertebrates, including fish, to their environment is strictly related to the capacity of feeding and is carried out by often severe modifications of the anatomy of the buccal cavity, especially of the tongue. The aim of this study is, using light and scanning electron microscopy and considering that no data are so far available about the morphology of the tongue in this species, to analyse the anatomical characteristics of the tongue, especially its dorsal surface. The tongue shows a triangular shape and an apex, a body and a root. By SEM the presence of several small denticles and filiform papillae on the latero-ventral body was demonstrated while no taste buds or other sensitive structures are observed. LM shows a squamous stratified epithelium, becoming simple cuboidal around the denticles. Therefore this study could add further data to the knowledges of the fish oral cavity morphology supporting the hypothesis that the modifications and evolution of the tongue anatomy are, also in fish, related to the environment and especially to the feeding habits.  相似文献   

14.
Water drinking in the mallard is accomplished by a fine-tuned set of movements of upper and lower jaw and of the tongue. During immersion of the tips of the bill, the oral cavity is formed into smaller volumes containing water and into connecting tubes. Two mechanisms serve the water transport: (1) lingual and jaw movements press water from the water-containing spaces into the tubes; (2) a quantitative simulation of the shape of the oral cavity during immersion shows that the two tubes are so narrow that capillary action also contributes to water transport. Thereafter, the tips of the bill are raised until they point upward. In this “tip-up” position, water flows into the esophagus because of gravity. We conclude that, in addition to normal tip-up drinking observed in almost all Passeriformes and Galliformes, a second type of tip-up drinking may be distinguished in Anseriformes. The integration of the drinking mechanism, keeping the water inside the mouth, and the straining mechanism, expelling the water along the beak rims, is effected by specific actions of the elaborate lingual apparatus.  相似文献   

15.
All mammals have the same divisions of cyclic movement of tongue and hyoid during mastication: a protraction or forward phase that begins at minimum gape, and a retraction or return phase. Nonanthropoid mammals transport food from the oral cavity to the oropharynx during the return phase; food on the dorsal surface of the tongue moves distally while the tongue is retracted. Macaques, however, transport food during the protraction phase of tongue/hyoid movement. Food is squeezed posteriorly by contact between the tongue surface and the palate anterior to the food. This mechanism of transport is occasionally seen in nonanthropoid mammals when they are transporting liquids from the oral cavity to the oropharynx. It has, however, not been seen when these mammals transport solid food. One morphological basis for this difference is the reduction in height of the rugae of the palate of macaques. In most mammals these rugae are pronounced ridges that are able to hold food in place during protraction as the tongue slides forward beneath the food. Anthropoids and other mammals differ in the way they store food prior to swallowing. When macaques transport food to the oropharynx, usually they swallow in the next cycle, but always in the next 2 or 3 cycles. Most mammals transport and store food in the oropharynx for several cycles before a swallow clears that region of food. This behavior is correlated with differences in morphology of the oropharynx; anthropoids have reduced valleculae, the area in which other mammals store food prior to swallowing.  相似文献   

16.
The tongue body of Rhea americana is triangular and partially pigmented with each caudo-lateral margin displaying a round, sub-divided lingual papilla. The tongue root is a smooth, non-pigmented tract of mucosa. The tongue body is supported by the paraglossum and distal half of the rostral projection of the basihyal (RPB), and the tongue root by the proximal half of the RPB, body of the basihyal and proximal ceratobranchials. An urohyal is absent; however, peculiar to R. americana, the caudal margin of the cricoid body displays a median projection, which may represent the remnant of the urohyal incorporated into the cricoid. The laryngeal mound is less elevated, the arytenoid cartilages are smaller than in other ratites, and the caudal margin displays pharyngeal papillae that vary in shape and number. The unique morphology of the lingual skeleton and its positioning within the tongue of R. americana, the rostral insertion of the M. ceratoglossus, the absence of the urohyal (enhanced ventroflexion) and the caudal positioning and mobile attachment of the ensheathed basihyal to the paraglossum would appear to allow independent movement of the tongue body relative to the hyobranchial apparatus. Additionally, the deeply indented base and rostral oval opening in the paraglossum limits the length of cartilage present in the midline of the tongue body. This may allow the tongue the necessary flexibility for the lingual papillae to clean the choana. The cleaning action of the tongue would occur simultaneously with the previously described role of this organ and associated structures during feeding. Thus, the so-called reduced, ancestral tongue of R. americana may be structurally and functionally more complex than previously believed.  相似文献   

17.
The major salivary glands of birds develop by branching or elongation of the epithelial cords. The development of the minor salivary glands in form of the lingual glands has never been described. Among birds, only Anatidae have three types of the lingual glands: rostral, caudo‐lateral, and caudo‐medial lingual glands. The study aims to characterize the manner and rate of the lingual glands development in the domestic duck and their topographical arrangement relative to the hyoid apparatus. The study reveals that all three types of the lingual glands develop by branching. We describe five stages of the lingual glands development in the domestic ducks: prebud, initial bud, pseudoglandular, canalicular, and terminal bud stage. The pattern of the lingual glands development in birds is similar to that described for mammals, with the exception, that the terminal buds are formed at the same time as the lumen of the glands. Generally, the rostral lingual gland starts to branch earlier than the caudal lingual glands. The 3D‐reconstruction shows the location and direction of lingual gland development relative to the entoglossal cartilage and basibranchial bone. Light microscopy and scanning electron microscopy allow to characterize the histogenesis of the embryonic epithelium into glandular epithelium. At a time of hatching only secretory units of caudal lingual glands resemble the secretory units of the adult domestic duck. The rostral and caudo‐lateral lingual glands are arranged on the sides of the entoglossal cartilage and basibranchial bone and caudo‐madial lingual glands are located over the basibranchial bone. We suggest that such an arrangement of the lingual glands in the domestic duck is important during food intake and responsible for reduction of friction and formation of food bites.  相似文献   

18.
Iwasaki, S., Yoshizawa, H. and Aoyagi, H. 2012. Immunohistochemical analysis of the distribution of type VI collagen in the lingual mucosa of rats during the morphogenesis of filiform papillae. —Acta Zoologica (Stockholm) 93 : 80–87. We examined the distribution after immunostaining of immunofluorescence of type VI collagen, differential interference contrast (DIC) images, and images obtained using confocal laser‐scanning microscopy in transmission mode, after toluidine blue staining, during morphogenesis of the filiform papillae, keratinization of the lingual epithelium and myogenesis in the rat tongue on semi‐ultrathin sections of epoxy resin‐embedded samples. Immunoreactivity specific for type VI collagen was dispersed over a relatively wide range of connective tissue in the mesenchyme of fetuses on day 15 after conception (E15), at which time the lingual epithelium was composed of one or two layers of cuboidal cells and the lingual muscle was barely recognizable. Slight immunoreactivity specific for type VI collagen was scattered within the lamina propria in fetuses on E17 and on E19, and immunoreactivity was relatively distinct on the connective tissue around the lingual muscle during myogenesis. In fetuses on E19, the epithelium was already stratified squamous. At postnatal stages from P0 to P14, keratinization of the lingual epithelium advanced gradually as morphogenesis of the filiform papillae proceeded during postnatal development. In newborns on P0, myogenesis of the tongue was almost completed. The intensity of immunoreactivity specific for type VI collagen at postnatal stages was mainly restricted on the endomysium and perimysium around the lingual muscle, while scant immunoreactivity was evident in the connective tissue in the lamina propria. Immunoreactivity around the fully mature lingual muscle on P7 and P14 was weaker than that on E19 and P0. Thus, type VI collagen appeared in the connective tissue that surrounded the lingual muscles such as the endomysium and perimysium, in parallel with changes in extracellular components during myogenesis of the tongue.  相似文献   

19.
Movements of the neck, jaws, and hyolingual apparatus during inertial feeding in Caiman crocodilus were studied by cineradiography. Analysis reveals two kinds of cycles: inertial bites (reposition, kill/crush, and transport) and swallowing cycles. They differ in their gape profile and in displacement of the neck, cranium, and hyolingual apparatus. Inertial bites are initiated by an elevation of the neck and cranium; the head is then retracted backward, the prey simultaneously being lifted by the hyolingual apparatus. Next the lower jaw is depressed, and the prey is rapidly pushed further upward by the hyolingual apparatus. Thereafter fast mouth-closure occurs with the neck and cranium being abruptly depressed, the lower jaw elevated, and the hyolingual apparatus rapidly retracted ventrally. Depression of the neck and cranium thrusts the head forward and impacts the backward moving prey more posteriorly in the oral cavity. Swallowing cycles initially involve movement of the hyoid in front of the prey followed by rapid posteroventrad retraction of the hyoid, forcing the prey into the esophagus during opening and closing of the mouth. After mouth-closure, the hyoid apparatus is again protracted. Jaws, neck, tongue, and hyoid apparatus play an active role during intertial feeding sequences. At the beginning of a feeding sequence, the hyolingual apparatus mainly moves dorsoventrally, whereas toward the end of a sequence anteroposterior displacements of the hyoid are prominent. © 1992 Wiley-Liss, Inc.  相似文献   

20.
The hoatzin remains one of the most enigmatic birds. A morphofunctional analysis of its bill and hyoid apparatus throws new light on its feeding adaptation as well as on its systematic relationships. Bony and muscular skull, rhamphotheca, palate, and hyoid apparatus were described in details. Though keeping into the general organisation pattern found among Neognathae (except Galliformes), bill and hyoid apparatus of the hoatzin displays a series of species-specific features, some unique among birds. This species appears particularly well adapted to tear of leaves and process them inside the bill before ingestion. Because of very important anatomical and thence functional differences in bill and hyoid structure, any close relationship between the hoatzin and Galliformes cannot be envisioned. Such a hypothesis would implicate a counter-selective evolutionary reversion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号