首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To understand the physiological and ecological responses of marine fishes to the change of water temperature, newly-hatched larvae of Yellowtail clownfish Amphiprion clarkii were reared in captivity at water temperatures of 23, 26 and 29 °C till they completed the metamorphosis to juvenile phase, and larval survival, development, growth and feeding were evaluated during the experimental period. The results showed that water temperature influenced the physiological performance of larvae of A. clarkii significantly. The survival and growth rates of larvae of A. clarkii increased significantly with the increase of water temperature from 23 to 29 °C (P < 0.05). Water temperature also influenced larval development of A. clarkii significantly and larvae reared at 23 °C took longer time for post-larval development and metamorphosis compared to 26 and 29 °C (P < 0.05). Total length and body weight for post-larval development and metamorphosis decreased with the increase of water temperature from 23 to 29 °C (P < 0.05). Q10 in developmental rate was higher than in daily growth rate at the same rearing temperature, indicating that at water temperature had greater influence on larval development than on growth. Water temperature also influenced larval feeding of A. clarkii significantly with feed ration (FR) and feed conversion efficiency (FCE) increased with the increase of water temperature from 23 to 29 °C (P < 0.05). There was a positive correlation between FR and specific growth rate (SGR) (P < 0.05) but not between FCE and SGR (P > 0.05), indicating that FR influenced growth rate significantly in larvae of A. clarkii. This study demonstrated that the physiological responses of larvae of A. clarkii to the change of water temperature and confirmed that water temperature influenced larval survival, development, growth and feeding significantly. This study suggests that the decline of larval survival and growth rates, extension of pelagic larval duration and reduction of larval feeding at lower temperature have ecological impacts on larval dispersal and metamorphosis, juvenile settlement and population replenishment in A. clarkii in the wild.  相似文献   

2.
Marine invertebrate species vary in their ability to delay metamorphosis, and in the degree to which delayed metamorphosis compromises juvenile performance. Abalone (Haliotis iris) larvae were deprived of metamorphosis cues and the effects of delayed metamorphosis on larval competence, and post-larval growth and survival were quantified. Larvae were exposed to a metamorphosis inducer (the coralline alga Phymatolithon repandum (Foslie) Wilks and Woelkerling) on Days 11, 18, 22, 26, 30 and 34 post-fertilisation (temperature 16-17 degrees C). Post-larvae were reared on diatoms (Nitzschia longissima Grunow) for 3-4 weeks post-metamorphosis. Delayed metamorphosis caused progressive negative effects on post-larval performance. Virtually all larvae initiated metamorphosis in response to P. repandum, regardless of larval age. The proportion of post-larvae that developed post-larval shell growth within 2 days of metamorphosis induction dropped only approximately 20% from Day 11 to Day 26 (P>0.05), but was significantly lower by Day 30 and Day 34 (P<0.001). Larvae that metamorphosed on Days 11, 18 and 22 showed high survival (>80%) and growth rates (means of 20-22 μm shell length per day). In contrast, larvae that metamorphosed on Day 26 and Day 30 had poor survival (30-40%) and lower (P<0.05) growth rates (15-16 μm/day). Of the larvae that metamorphosed on Day 34, only 7 (30%) survived their first week post-metamorphosis, and they grew only 2 μm/day on average. Only one of these post-larvae (4%) survived the second week. The visible yolk supply diminished over the life of the larvae and was near zero by Day 34. Nearly all larvae had died by Day 38. H. iris larvae remained competent to metamorphose for at least 3 weeks after they attained competence. Post-larval growth and survival were not reduced if metamorphosis occurred within 3 weeks of fertilisation. This extended period of larval competence implies that H. iris larvae can potentially disperse for up to several weeks before successful metamorphosis.  相似文献   

3.
The relationship between rate of larval development and the potential to prolong larval life was examined for larvae of the marine prosobranch gastropod Crepidula plana Say. Larvae were maintained in clean glass dishes at constant temperatures ranging from 12–29°C and fed either Isochrysis galbana Parke (ISO) or a Tahitian strain of Isochrysis species (T-ISO). Under all conditions, larvae grew at constant rates, as determined by measurements of shell length and tissue biomass. Most larvae eventually underwent spontaneous metamorphosis. Regardless of temperature, faster growth was associated with a shorter planktonic stage prior to spontaneous metamorphosis. Within an experiment, higher temperatures generally accelerated growth rates and reduced the number of days from hatching to spontaneous metamorphosis. However, growth rates were independent of temperature for larvae fed ISO at 25 and 29°C and for larvae fed T-ISO at 20 and 25°C. Where growth rates were unaffected by temperature, time to spontaneous metamorphosis was similarly unaffected. Maximum durations of larval life at a given temperature were shorter for larvae of Crepidula plana than for those of the congener C. fornicata (L.), although both species grew at comparable rates. Interpretations of the ecological significance of these interspecific differences in delay capabilities will require additional data on adult distributions and larval dispersal patterns in the field.  相似文献   

4.
Summary

Larval development in the South African polychaete Arenicola loveni loveni is described, and the effects of seawater temperature on fertilization success, post-fertilization development and early post-settlement survivorship are experimentally determined. Fertilization success was significantly effected by seawater temperature, with maximum fertilization success measured in the range 15–18°C, which is close to the ambient temperature range at the time of natural spawning. Poor fertilization success and abnormal cleavage were observed at the low temperature treatment of 7°C and the high temperature treatment of 23°C. A. loveni loveni exhibits spiral cleavage typical of polychaetes and has a short lecithotrophic swimming trochophore larval stage of 4–5 days. High mortality was noted during the transitional periods from gastrula-trochophore and during the settlement process. Settlement occurs just 4–5 days post-fertilization and the postsettlement stage begins feeding 1 week post-fertilization. Temperatures in the range 16.5–23°C were found to have a significant effect on larval and post-larval survivorship and growth rate increased with temperature within this range. The effects of manipulating spawning date on subsequent offspring survival and development rates were also investigated. Advancing or delaying spawning time caused reduced development rates, and delaying spawning for 3 months was found to significantly reduce offspring survivorship.  相似文献   

5.
温度和体重对克氏双锯鱼仔鱼代谢率的影响   总被引:1,自引:0,他引:1  
叶乐  杨圣云  刘敏  朱小明  王雨 《生态学报》2012,32(14):4516-4524
采用实验生态学的方法研究了不同温度和体重对克氏双锯鱼仔鱼呼吸和排泄的影响。结果表明,在23、26和29℃下,仔鱼个体日常呼吸率和排氨率与鱼体重呈幂函数(R=aWb)关系,即鱼体重越大其呼吸率和排氨率越大,b值随温度升高而增大,分别为0.8873,0.9033和0.9323(呼吸率),以及0.7625,0.8012和0.8278(排氨率)。温度和体重对克氏双锯鱼仔鱼个体呼吸率和排氨率的影响可用复合线性公式表示:RR=0.042(±0.007)W0.889(±0.026)×e0.122(±0.005)T,ER=0.002(±0.000)W0.797(±0.029)×e0.115(±0.007)T。比体重呼吸率和排氨率在相同温度条件下随个体增长而降低;在整个仔鱼期,比体重呼吸率和排氨率随温度升高而增加。克氏双锯鱼仔鱼呼吸和排泄Q10值在26—29℃较低,其可能是克氏双锯鱼仔鱼生长发育的最佳温度范围。克氏双锯鱼仔鱼在温度23—29℃时O/N范围为52—57,表明在温度23—29℃时克氏双锯鱼仔鱼代谢底物除了蛋白质外,脂肪和碳水化合物为能源也占了比较大的比例。  相似文献   

6.
Abstract This study reports on the low temperature tolerance and cold hardiness of larvae of false codling moth, Thaumatotibia leucotreta. We found that larvae have mean critical thermal minima (lower limits of activity) of 6.7°C which was influenced by feeding status. The effects of low temperature exposure and duration of exposure on larval survival were assessed and showed that the temperature at which 50% of the population survives is ?11.5 ± 0.3°C after 2 h exposure. The supercooling point (SCP, i.e., freezing temperature) was investigated using a range of cooling rates and under different conditions (feeding and hydration status) and using inoculative freezing treatments (in contact with water or orange juice). The SCP decreased significantly from ?15.6°C to ?17.4°C after larvae were fasted for 24 h. Twenty‐four hour treatments at either high or low relative humidity (95.9% or 2.4%) also significantly decreased SCP to ?17.2°C and ?18.2°C respectively. Inoculative freezing (by water contact) raised SCP from ?15.6°C to ?6.8°C which could have important implications for post‐harvest sterilization. Cooling rates did not affect SCP which suggests that there is limited phenotypic plasticity of SCP during the larval life‐stage, at least over the short time‐scales investigated here. In conclusion, larvae of T. leucotreta are chill‐susceptible and die upon freezing. These results are important in understanding this pest's response to temperature variation, understanding pest risk status and improving post‐harvest sterilization efficacy.  相似文献   

7.
Adaptivity to short-term and long-term changes in water temperature and salinity was studied in larvae of the bivalve mollusk Mytilus trossulus. It was shown that water temperature of 4°C mostly suppressed growth and development of larvae. A temperature of 20°C promoted an enhanced larval growth and development. Though a temperature of 20°C caused enhanced larval growth, the temperature was not optimal, while its effect caused quality diversity of larval development, owing to the difference in their growth rates. Such diversity was not observed at moderate temperatures of 10 and 15°C. At 20°C, fast-growing mussel larvae were very sensitive to temperature drops. Growth of slowly-growing individuals did not depend on temperature in the range of 10 to 20°C. Daily temperature variations by 3–8°C did not markedly affect growth and development of the larvae. A continuous 24-h exposure to temperature drops by 3–8°C did not influence these very important physiological characteristics either. A salinity drop down to 8‰ exerted an adverse effect only on early larvae. Later on, the larvae showed their ability to adapt to such a strong desalination. The negative effect of reduced salinity (to 8‰) upon mussel larvae was increased at a temperature increase to 20°C.  相似文献   

8.
The temperature tolerances of embryonic and early larval development stages of Tripneustes gratilla were investigated from 13-34°C under laboratory conditions. Zygotes showed unequal cleavage at 13°C, whereas cleavage did not occurred at 34°C. Hatching was observed between 16–31°C with maximum hatching rates observed at 22–29°C. The lower and higher temperature limits for embryonic development were approximately 22°C and 29°C, respectively. Outside of this temperature range, embryos showed abnormality at different incubation times. Early larvae of this species have the ability to survive the higher temperature limit for short periods of time. Prism and 2 arm pluteus larvae survived at temperatures between 30 and 33°C, whereas 4 arm pluteus larvae survived at temperatures between 30 and 36°C for 2 h. These results suggest that the larval temperature tolerance capability of T. gratilla is stage dependent. These findings are important for understanding the life history strategy of this sea urchin in the shallow open water environment.  相似文献   

9.
Variation in age and size at life‐history transitions is a reflection of the diversifying influence of biotic or abiotic environmental change. Examples abound, but it is not well understood how such environmental changes influence the age structure of a population. I experimentally investigated the effects of water temperature and food type on age and body size at metamorphosis in larvae of the salamander Hynobius retardatus. In individuals grown at a cold temperature (15 °C) or given Chironomidae as prey, the time to metamorphosis was significantly prolonged, and body size at metamorphosis was significantly enlarged, compared with individuals grown at a warmer temperature (20 °C) or fed larvae. I also examined whether larval density (a possible indicator of cannibalism in natural habitats) generated variation in the age structure of natural populations in Hokkaido, Japan, where the climate is subarctic. Natural ponds in Hokkaido may contain larvae that have overwintered for 1 or 2 years, as well as larvae of the current year, and I found that the number of age classes was related to larval density. Although cool water temperatures prolong the larval period and induce later metamorphosis, in natural ponds diet‐based enhancement of development translated into a shorter larval duration and earlier metamorphosis. Geographic variation in the frequency of cannibalism resulted in population differences in metamorphic timing in H. retardatus larvae. It is important to understand how environmental effects are ultimately transduced through individual organisms into population‐level phenomena, with the population response arising as the summation of individual responses. Without a thorough comprehension of the mechanisms through which population and individual responses to environmental conditions are mediated, we cannot interpret the relationship between population‐level and individual‐level phenomena. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2011, 102 , 100–114.  相似文献   

10.
Natural reproduction of pallid sturgeon Scaphirhynchus albus has been limited for decades and a recruitment bottleneck is hypothesized to occur during the larval stage of development. In this study, we evaluated the effects of water velocity and temperature on the swimming activity, energy use, settling behaviour and mortality of endogenously feeding larvae. The swimming activity of drifting sturgeon larvae (i.e., fish exhibiting negative rheotaxis) increased at low water velocity. In subsequent experiments, we observed greater energy depletion and resultant mortality of larvae in no-flow environments (0 cm s−1) compared to tanks with water velocity ranging from 3.5 to 8.3 cm s−1. The growth rate of drifting larvae was positively related to water temperature (18.7–23.3°C), but reduced growth rate at low water temperature (18.7°C) resulted in protracted development that extended average drift duration by ~4 days compared to larvae reared at 23.3°C. This study provides evidence that cooler summer water temperatures, characteristic of present-day conditions in the upper Missouri River, can reduce larval development and extend both the drift duration and distance requirements of S. albus. Moreover, if dispersed into low velocity environments, such as in reservoir headwaters, larvae may experience increased mortality owing to a mismatch between early life stage drift requirements and habitat conditions in the river. Manipulation of water releases to increase seasonal water temperature below dams may aid survival of S. albus larvae by shortening the time and distance spent drifting.  相似文献   

11.
In order to characterize Pecten maximus metamorphosis within a hatchery environment, the relationships existing among the various larval rearing parameters, the biochemical composition of the larvae and metamorphosis have been determined. Metamorphosis levels are correlated with the percentages of double ring larvae, as well as with the larval lipid content. A multiple regression incorporating the percentage of double ring larvae and larval lipid content shows that these two combined parameters explain 50 % of the total metamorphosis variance, with an equal relative importance for each of them. In an attempt to identify other possible endogenous markers, the kinetics of biogenic amines were also examined throughout larval and post-larval development. A steady increase in serotonin and dopamine levels was recorded during larval development while a sudden decrease in both molecules was noted during metamorphosis. It is suggested that these two amines may be used as indicators of larval competence for P. maximus metamorphosis.  相似文献   

12.
The combined effects of temperatures of 14, 17, 20, 22, and 25°C and salinities of 36–12‰ on embryos and larvae of the sand dollar Scaphechinus mirabilis was studied. Embryonic development is the most sensitive stage in the early ontogenesis of S. mirabilis. It is completed at a temperature of 14–20°C in a salinity range of 36–24‰ and at temperature of 22°C to 26‰. The fertilization proceeds in wider ranges of temperature and salinity. Among the swimming larvae, blastulae showed the greatest resistance to variations of these environmental factors. All the larvae survived at a temperature of 14–22°C and a salinity of 36–20‰, and more than 70% of them at 18‰. The pluteus I is the most vulnerable stage; probably this is related to the formation of the larval skeleton and transition to phytoplankton feeding. The survival of larvae at the age of 20 days was 100% at 14–22° C and a salinity of 36–24‰, most of them survived at 14–20°C and a salinity 18‰. The temperature 25 ° C is the most damaging for early development of S. mirabilis. The duration of development of that species lasts 28.5–29 days at 20°C and a salinity of 32.2–32.6‰. At 20 and 22°C, the larvae settled and completed metamorphosis more quickly if sand from the parental habitat was present. The larvae did not settle during the experiment (14 days) at 14 ° C and in the absence of sand.  相似文献   

13.
The solitary ascidian Styela plicata (Lesueur) is a common member of epibenthic marine communities in Hong Kong, where seawater experiences extensive seasonal changes in temperature (18-30 °C) and salinity (22-34‰). In this investigation, the relative sensitivity of different developmental stages (i.e., duration of embryonic development, larval metamorphosis and post-larval growth) to various temperature (18, 22, 26 and 30 °C) and salinity (22‰, 26‰, 30‰ and 34‰) combinations is reported. Fertilized eggs did not develop at lower salinities (22‰ and 26‰). At higher salinities (30‰ and 34‰), the duration of embryonic development increased with decreasing temperature (18 °C: 11.5±0.3 h; 30 °C: 8.5±0.3 h). More than 50% of larvae spontaneously attached and metamorphosed at all the levels of temperature and salinity tested. At higher temperatures (22, 26 and 30 °C) and salinities (30‰ and 34‰), functional siphon developed in about 72 h after hatching, whereas at low temperature (18 °C), siphon developed only in <30% of individuals in about 90 h. However, none of the metamorphosed larvae developed subsequently at low salinity (22‰). When forced to swim (or delayed attachment), larvae lost about 0.27 mJ after 48 h (about 22% of the stored energy). Such a drop in energy reserves, however, was not strong enough to cause a significant impact on post-larval growth. This study suggests that temperature and salinity reductions due to seasonal monsoon may have significant effect on the embryo and post-larval growth of S. plicata in Hong Kong.  相似文献   

14.
Stenothermal polar benthic marine invertebrates are highly sensitive to environmental perturbations but little is known about potential synergistic effects of concurrent ocean warming and acidification on development of their embryos and larvae. We examined the effects of these stressors on development to the calcifying larval stage in the Antarctic sea urchin Sterechinus neumayeri in embryos reared in present and future (2100+) ocean conditions from fertilization. Embryos were reared in 2 temperature (ambient: ?1.0 °C, + 2 °C : 1.0 °C) and 3 pH (ambient: pH 8.0, ?0.2–0.4 pH units: 7.8,7.6) levels. Principle coordinates analysis on five larval metrics showed a significant effect of temperature and pH on the pattern of growth. Within each temperature, larvae were separated by pH treatment, a pattern primarily influenced by larval arm and body length. Growth was accelerated by temperature with a 20–28% increase in postoral (PO) length at +2 °C across all pH levels. Growth was strongly depressed by reduced pH with a 8–19% decrease in PO length at pH 7.6–7.8 at both temperatures. The boost in growth caused by warming resulted in larvae that were larger than would be observed if acidification was examined in the absence of warming. However, there was no significant interaction between these stressors. The increase in left‐right asymmetry and altered body allometry indicated that decreased pH disrupted developmental patterning and acted as a teratogen (agent causing developmental malformation). Decreased developmental success with just a 2 °C warming indicates that development in S. neumayeri is particularly sensitive to increased temperature. Increased temperature also altered larval allometry. Altered body shape impairs swimming and feeding in echinoplutei. In the absence of adaptation, it appears that the larval phase may be a bottleneck for survivorship of S. neumayeri in a changing ocean in a location where poleward migration to escape inhospitable conditions is not possible.  相似文献   

15.
Macropetasma africanus (Balss) has been successfully spawned and its larvae reared under controlled laboratory conditions. The relationship between egg number (E) and female total length (L) was E = 18.59 L2.11. An experiment was designed to test the effect of temperature on larval development, survival and growth. Temperature effected larval development time, from 13–15 days at 25°C, to 25 days at 15°C (nauplius 1 to post-larva). Mortality was low for the naupliar stages at 25, 22 and 18°C, while at 15°C only 52% of the larvae reached nauplius 6. Mortality was highest from nauplius 6 to protozoea 1 (17, 21, and 18% at 25, 22, and 18°C, respectively), but decreased considerably for all temperatures once the mysis stage was reached. Overall survival rates from nauplius 1 to post-larva decreased with decreasing temperature (65, 54, 48, and 39% at 25, 22, 18, and 15°C respectively). Temperature also significantly affected larval growth. At 25°C mean total length was significantly (P < 0.05) larger than at 15°C (protozoea 2 to post-larva), while from protozoea 3 to post-larva total length differences were significantly different (P < 0.05) between 18 and 25°C. M. africanus has a major spawning peak in summer, suggesting that there may be a selective advantage to reproducing during the warmer months.  相似文献   

16.
This study investigated the effects of two environmental factors, temperature and light, on larval settlement and metamorphosis in the solitary ascidian Styela canopus. The results revealed that larval settlement rates decreased with increasing temperature in the range 12–30°C. We also demonstrated for the first time that pre-settlement metamorphosis of ascidian larvae can occur as a function of temperature. We suggest this could be an adaptation to avoid the greater energetic cost of active larval swimming, presumably resulting from the increasing temperature. They are able to metamorphose into passive drifting post-larvae and to continue planktonic life. This finding has implications for larval dispersal, especially under conditions of ocean warming. In addition, the effect of light intensity on larval settlement and metamorphosis was significantly different between photoperiods of 24 L : 0 D and 12 L : 12 D. These results provide some insight into the complex cues affecting settlement and metamorphosis of ascidian larvae and ascidian distribution in nature.  相似文献   

17.
Abstract

The influence Of temperature on the growth and survival of first-instar larvae of black beetle feeding in soil was examined. Similarly the consumption, utilisation, growth, and survival of second- and third-instar larvae feeding on carrot were investigated using gravimetric methods. Soil temperatures in the range 20–25° c were found to be necessary for optimum growth of all instars. First-instar larval growth increased exponentially over the temperature range 10–20°c. Third-instar larvae were tolerant of higher temperatures than second-instar larvae. The temperatures for optimum levels of consumption and utilisation of carrot varied between the instars.  相似文献   

18.
Larvae of an estuarine grapsid crabChasmagnathus granulata Dana 1851, from temperate and subtropical regions of South America, were reared in seawater (32/%.) at five different constant temperatures (12, 15, 18, 21, 24 °C). Complete larval development from hatching (Zoea I) to metamorphosis (Crab I) occurred in a range from 15 to 24 °C. Highest survival (60% to the first juvenile stage) was observed at 18 °C, while all larvae reared at 12 °C died before metamorphosis. The duration of development (D) decreased with increasing temperature (T). This relationship is described for all larval stages as a power function (linear regressions after logarithmic transformation of bothD andT). The temperature-dependence of the instantaneous developmental rate (D −1) is compared among larval stages and temperatures using the Q10 coefficient (van't Hoff's equation). Through all four zoeal stages, this index tends to increase during development and to decrease with increasingT (comparing ranges 12–18, 15–21, 18–24 °C). In the Megalopa, low Q10 values were found in the range from 15 to 24 °C. In another series of experiments, larvae were reared at constant 18 °C, and their dry weight (W) and respiratory response to changes inT were measured in all successive stages during the intermoult period (stage C) of the moulting cycle. Both individual and weight-specific respiration (R, QO 2) increased exponentially with increasingT. At each temperature,R increased significantly during growth and development through successive larval stages. No significantly differentQO 2 values were found in the first three zoeal stages, while a significant decrease with increasingW occurred in the Zoea IV and Megalopa. As in the temperature-dependence ofD, the respiratory response to changes in temperature (Q10) depends on both the temperature range and the developmental stage, however, with different patterns. In the zoeal stages, the respiratory Q10 was minimum (1.7–2.2) at low temperatures (12–18 °C), but maximum (2.2–3.0) at 18–24 °C. The Megalopa, in contrast, showed a stronger metabolic response in the lower than in the upper temperature range (Q10=2.8 and 1.7, respectively). We interpret this pattern as an adaptation to a sequence of temperature conditions that should typically be encountered byC. granulata larvae during their ontogenetic migrations: hatching in and subsequent export from shallow estuarine lagoons, zoeal development in coastal marine waters, which are on average cooler, return in the Megalopa stage to warm lagoons. We thus propose that high metabolic sensitivity to changes in temperature may serve as a signal stimulating larval migration, so that the zoeae should tend to leave warm estuaries and lagoons, whereas the Megalopa should avoid remaining in the cooler marine waters and initiate its migration to wards shallow coastal lagoons.  相似文献   

19.
Anuran larvae exhibit high levels of phenotypic plasticity in growth and developmental rates in response to variation in temperature and food availability. We tested the hypothesis that alteration of developmental pathways during the aquatic larval stage should affect the postmetamorphic performance of the Iberian painted frog (Discoglossus galganoi). We exposed tadpoles to different temperatures and food types (animal- vs. plant-based diets) to induce variation in the length of the larval period and body size at metamorphosis. In this species, larval period varied with temperature but was unaffected by diet composition. In contrast, size at metamorphosis was shaped by the interaction between food quality and temperature; tadpoles fed on an animal-based diet became bulkier metamorphs than those fed on plant-based food at high (22°C) but not at low (12°C) temperature. Body condition of newly metamorphosed frogs was unrelated to the temperature or food type experienced during the premetamorphic stage. Frogs maintained at high temperature during the larval period showed reduced jumping ability, especially when fed on the plant-based diet. However, when considering size-independent jumping ability, cold-reared individuals exhibited the lowest performance, and herbivores reared at 17°C the highest. Cold-reared (12°C) frogs accumulated larger amounts of energy reserves than individuals raised at 17°C or 22°C. This was still the case after correction for differences in body mass, thus indicating some size-independent effect of developmental temperature. Despite the higher lipid content of the carnivorous diet, the differences in energy reserves between herbivores and carnivores were relatively weak and associated with differences in body size. These results suggest that the consequences of environmental variation in the larval habitat can extend to the terrestrial phase and influence juvenile growth and survival.  相似文献   

20.
Florida lancelets were raised in laboratory cultures from the egg to the juvenile stage. At frequent intervals during development, elongation of the embryonic and larval body was measured at room temperature (22.5°C) and at the approximate temperature of the natural environment (30°C). Development was slower at the lower temperature, with metamorphosis commencing during the fifth week as compared to the third week at the higher temperature. Scanning electron microscopy (SEM) was used to describe a frequently sampled series of hatched embryos, pre-metamorphic larvae, metamorphic larvae, and juveniles. The advent (and sometimes subsequent disappearance) of the following structures was determined from the SEM data: general epidermal ciliation, peroral pit, mouth, primary gill slits, ciliary tuft, external opening of the club-shaped gland, sense cells, anus, metapleural folds, and preoral cirri. Our SEM did not substantiate the claims of van Wijhe for a transitory larval mouth near the anteriovental end of the larvae. The general epidermal cilation, which is uniformly distributed in the embryos, becomes somewhat reduced in the pre-metamorphic larvae and then disappears almost entirely during metamorphosis. The epidermis includes two distinct sense cell types (I and II) and possibly a third type (the ventral pit cells, to which an adhesive role has alternatively been attributed). The anus first opens on the right-hand side and only later migrates across the mid-ventral line to assume a position on the left-hand side of the larva; this is contrary to the established view that the anus of the larval lancelets opens on the left-hand side and remains there.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号