首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Effects of costimulator on immune responses in vitro.   总被引:1,自引:0,他引:1  
We recently described a factor, costimulator, that is required for the concanavalin A-induced proliferation of CBA mouse thymocytes in vitro (see Reference 1). Using the costimulator dependence of mouse thymocytes as an assay, we have now determined that spleen cells from congenitally athymic (nude) BALB/c mice do not produce costimulator in response to Con A, and spleen cells depleted of Thy 1-positive cells do not respond to it in the presence of Con A. Thus, costimulator both requires thymus-derived (Thy 1+ lymphocytes for its production and has an effect on this type of cell. (However, the costimulator-producing and responsive cells may be different.) Purified costimulator preparations are a source of the required second component for the stimulation of adult, CBA/J thymic lymphocytes by PHA, normally a poor mitogen for these cells. They also enhance the level of DNA synthesis in a mixed leukocyte reaction, and the specific generation of cytotoxic lymphocytes to allogeneic tumor cells in vitro. Costimulator is not H-2 restricted in its effects, and it is produced in mixed leukocyte reactions. Finally, it has been possible to grow normal, primary thymic lymphocytes in culture for about 20 days by adding partially purified costimulator to the cultures.  相似文献   

2.
We have shown previously that there is a good correlation between the degree of microtubule disassembly by methylmercury (MeHg) and the extent of inhibition of DNA replication in Concanavalin A (Con A)-stimulated mouse splenic lymphocytes. The purpose of this study was to determine if these two events are causally related and to examine the effects of MeHg-induced microtubule disassembly on earlier events of the stimulation process. We show that early steps constituting the activation pathway, such as the Con A-induced increase in Ca2+ influx and the expression of interleukin 2 receptor, are not inhibited by concentrations of MeHg that disassemble microtubules. RNA synthesis is not affected by short-term (3 h) treatment with MeHg, but longer treatment (24 h) inhibits RNA synthesis. In contrast, DNA synthesis is effectively inhibited by a 3-h treatment with MeHg. In lymphocytes treated with taxol, microtubules are not disassembled by MeHg; however, the inhibition of RNA and DNA synthesis persists. We conclude that the inhibition of nucleic acid synthesis by MeHg is not causally related to MeHg-induced microtubule disassembly.  相似文献   

3.
We have used double immunofluorescence and electron microscopy to examine the distribution of tubulin and vimentin during the stimulation of mouse splenic lymphocytes by the mitogen concanavalin A. In unstimulated cells, vimentin forms a filamentous network partially coincident with the radial pattern of microtubules. In stimulated cells, the numbers of microtubules assembled from the centrosome have increased and vimentin is organized as an aggregate located near the centrosome. When these cells enter mitosis, vimentin is arranged into a filamentous cage enclosing the mitotic apparatus. During cytokinesis, the polar centrosomes are observed at a position adjacent to the midbody and vimentin is detected as an aggregate, similar to that seen prior to mitosis, close to the centrosome in each daughter cell. Using several agents, such as colchicine, colcemid, nocodazole, and taxol, which affect microtubule assembly, we have observed that the vimentin system, although closely related spatially to the microtubule complex in lymphocytes, can still reorganize independently as these cells progress through the cell cycle. Throughout mitogenic stimulation in the continued presence of taxol, microtubules are reorganized into a few thick bundles while the vimentin system undergoes a sequence of rearrangements similar to those observed during normal stimulation. These data suggest that vimentin dynamics may be important in the progression of lymphocytes through the cell cycle in response to mitogen.  相似文献   

4.
Anti-HLA-DR antibodies did not inhibit concanavalin A-(Con A) induced T cell proliferation or the generation of suppressor cells capable of inhibiting immunoglobulin synthesis in autologous mononuclear cells after pokeweed mitogen stimulation. Nylon-wool purified T cells (pretreated with anti-HLA-DR antibody and C) exposed to Con A acquired responsiveness to interleukin 2 (IL 2) and were able to absorb this growth factor, whereas nonlectin-treated cells did not respond to IL 2 and could not absorb it. In the presence of interleukin 1 (IL 1), Con A stimulated the synthesis of IL 2 in purified OKT4+ lymphocytes but not OKT8+ cells. However, in the absence of IL 1, neither resting OKT4+ nor Con A-treated OKT4+ cells produced IL 2. Con A by itself did not directly stimulate macrophages to synthesize IL 1, although it could do so in the presence of OKT4+ but not OKT8+ lymphocytes. In addition, Con A induced proliferation of purified T cells provided IL 1 was supplied to the cultures. Cyclosporin A rendered Con A-treated T cells unresponsive to IL 2, made lectin-stimulated OKT4+ lymphocytes unable to respond to IL 1, and inhibited the synthesis of IL 2. Furthermore, this drug abrogated the Con A-stimulated synthesis of IL 1 by acting on OKT4+ lymphocytes and not on macrophages. Finally, cyclosporin-A suppressed the proliferative response and the generation of suppressor T cells induced by Con A. The following are concluded: 1) HLA-DR antigens do not seem to play any role in the triggering of T cells by Con A, and macrophages participate in lectin-induced activation of T cells mainly by providing IL 1. 2) Cyclosporin-A inhibits activation of T cells by interfering with the mechanism by which Con A stimulates T lymphocytes. 3) Con A triggers T lymphocytes by directly interacting with their receptors for activation.  相似文献   

5.
The involvement of high molecular weight microtubule-associated proteins (HMW-MAPs) in the process of taxol-induced microtubule bundling has been studied using immunofluorescence and electron microscopy. Immunofluorescence microscopy shows that HMW-MAPs are released from microtubules in granulosa cells which have been extracted in a Triton X-100 microtubule-stabilizing buffer (T-MTSB), unless the cells are pretreated with taxol. 1.0 microM taxol treatment for 48 h results in microtubule bundle formation and the retention of HMW-MAPs in these cells upon extraction with T-MTSB. Electron microscopy demonstrates that microtubules in control cytoskeletons are devoid of surface structures whereas the microtubules in taxol-treated cytoskeletons are decorated by globular particles of a mean diameter of 19.5 nm. The assembly of 3 X cycled whole microtubule protein (tubulin plus associated proteins) in vitro in the presence of 1.0 microM taxol, results in the formation of closely packed microtubules decorated with irregularly spaced globular particles, similar in size to those observed in cytoskeletons of taxol-treated granulosa cells. Microtubules assembled in vitro in the absence of taxol display prominent filamentous extensions from the microtubule surface and center-to-center spacings greater than that observed for microtubules assembled in the presence of taxol. Brain microtubule protein was purified into 6 s and HMW-MAP-enriched fractions, and the effects of taxol on the assembly and morphology of these fractions, separately or in combination, were examined. Microtubules assembled from 6 s tubulin alone or 6 s tubulin plus taxol (without HMW-MAPs) were short, free structures whereas those formed in the presence of taxol from 6 s tubulin and a HMW-MAP-enriched fraction were extensively crosslinked into aggregates. These data suggest that taxol induces microtubule bundling by stabilizing the association of HMW-MAPs with the microtubule surface which promotes lateral aggregation.  相似文献   

6.
Adherent accessory cells (AC) are required for the proliferative response of T lymphocytes to antigens and various mitogens. A current model of AC-T cell cooperation is that commitment to growth of mitogen activated T lymphocytes occurs via sequential action of IL 1 and IL 2. Initial mitogen action on T lymphocytes in the presence of AC is followed by a sequence of metabolic changes which culminate in DNA replication and mitosis. Many of these early events are critical to DNA replication. We studied several of these mitogen-induced events in experiments designed to define the specific influence of AC on T cell metabolism before initiation of DNA replication. By using human peripheral T lymphocytes depleted of AC to the extent that the proliferative response is essentially ablated, we found that the sequence of early events is divided into two phases: an early activated state in which certain events are stimulated directly by mitogen and independently of AC, and an AC-dependent state in which other events occur in mitogen-treated lymphocytes only in the presence of the numbers of AC necessary to support the proliferative response. We partially support the proliferative response. We partially characterized the nature of the metabolic activation that pulse neuraminidase-galactose oxidase treatment induces in lymphocytes in the presence and functional absence of AC. Stimulated uptake of [3H] uridine and [3H]-leucine into cellular precursor pools and incorporation into macromolecules apparently requires the presence of AC, but stimulated influx of both [3H]3-O-methyl glucose and [3H]alpha-amino isobutyric acid are independent of the presence of AC. These data suggest that stimulated influx of glucose and a certain class of essential amino acids are events of the early activated state, whereas increased RNA and protein synthesis are events of the AC-dependent state. All of these events are critical to the T cell's commitment of DNA replication and mitosis. The early activated state is consistent with AC-T cell cooperation via IL 2. It is possible that IL 2 mediates passage of IL 2 receptor-bearing T cells from the early activated state to the AC-dependent state, which then leads directly to DNA replication and mitosis.  相似文献   

7.
Inhibition of neurite initiation and growth by taxol   总被引:18,自引:10,他引:8       下载免费PDF全文
We cultured sensory neurons from chick embryos in media containing the alkaloid taxol at concentrations from 7 X 10(-9) to 3.5 X 10(-6) M. When plated at taxol concentrations above 7 X 10(-8) M for 24 h, neurons have short broad extensions that do not elongate on the culture substratum. When actively growing neurites are exposed to these levels of taxol, neurite growth stops immediately and does not recommence. The broad processes of neurons cultured 24 h with taxol contain densely packed arrays of microtubules that loop back at the ends of the process. Neurofilaments are segregated from microtubules into bundles and tangled masses in these taxol-treated neurons. At the ends of neurites treated for 5 min with taxol, microtubules also turn and loop back abnormally toward the perikaryon. In the presence of 7 X 10(-9) M taxol neurites do grow, although they are broader and less branched than normally. The neurites of these cells appear to have normal structure except for a large number of microtubules. Taxol probably stimulates microtubule polymerization in these cultured neurons. At high levels of the drug, this action inhibits neurite initiation and outgrowth by removing free tubulin from the cytoplasm and destroying the normal control of microtubule assembly in growing neurites. The rapid inhibition suggests that microtubule assembly may occur at neurite tips. At lower concentrations, taxol may slightly enhance the mechanisms of microtubule assembly in neurons, and this alteration of normal processes changes the morphogenetic properties of the growing neurites.  相似文献   

8.
Taxol binds to polymerized tubulin in vitro   总被引:20,自引:8,他引:12       下载免费PDF全文
Taxol, a natural plant product that enhances the rate and extent of microtubule assembly in vitro and stabilizes microtubules in vitro and in cells, was labeled with tritium by catalytic exchange with (3)H(2)O. The binding of [(3)H]taxol to microtubule protein was studied by a sedimentation assay. Microtubules assembled in the presence of [(3)H]taxol bind drug specifically with an apparent binding constant, K(app), of 8.7 x 19(-7) M and binding saturates with a calculated maximal binding ration, B(max), of 0.6 mol taxol bound/mol tubulin dimer. [(3)H]Taxol also binds and assembles phosphocellulose-purified tubulin, and we suggest that taxol stabilizes interactions between dimers that lead to microtubule polymer formation. With both microtubule protein and phosphocellulose- purified tubulin, binding saturation occurs at approximate stoichiometry with the tubulin dimmer concentration. Under assembly conditions, podophyllotoxin and vinblastine inhibit the binding of [(3)H]taxol to microtubule protein in a complex manner which we believe reflects a competition between these drugs, not for a single binding site, but for different forms (dimer and polymer) of tubulin. Steady-state microtubules assembled with GTP or with 5’-guanylyl-α,β-methylene diphosphonate (GPCPP), a GTP analog reported to inhibit microtubule treadmilling (I.V. Sandoval and K. Weber. 1980. J. Biol. Chem. 255:6966-6974), bind [(3)H]taxol with approximately the same stoichiometry as microtubules assembled in the presence of [(3)H]taxol. Such data indicate that a taxol binding site exists on the intact microtubule. Unlabeled taxol competitively displaces [(3)H]taxol from microtubules, while podophyllotoxin, vinblastine, and CaCl(2) do not. Podophyllotoxin and vinblastine, however, reduce the mass of sedimented taxol-stabilized microtubules, but the specific activity of bound [(3)H]taxol in the pellet remains constant. We conclude that taxol binds specifically and reversibly to a polymerized form of tubulin with a stoichiometry approaching unity.  相似文献   

9.
M A Hoyt  L Totis  B T Roberts 《Cell》1991,66(3):507-517
We have identified mutant strains of S. cerevisiae that fail to properly arrest their cell cycles at mitosis in response to the loss of microtubule function. New bud emergence and DNA replication (but not cytokinesis) occur with high efficiency in the mutants under conditions that inhibit these events in wild-type cells. The inability to halt cell cycle progression is specific for impaired microtubule function; the mutants respond normally to other cell cycle-blocking treatments. Under microtubule-disrupting conditions, the mutants neither achieve nor maintain the high level of histone H1 kinase activity characteristic of wild-type cells. Our studies have defined three genes required for normal cell cycle arrest. These findings are consistent with the existence of a surveillance system that halts the cell cycle in response to microtubule perturbation.  相似文献   

10.
The role of microtubules in mitogen-induced human lymphocyte activation and proliferation was examined. The effect of colchicine, a microtubule-disrupting agent, was compared with taxol, a microtubule-stabilizing drug, and with isaxonine (N-isopropyl-amino-2-pyrimidine orthophosphate), a proposed microtubular-active drug. Lymphocyte proliferation, assessed by measuring the increase in the number of cells in mitogen-stimulated cultures, was completely suppressed by both colchicine and taxol (100 nM) whereas significant inhibition by isaxonine required much higher concentrations (5 mM). In order to characterize the inhibition, initial lymphocyte blast transformation and subsequent DNA synthesis were investigated. Neither colchicine nor taxol inhibited lymphocyte blast transformation assessed by quantitating the change in volume of the stimulated cells after a 24-hour incubation. In contrast, isaxonine (2-5 mM) suppressed blast transformation. Initial DNA synthesis, evaluated by measuring the cumulative incorporation of [3H]thymidine between 30 and 48 hours of culture, was inhibited in a concentration-dependent manner by both isaxonine and colchicine but not by taxol. Electron microscopic studies confirmed that both taxol and colchicine (10 nM) arrested the responding lymphocytes in mitosis, and that isaxonine inhibited initial activation. These results suggest that normal microtubule function is only necessary for cell division and that drug effects on blast transformation and initial DNA synthesis are unrelated to microtubules.  相似文献   

11.
Dextran-sulfate: a mitogen for human T lymphocytes   总被引:2,自引:0,他引:2  
Dextran-sulfate (DxS) induced proliferation of human peripheral blood T lymphocytes but not of adult or neonatal B lymphocytes. The mitogenic activity on T cells by DxS required the presence of accessory cells because DxS was unable to trigger T cells to DNA synthesis in the absence of accessory cells. In addition, DxS stimulated OKT4+8- T cells to produce interleukin 2, a process that also occurred only in the presence of accessory cells. Cyclosporin-A strongly suppressed T cell proliferation induced by DxS by rendering T cells unresponsive to interleukin 2 and by inhibiting the synthesis of this T cell growth factor by OKT4+ T cells. These results indicate that DxS is a mitogen for human T lymphocytes but not for adult or neonatal B lymphocytes. The mechanism by which DxS triggers T cells is discussed.  相似文献   

12.
Altered interleukin production during Friend leukemia virus infection   总被引:3,自引:0,他引:3  
Spleen cells from BALB/c mice, infected 14 to 28 days earlier with Friend leukemia virus (FLV), were shown to be inhibited in their ability to produce interleukin 2 (IL-2) when stimulated with mitogen. Likewise, these spleen cell populations failed to respond following mitogenic stimulation or exogenous addition of recombinant IL-2. By contrast, the FLV-infected spleen cell populations produced normal levels of interleukin 1 (IL-1) and thymocytes from FLV-infected mice responded normally to addition of exogenous IL-1. This suggests that FLV infection selectively affects the ability of spleen cells to produce cytokines. Spleen cell populations enriched for T lymphocytes and depleted of tumor cells by density gradient centrifugation in Ficoll were unable to produce IL-2. This indicates that the failure to detect IL-2 in cells from FLV-infected mice was not due to a dilution of T lymphocytes by tumor cells but was a functional inability to produce IL-2. Furthermore, enriched T lymphocytes from FLV-infected mice failed to respond blastogenically to exogenous IL-2. Additional studies indicate that tumor cells, but not macrophages or T lymphocytes from FLV-infected spleens, suppressed the blastogenic response to mitogens and IL-2 production by normal splenic T lymphocytes.  相似文献   

13.
Freezing, dehydration, and supercooling cause microtubules in mesophyll cells of spinach (Spinacia oleracea L. cv Bloomsdale) to depolymerize (ME Bartolo, JV Carter, Plant Physiol [1991] 97: 175-181). The objective of this study was to determine whether the LT50 (lethal temperature: the freezing temperature at which 50% of the tissue is killed) of spinach leaf tissue can be changed by diminishing the extent of microtubule depolymerization in response to freezing. Also examined was how tolerance to the components of extracellular freezing, low temperature and dehydration, is affected by microtubule stabilization. Leaf sections of nonacclimated and cold-acclimated spinach were treated with 20 micromolar taxol, a microtubule-stabilizing compound, prior to freezing, supercooling, or dehydration. Taxol stabilized microtubules against depolymerization in cells subjected to these stresses. When pretreated with taxol both nonacclimated and cold-acclimated cells exhibited increased injury during freezing and dehydration. In contrast, supercooling did not injure cells with taxol-stabilized microtubules. Electrolyte leakage, visual appearance of the cells, or a microtubule repolymerization assay were used to assess injury. As leaves were cold-acclimated beyond the normal period of 2 weeks taxol had less of an effect on cell survival during freezing. In leaves acclimated for up to 2 weeks, stabilizing microtubules with taxol resulted in death at a higher freezing temperature. At certain stages of cold acclimation, it appears that if microtubule depolymerization does not occur during a freeze-thaw cycle the plant cell will be killed at a higher temperature than if microtubule depolymerization proceeds normally. An alternative explanation of these results is that taxol may generate abnormal microtubules, and connections between microtubules and the plasma membrane, such that normal cellular responses to freeze-induced dehydration and subsequent rehydration are blocked, with resultant enhanced freezing injury.  相似文献   

14.
Taxol inhibits stimulation of cell DNA synthesis by human cytomegalovirus   总被引:1,自引:0,他引:1  
The microtubule (MT)-stabilizing drug, taxol, inhibited human cytomegalovirus (CMV)-initiated cell DNA synthesis by up to 100% in serum-arrested mouse embryo (ME) fibroblasts that were abortively infected by CMV. Taxol concentrations known to increase MT polymerization and to stabilize existing MTs (10 to 20 micrograms/ml) blocked CMV-stimulated cell DNA synthesis, while taxol concentrations of 2.5 micrograms/ml, or less, did not. Taxol maximally inhibited CMV initiation of cell DNA synthesis when added 3 h after virus infection and inhibited this initiation by greater than 50% when added up to 12 h after CMV infection. Control experiments suggest that taxol specifically inhibited CMV-stimulated cell DNA synthesis. Pretreatment of CMV stock with taxol did not reduce the stimulatory effect of CMV on cell DNA synthesis and taxol had no detectable effect on CMV-specific early protein synthesis. Moreover, taxol did not appear to alter thymidine pool sizes, affect cell viability, or compromise the DNA synthetic machinery in CMV-infected cells. Since taxol increases tubulin polymerization and inhibits MT disassembly, these results suggest that dynamic changes in MTs or in the pool of free tubulin subunits are necessary for CMV to stimulate cell entry into a proliferative cycle.  相似文献   

15.
Full-length VP22 is necessary for efficient spread of herpes simplex virus type 1 (HSV-1) from cell to cell during the course of productive infection. VP22 is a virion phosphoprotein, and its nuclear localization initiates between 5 and 7 h postinfection (hpi) during the course of synchronized infection. The goal of this study was to determine which features of HSV-1 infection function to regulate the translocation of VP22 into the nucleus. We report the following. (i) HSV-1(F)-induced microtubule rearrangement occurred in infected Vero cells by 13 hpi and was characterized by the loss of obvious microtubule organizing centers (MtOCs). Reformed MtOCs were detected at 25 hpi. (ii) VP22 was observed in the cytoplasm of cells prior to microtubule rearrangement and localized in the nucleus following the process. (iii) Stabilization of microtubules by the addition of taxol increased the accumulation of VP22 in the cytoplasm either during infection or in cells expressing VP22 in the absence of other viral proteins. (iv) While VP22 localized to the nuclei of cells treated with the microtubule depolymerizing agent nocodazole, either taxol or nocodazole treatment prevented optimal HSV-1(F) replication in Vero cells. (v) VP22 migration to the nucleus occurred in the presence of phosphonoacetic acid, indicating that viral DNA and true late protein synthesis were not required for its translocation. Based on these results, we conclude that (iv) microtubule reorganization during HSV-1 infection facilitates the nuclear localization of VP22.  相似文献   

16.
Virus-induced Vero cell fusion was used to analyze the rearrangement of Golgi apparatus during the development of syncytia. Individual Golgi apparatus, associated initially with the separate microtubule-organizing centers in the perinuclear area of fused cells, congregated in the center of the syncytia and formed an extended Golgi complex within 3 to 5 h. The relocation of the Golgi apparatus, but not of nuclei, depended on the presence of an intact microtubule network, since both the microtubule depolymerizing drug nocodazole and the microtubule-stabilizing drug taxol interfered with the formation of an extended Golgi complex. Depolymerization of microfilaments with cytochalasin D and the complete collapse of intermediate filaments induced by microinjected monoclonal antibodies against vimentin had no effect on these processes. Cooling cells to 20 degrees C inhibited both congregation of Golgi apparatus and relocation of nuclei. Visualization of the movement of Golgi apparatus labeled in living cells with fluorescent metabolites of C6-NBD-ceramide showed that relocation of the Golgi apparatus was a process in which congregation and coalescence of the intact organelles was seen, rather than dispersal and reassembly of smaller Golgi elements in the center of the polykaryons. Thus, movement of intact Golgi apparatus in fused interphase cells depends on an undisturbed microtubule network and occurs independently of the relocation of nuclei.  相似文献   

17.
Melissa A. Melan 《Protoplasma》1990,153(3):169-177
Summary We have investigated the effects of microtubule stabilizing conditions upon microtubule patterns in protoplasts and developed a new method for producing protoplasts which have non-random cortical microtubule arrays. Segments of elongating pea epicotyl tissue were treated with the microtubule stabilizing drug taxol for 1 h before enzymatic digestion of the cell walls in the presence of the drug. Anti-tubulin immunofluorescence showed that 40 M taxol preserved regions of ordered microtubules. The microtubules in these regions were arranged in parallel arrays, although the arrays did not always show the transverse orientation seen in the intact tissue. Protoplasts prepared without taxol had microtubules which were random in distribution. Addition of taxol to protoplasts with random microtubule arrangements did not result in organized microtubule arrays. Taxol-treated protoplasts were used to determine whether or not organized microtubule arrays would affect the organization of cell wall microfibrils as new walls were regenerated. We found that protoplasts from taxol-treated tissue which were allowed to regenerate cell walls produced organized arrays of microfibrils whose patterns matched those of the underlying microtubules. Protoplasts from untreated tissue synthesized microfibrils which were disordered. The synthesis of organized microfibrils by protoplasts with ordered microtubules arrays shows that microtubule arrangements in protoplasts influence the arrangement of newly synthesized microfibrils.Abbreviations DIC differential interference contrast - DMSO dimethyl sulfoxide - FITC fluorescein isothiocyanate - IgG immunoglobulin G - PIPES piperazine-N,N-bis[2-ethane-sulfonic acid] - PBS phosphate buffered saline  相似文献   

18.
Taxol binds to cellular microtubules   总被引:20,自引:6,他引:14       下载免费PDF全文
Taxol is a low molecular weight plant derivative which enhances microtubule assembly in vitro and has the unique ability to promote the formation of discrete microtubule bundles in cells. Tritium-labeled taxol binds directly to microtubules in vitro with a stoichiometry approaching one (Parness, J., and S. B. Horwitz, 1981, J. Cell Biol. 91:479-487). We now report studies in cells on the binding of [3H]taxol and the formation of microtubule bundles. [3H]Taxol binds to the macrophagelike cell line, J774.2, in a specific and saturable manner. Scatchard analysis of the specific binding data demonstrates a single set of high affinity binding sites. Maximal binding occurs at drug concentrations which produce maximal growth inhibition. Conditions which depolymerize microtubules in intact and extracted cells as determined by tubulin immunofluorescence inhibit the binding of [3H]taxol. This strongly suggests that taxol binds specifically to cellular microtubules. Extraction with 0.1% Nonidet P-40 or depletion of cellular ATP by treatment with 10 mM NaN3 prevents the characteristic taxol-induced bundle formation. The binding of [3H]taxol, however, is retained under these conditions. Thus, there formation. The binding of [3H]taxol, however, is retained under these conditions. Thus, there must be specific cellular mechanisms which are required for bundle formation, in addition to the direct binding of taxol to cytoplasmic microtubules.  相似文献   

19.
About 20% of human blood lymphocytes will subsequently synthesize DNA after culturing with concanavalin A (conA) for 24 h. The stimulated cells go through one but only one round of DNA synthesis unless restimulated. We used the techniques of velocity sedimentation and auto-radiographic grain counts to demonstrate that stimulated cells do divide and return to a mitogen dependent, arrested G 1 state. Once-stimulated lymphocyte populations show the same time course for restimulation as do cultures which are being stimulated for the first time, but require at most one-fifth as much conA added to the medium in order to be maximally stimulated. We have shown by density transfer experiments that all of the progeny of cells which require up to 10 μg/ml of conA for the first DNA replication respond to 2 μg/ml with a second round of replication.  相似文献   

20.
In the accompanying paper (Cabral, F., 1982, J. Cell. Biol., 97:22-29) we described the isolation and properties of taxol-requiring mutants of Chinese hamster ovary cells. We now show that at least one of these mutants, Tax-18, has an impaired ability to form a spindle apparatus. Immunofluorescence studies using antibodies to tubulin demonstrate that, when incubated in the absence of taxol, Tax-18 forms only a rudimentary spindle with few and shortened microtubules associated with the spindle poles. Furthermore, midbodies were not observed, consistent with an absence of cytokinesis. Essentially normal spindles and midbodies are seen in the presence of taxol. Electron microscopic examination indicates that centrioles and kinetochores are morphologically normal in the mutant strain. Pole-to-kinetochore microtubules were seen but interpolar microtubules were not. Taxol-deprived mutant cells stained with anti-centrosome serum show an elevated centriole content, indicating that the defect in Tax-18 does not affect centriole replication or prevent progression through the cell cycle. Although Tax-18 cells do not form a complete spindle in the absence of taxol, cytoplasmic microtubule assembly occurs in association with microtubule-organizing centers, and microtubules with apparently normal morphology exist throughout the cytoplasm. Observation of chromosome movement indicates that the defect in these cells occurs after prometaphase. These studies demonstrate that the formation of spindle microtubules requires cellular conditions that are different from those required for cytoplasmic microtubule formation. They further show that a normal spindle may be necessary for cytokinesis but not for progress of the cells through the cell cycle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号