首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Rates of CO2/HCO-3 exchange, catalyzed by human carbonic anhydrase I (or B) at chemical equilibrium, were estimated from the nuclear magnetic resonance linewidths of 13C-labeled substrates. The results show that the maximal exchange rate constant is independent of pH in the range 5.7-8.0, whereas the apparent substrate dissociation constant depends on pH. Exchange proceeds rapidly in the absence of added buffers, and the addition of buffers has negligible effects on exchange rates. Exchange is equally rapid with 1H2O or 2H2O as solvents. Chloride ions inhibit CO2/HCO-3 exchange competitively. The maximal exchange rates obtained with human carbonic anhydrase I are 50 times slower than those obtained with human isoenzyme II (or C). From a comparison of the exchange kinetics with the steady-state kinetics of CO2 hydration and HCO-3 dehydration it is tentatively concluded that the transfer of H+ between active site and medium proceeds with rates of similar magnitudes in the two isoenzymes, whereas the central catalytic step, the interconversion of enzyme-bound CO2 and HCO-3, is much slower in isoenzyme I than in isoenzyme II.  相似文献   

2.
Bicarbonate is a recycling substrate for cyanase   总被引:1,自引:0,他引:1  
Cyanase is an inducible enzyme in Escherichia coli that catalyzes bicarbonate-dependent decomposition of cyanate to ammonia and bicarbonate. Previous studies provided evidence that carbamate is an initial product and that the kinetic mechanism is rapid equilibrium random (bicarbonate serving as substrate as opposed to activator); the following mechanism was proposed (Anderson, P. M. (1980) Biochemistry 19, 2282-2888; Anderson, P. M., and Little, R. M. (1986) Biochemistry 25, 1621-1626). (formula; see text) Direct evidence for this mechanism was obtained in this study by 1) determining whether CO2 or HCO3- serves as substrate and is formed as product, 2) identifying the products formed from [14C]HCO3- and [14C] OCN-, 3) identifying the products formed from [13C] HCO3- and [12C]OCN- in the presence of [18O]H2O, and 4) determining whether 18O from [18O]HCO3- is incorporated into CO2 derived from OCN-. Bicarbonate (not CO2) is the substrate. Carbon dioxide (not HCO3-) is produced in stoichiometric amounts from both HCO3- and OCN-. 18O from [18O]H2O is not incorporated into CO2 formed from either HCO3- or OCN-. Oxygen-18 from [18O]HCO3- is incorporated into CO2 derived from OCN-. These results support the above mechanism, indicating that decomposition of cyanate catalyzed by cyanase is not a hydrolysis reaction and that bicarbonate functions as a recycling substrate.  相似文献   

3.
This study presents the first detailed examination by resonance Raman (RR) spectroscopy of the rates of solvent exchange for the C5 and C3 positions of the TPQ cofactor in several wild-type copper-containing amine oxidases and mutants of the amine oxidase from Hansenula polymorpha (HPAO). On the basis of crystal structure analysis and differing rates of C5 [double bond] O and C3 [bond] H exchange within the enzyme systems, but equally rapid rates of C5 [double bond] O and C3 [bond] H exchange in a TPQ model compound, it is proposed that these data can be used to determine the TPQ cofactor orientation within the active site of the resting enzyme. A rapid rate of C5 [double bond] O exchange (t(1/2) < 30 min) and a slow (t(1/2) = 6 h) to nonexistent rate of C3 [bond] H exchange was observed for wild-type HPAO, the amine oxidase from Arthrobacter globiformis, pea seedling amine oxidase at pH 7.1, and the E406Q mutant of HPAO. This pattern is ascribed to a productive TPQ orientation, with the C5 [double bond] O near the substrate-binding site and the C3 [bond] H near the Cu. In contrast, a slow rate of C5 [double bond] O exchange (t(1/2) = 1.6-3.3 h) coupled with a fast rate of C3 [bond] H exchange (t(1/2) < 30 min) was observed for the D319E and D319N catalytic base mutants of HPAO and for PSAO at pH 4.6 (t(1/2) = 4.5 h for C5 [double bond] O exchange). This pattern identifies a flipped orientation, involving 180 degrees rotation about the C alpha-C beta bond, which locates the C3 [bond] H near the substrate-binding site and the C5 double bond] O near the Cu. Finally, fast rates of both C5 [double bond] O and C3 [bond] H exchange (t(1/2) < 30 min) were observed for the amine oxidase from Escherichia coli and the N404A mutant of HPAO, suggesting a mobile cofactor, with multiple TPQ orientations between productive and flipped. These results demonstrate that opposing sides of the TPQ ring possess different degrees of solvent accessibility and that the rates of C5 [double bond] O and C3 [bond] H exchange can be used to predict the TPQ cofactor orientation in the resting forms of these enzymes.  相似文献   

4.
(13)C NMR monitored the dynamics of exchange from specific hydrogens of hepatic [2-(13)C]glutamate and [3-(13)C]aspartate with deuterons from intracellular heavy water providing information on alpha-ketoglutarate/glutamate exchange and subcellular compartmentation. Mouse livers were perfused with [3-(13)C]alanine in buffer containing or not 50% (2)H(2)O for increasing periods of time (1 min < t < 30 min). Liver extracts prepared at the end of the perfusions were analyzed by high resolution (13)C NMR (150.13 MHz) with (1)H decoupling only and with simultaneous (1)H and (2)H decoupling. (13)C-(2)H couplings and (2)H-induced isotopic shifts observed in the glutamate C2 resonance, allowed to estimate the apparent rate constants (forward, reverse; min(-1)) for (i) the reversible exchange of [2-(13)C]glutamate H2 as catalyzed mainly by aspartate aminotransferase (0.32, 0.56), (ii) the reversible exchange of [2-(13)C]glutamate H3(proS) as catalyzed by NAD(P) isocitrate dehydrogenase (0.1, 0.05), and (iii) the irreversible exchanges of glutamate H3(proR) and H3(proS) as catalyzed by the sequential activities of mitochondrial aconitase and NAD isocitrate dehydrogenase of the tricarboxylic acid cycle (0.035), respectively. A similar approach allowed to determine the rates of (1)H-(2)H exchange for the H2 (0.4, 0.5) or H3(proR) (0.3, 0.2) or the H2 and H3(proS) hydrogens (0.20, 0.23) of [3-(13)C]aspartate isotopomers. The ubiquitous subcellular localization of (1)H-(2)H exchange enzymes and the exclusive mitochondrial localization of pyruvate carboxylase and the tricarboxylic acid cycle resulted in distinctive kinetics of deuteration in the H2 and either or both H3 hydrogens of [2-(13)C]glutamate and [3-(13)C]aspartate, allowing to follow glutamate and aspartate trafficking through cytosol and mitochondria.  相似文献   

5.
D N Silverman  C K Tu 《Biochemistry》1986,25(26):8402-8408
The exchange of 18O from CO2 to H2O in aqueous solution is caused by the hydration-dehydration cycle and is catalyzed by the carbonic anhydrases. In our previous studies of 18O exchange at chemical equilibrium catalyzed by isozymes I and II of carbonic anhydrase, we observed simple first-order depletion of 18O from CO2 with the 18O distribution among the species C18O18O, C16O18O, and C16O16O described by the binomial expansion (i.e., a random distribution of 18O). Using membrane-inlet mass spectrometry, we have measured 18O exchange between CO2 and H2O catalyzed by native zinc-containing and cobalt(II)-substituted carbonic anhydrase III from bovine skeletal muscle near pH 7.5. The distributions of 18O in CO2 deviate from the binomial expansion and are accompanied by biphasic 18O-exchange patterns; moreover, we observed regions in which 18O loss from CO2 was faster than 18O loss from HCO3-. These data are interpreted in terms of a model that includes 18O loss from an enzyme-substrate or intermediate complex. We conclude that more than one 18O can be lost from CO2 per encounter with the active site of isozyme III, a process that requires scrambling of oxygens in a bicarbonate-enzyme complex and cycling between intermediate complexes. This suggests that the rate of dissociation of H2(18)O (or 18OH-) from isozyme III is comparable to or faster than substrate and product dissociation.  相似文献   

6.
The purpose of this study is to outline a common mistake made when the rate of oxidation of exogenous substrates during prolonged exercise is computed using 13C naturally labeled substrates. The equation proposed and commonly used in the computation does not take into account that exercise and/or exogenous substrate ingestion modifies the composition of the mixture of endogenous substrates oxidized and, consequently, the isotopic composition of CO2 arising from oxidation of endogenous substrates. The recovery of 13C and the amount of exogenous substrate oxidized are thus overestimated. An adequate procedure for the computation of exogenous substrate oxidation taking into account changes in isotopic composition of CO2 arising from oxidation of endogenous substrates is suggested. Results from a pilot experiment (4 subjects) using this procedure indicate that over 2 h of exercise (66% of maximal O2 uptake), with ingestion of 60 g of glucose, 39 +/- 4 g of glucose were oxidized. Estimates made without taking into account changes in isotopic composition of CO2 arising from oxidation of endogenous substrates range between 70 +/- 8 and 44 +/- 3 g depending on 1) the isotopic composition of exogenous glucose and 2) the isotopic composition of expired CO2 taken as reference (rest or exercise without glucose ingestion). These observations suggest that results from previous studies of exogenous substrate oxidation during exercise using 13C labeling should be used with caution.  相似文献   

7.
Phosphoenolpyruvate carboxylase (PEPC; EC 4.1.1.31) plays a key role during C(4) photosynthesis and is involved in anaplerotic metabolism, pH regulation, and stomatal opening. Heterozygous (Pp) and homozygous (pp) forms of a PEPC-deficient mutant of the C(4) dicot Amaranthus edulis were used to study the effect of reduced PEPC activity on CO(2) assimilation rates, stomatal conductance, and (13)CO(2) (Delta(13)C) and C(18)OO (Delta(18)O) isotope discrimination during leaf gas exchange. PEPC activity was reduced to 42% and 3% and the rates of CO(2) assimilation in air dropped to 78% and 10% of the wild-type values in the Pp and pp mutants, respectively. Stomatal conductance in air (531 mubar CO(2)) was similar in the wild-type and Pp mutant but the pp mutant had only 41% of the wild-type steady-state conductance under white light and the stomata opened more slowly in response to increased light or reduced CO(2) partial pressure, suggesting that the C(4) PEPC isoform plays an essential role in stomatal opening. There was little difference in Delta(13)C between the Pp mutant (3.0 per thousand +/- 0.4 per thousand) and wild type (3.3 per thousand +/- 0.4 per thousand), indicating that leakiness (), the ratio of CO(2) leak rate out of the bundle sheath to the rate of CO(2) supply by the C(4) cycle, a measure of the coordination of C(4) photosynthesis, was not affected by a 60% reduction in PEPC activity. In the pp mutant Delta(13)C was 16 per thousand +/- 3.2 per thousand, indicative of direct CO(2) fixation by Rubisco in the bundle sheath at ambient CO(2) partial pressure. Delta(18)O measurements indicated that the extent of isotopic equilibrium between leaf water and the CO(2) at the site of oxygen exchange () was low (0.6) in the wild-type and Pp mutant but increased to 0.9 in the pp mutant. We conclude that in vitro carbonic anhydrase activity overestimated as compared to values determined from Delta(18)O in wild-type plants.  相似文献   

8.
We studied muscle blood flow, muscle oxygen uptake (VO(2)), net muscle CO uptake, Mb saturation, and intracellular bioenergetics during incremental single leg knee-extensor exercise in five healthy young subjects in conditions of normoxia, hypoxia (H; 11% O(2)), normoxia + CO (CO(norm)), and 100% O(2) + CO (CO(hyper)). Maximum work rates and maximal oxygen uptake (VO(2 max)) were equally reduced by approximately 14% in H, CO(norm), and CO(hyper). The reduction in arterial oxygen content (Ca(O(2))) (approximately 20%) resulted in an elevated blood flow (Q) in the CO and H trials. Net muscle CO uptake was attenuated in the CO trials. Suprasystolic cuff measurements of the deoxy-Mb signal were not different in terms of the rate of signal rise or maximum signal attained with and without CO. At maximal exercise, calculated mean capillary PO(2) was most reduced in H and resulted in the lowest Mb-associated PO(2). Reductions in ATP, PCr, and pH during H, CO(norm), and CO(hyper) occurred earlier during progressive exercise than in normoxia. Thus the effects of reduced Ca(O(2)) due to mild CO poisoning are similar to H.  相似文献   

9.
H2(18)O isotope exchange into specifically 13C-labeled substrate was used to obtain information on the rate-limiting step in the action of the phospholipase A2 from the venom of the Indian cobra (Naja naja naja). Incorporation of 18O was detected by the effect of 18O on 13C chemical shifts in 13C NMR. The enzymatic hydrolysis of a micellar phosphatidylcholine analogue of platelet-activating factor 1-alkyl-2-[1-13C]lauroyl-sn-glycero-3-phosphorylcholine proceeds by an O-acyl cleavage of the sn-2 ester bond. The reaction was examined for simultaneous 18O incorporation into the substrate. No exchange was found, suggesting that the hydrolytic step is not followed by a higher energy transition state and that it or a step before it appears to be rate-limiting. Previous experiments on phosphatidylethanolamine activation indicate that kcat is altered but that the km remains the same upon activation, suggesting that the binding steps occurring before the hydrolytic step are not affected. This strongly suggests that the hydrolytic step is in fact the rate-limiting step under these conditions. The 13C, 18O NMR technique should be generally applicable to mechanistic questions of this type.  相似文献   

10.
1. The steady-state kinetics of the interconversion of CO2 and HCO3 catalyzed by human carbonic anhydrase C was studied using 1H2O and 2H2O as solvents. The pH-independent parts of the parameters k(cat) and Km are 3-4 times larger in 1H2O than in 2H2O for both directions of the reaction, while the ratios k(cat)/Km show much smaller isotope effects. With either CO2 or HCO3 as substrate the major pH dependence is observed in k(cat), while Km appears independent of pH. The pKa value characterizing the pH-rate profiles is approximately 0.5 unit larger in 2H2O than in 1H2O. 2. The hydrolysis of p-nitrophenyl acetate catalyzed by human carbonic anhudrase C is approximately 35% faster in 2H2O than in 1H2O. In both solvents the pKa values of the pH-rate profiles are similar to those observed for the CO2-HCO3 interconversion. 3. It is tentatively proposed that the rate-limiting step at saturating concentrations of CO2 or HCO3 is an intramolecular proton transfer between two ionizing groups in the active site. It cannot be decided whether the transformation between enzyme-bound CO2 and HCO3 involves a proton trnasfer or not.  相似文献   

11.
The oxygen isotope composition of atmospheric CO(2) is an important signal that helps distinguish between ecosystem photosynthetic and respiratory processes. In C(4) plants the carbonic anhydrase (CA)-catalyzed interconversion of CO(2) and bicarbonate (HCO(3)(-)) is an essential first reaction for C(4) photosynthesis but also plays an important role in the CO(2)-H(2)O exchange of oxygen as it enhances the rate of isotopic equilibrium between CO(2) and water. The C(4) dicot Flaveria bidentis containing genetically reduced levels of leaf CA (CA(leaf)) has been used to test whether changing leaf CA activity influences online measurements of C(18)OO discrimination (Delta(18)O) and the proportion of CO(2) in isotopic equilibrium with leaf water at the site of oxygen exchange (theta). The Delta(18)O in wild-type F. bidentis, which contains high levels of CA relative to the rates of net CO(2) assimilation, was less than predicted by models of Delta(18)O. Additionally, Delta(18)O was sensitive to small decreases in CA(leaf). However, reduced CA activity in F. bidentis had little effect on net CO(2) assimilation, transpiration rates (E), and stomatal conductance (g(s)) until CA levels were less than 20% of wild type. The values of theta determined from measurements of Delta(18)O and the (18)O isotopic composition of leaf water at the site of evaporation (delta(e)) were low in the wild-type F. bidentis and decreased in transgenic plants with reduced levels of CA activity. Measured values of theta were always significantly lower than the values of theta predicted from in vitro CA activity and gas exchange. The data presented here indicates that CA content in a C(4) leaf may not represent the CA activity associated with the CO(2)-H(2)O oxygen exchange and therefore may not be a good predictor of theta during C(4) photosynthesis. Furthermore, uncertainties in the isotopic composition of water at the site of exchange may also limit the ability to accurately predict theta in C(4) plants.  相似文献   

12.
Transgenic Flaveria bidentis (a C4 species) plants with an antisense gene directed against the mRNA of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) were used to examine the relationship between the CO2 assimilation rate, Rubisco content, and carbon isotope discrimination. Reduction in the amount of Rubisco in the transgenic plants resulted in reduced CO2 assimilation rates and increased carbon isotope discrimination of leaf dry matter. The H2O exchange was similar in transgenic and wild-type plants, resulting in higher ratios of intercellular to ambient CO2 partial pressures. Carbon isotope discrimination was measured concurrently with CO2 and H2O exchange on leaves of the control plants and T1 progeny with a 40% reduction in Rubisco. From the theory of carbon isotope discrimination in the C4 species, we conclude that the reduction in the Rubisco content in the transgenic plants has led to an increase in bundle-sheath CO2 concentration and CO2 leakage from the bundle sheath; however, some down-regulation of the C4 cycle also occurred.  相似文献   

13.
We have cloned and overexpressed a truncated, recombinant form of beta-carbonic anhydrase from Arabidopsis thaliana. The wild-type enzyme and two site-directed variants, H216N and Y212F, have been kinetically characterized both at steady state by stopped-flow spectrophotometry and at chemical equilibrium by (18)O isotope exchange methods. The wild-type enzyme has a maximal k(cat) for CO2 hydration of 320 ms(-1) and is rate limited by proton transfer involving two residues with apparent pK(a) values of 6.0 and 8.7. The mutant enzyme H216N has a maximal k(cat) at high pH that is 43% that of wild type, but is only 5% that of wild type at pH 7.0. (18)O exchange studies reveal that the effect of the mutations H216N or Y212F is primarily on proton transfer steps in the catalytic mechanism and not in the rate of CO2-HCO3- exchange. These results suggest that residues His-216 and Tyr-212 are both important for efficient proton transfer in A. thaliana carbonic anhydrase.  相似文献   

14.
For estimating the oxidation rates (Rox) of glucose and other substrates by use of (13)C-labeled tracers, we obtained correction factors to account for label dilution in endogenous bicarbonate pools and TCA cycle exchange reactions. Fractional recoveries of (13)C label in respiratory gases were determined during 225 min of rest and 90 min of leg cycle ergometry at 45 and 65% peak oxygen uptake (VO(2 peak)) after continuous infusions of [1-(13)C]acetate, [2-(13)C]acetate, or NaH(13)CO(3). In parallel trials, [6,6-(2)H]glucose and [1-(13)C]glucose were given. Experiments were conducted after an overnight fast with exercise commencing 12 h after the last meal. During the transition from rest to exercise, CO(2) production increased (P < 0.05) in an intensity-dependent manner. Significant differences were observed in the fractional recoveries of (13)C label as (13)CO(2) at rest (NaH(13)CO(3), 77.5 +/- 2.8%; [1-(13)C]acetate, 49.8 +/- 2.4%; [2-(13)C]acetate, 26.1 +/- 1.4%). During exercise, fractional recoveries of (13)C label from [1-(13)C]acetate, [2-(13)C]acetate, and NaH(13)CO(3) were increased compared with rest. Magnitudes of label recoveries during both exercise intensities were tracer specific (NaH(13)CO(3), 93%; [1-(13)C]acetate, 80%; [2-(13)C]acetate, 65%). Use of an acetate-derived correction factor for estimating glucose oxidation resulted in Rox values in excess (P < 0.05) of glucose rate of disappearance during hard exercise. We conclude that, after an overnight fast: 1) recovery of (13)C label as (13)CO(2) from [(13)C]acetate is decreased compared with bicarbonate; 2) the position of (13)C acetate label affects carbon dilution estimations; 3) recovery of (13)C label increases in the transition from rest to exercise in an isotope-dependent manner; and 4) application of an acetate correction factor in glucose oxidation measurements results in oxidation rates in excess of glucose disappearance during exercise at 65% of VO(2 peak). Therefore, bicarbonate, not acetate, correction factors are advocated for estimating glucose oxidation from carbon tracers in exercising men.  相似文献   

15.
Monitoring photosynthetic isotope exchange is an important tool for predicting the influence of plant communities on the global carbon cycle in response to climate change. C(4) grasses play an important role in the global carbon cycle, but their contribution to the isotopic composition of atmospheric CO(2) is not well understood. Instantaneous measurements of (13)CO(2) (Delta(13)C) and C(18)OO (Delta(18)O) isotope exchange in five NAD-ME and seven NADP-ME C(4) grasses have been conducted to investigate the difference in photosynthetic CO(2) isotopic fractionation in these subgroups. As previously reported, the isotope composition of the leaf material (delta(13)C) was depleted in (13)C in the NAD-ME compared with the NADP-ME grasses. However, Delta(13)C was not different between subtypes at high light, and, although Delta(13)C increased at low light, it did so similarly in both subtypes. This suggests that differences in leaf delta(13)C between the C(4) subtypes are not caused by photosynthetic isotope fractionation and leaf delta(13)C is not a good indicator of bundle sheath leakiness. Additionally, low carbonic anhydrase (CA) in C(4) grasses may influences Delta(13)C and should be considered when estimating the contribution of C(4) grasses to the global isotopic signature of atmospheric CO(2). It was found that measured Delta(18)O values were lower than those predicted from leaf CA activities and Delta(18)O was similar in all species measured. The Delta(18)O in these C(4) grasses is similar to low Delta(18)O previously measured in C(4) dicots which contain 2.5 times the leaf CA activity, suggesting that leaf CA activity is not a predictor of Delta(18)O in C(4) plants.  相似文献   

16.
The maximal turnover rate of CO2 hydration catalyzed by the carbonic anhydrases is limited by proton transfer steps from the zinc-bound water to solution, steps that regenerate the catalytically active zinc-bound hydroxide. Catalysis of CO2 hydration by wild-type human carbonic anhydrase III (HCA III) (k(cat) = 2 ms (-1)) is the least efficient among the carbonic anhydrases in its class, in part because it lacks an efficient proton shuttle residue. We have used site-directed mutagenesis to test positions within the active-site cavity of HCA III for their ability to carry out proton transfer by replacing various residues with histidine. Catalysis by wild-type HCA III and these six variants was determined from the initial velocity of hydration of CO2 measured by stopped-flow spectrophotometry and from the exchange of 18O between CO2 and H2O at chemical equilibrium by mass spectrometry. The results show that histidine at three positions (Lys64His, Arg67His and Phe131His) have the capacity to transfer protons during catalysis, enhancing maximal velocity of CO2 hydration and 18O exchange from 4- to 15-fold compared with wild-type HCA III. Histidine residues at the other three positions (Trp5His, Tyr7His, Phe20His) showed no firm evidence for proton transfer. These results are discussed in terms of the stereochemistry of the active-site cavity and possible proton transfer pathways.  相似文献   

17.
Individual blastocysts from cows were cultured for 3 h under 5% CO2 in air, in 4 microliters droplets of Ham's F-10 medium containing D-[5-3H]glucose, D-[1-14C]-glucose, D-[6-14C]glucose, [2-14C]pyruvate, or L-[U-14C]glutamine, and with or without 2,4-dinitrophenol (DNP) or phenazine ethosulphate (PES). The 14CO2 or 3H2O produced were collected by exchange with an outer bath of 400 microliter 25 mM-NaHCO3. All combinations of substrate and treatment (control, DNP or PES) produced measurable quantities of labelled product except for D-[6-14C]glucose in the presence of PES. Untreated and DNP-treated embryos developed normally during a subsequent 48-h culture period in fresh medium, but PES-treated embryos degenerated. Pyruvate and glutamine metabolism both increased markedly in the presence of DNP, indicating that the Krebs' cycle is active, and that glutamine can be used as an energy substrate. Conversely, DNP has no significant effect on glucose metabolism, indicating that glycolysis is blocked in the bovine blastocyst due to a lack or inhibition of pyruvate kinase. The production of 14CO2 from D-[1-14C]glucose increased significantly in the presence of PES, indicating that the activity of the pentose shunt is less than maximal.  相似文献   

18.
Determination of whether CO2 or HCO3- is the substrate for an enzymatic carboxylation has generally been accomplished by taking advantage of the fact that equilibration of these two compounds requires more than a minute at temperatures below 15 degrees C; thus different kinetics of carboxylation are obtained depending on whether CO2 or HCO3- is used to initiate the reaction. We report a new method using 13C18O2 as substrate for determining the CO2/HCO3- specificity of carboxylases. If CO2 is the substrate, then the 18O content of the 13C-containing product is the same as that of the 13CO2 used, whereas if HCO3- is the substrate, the 18O content is 2/3 that of the starting material. The method is independent of the detailed kinetics of the CO2/HCO3- interconversion and independent of the presence of contaminating unlabeled CO2 or HCO3-. Isotopic analysis is accomplished by 13C NMR. The method has been used to confirm that HCO3- is the substrate for phosphoenolpyruvate carboxylase. Studies of oxygen-18 isotope shifts in phosphorus NMR spectra have permitted confirmation of the observation that label is transferred from HC18O3- into Pi during the carboxylation of phosphoenolpyruvate.  相似文献   

19.
Porphobilinogen synthase (PBGS) catalyzes the asymmetric condensation of two molecules of 5-aminolevulinic acid (ALA). Despite the 280,000-dalton size of PBGS, much can be learned about the reaction mechanism through 13C and 15N NMR. To our knowledge, these studies represent the largest protein complex for which individual nuclei have been characterized by 13C or 15N NMR. Here we extend our 13C NMR studies to PBGS complexes with [3,3-2H2,3-13C]ALA and report 15N NMR studies of [15N]ALA bound to PBGS. As in our previous 13C NMR studies, observation of enzyme-bound 15N-labeled species was facilitated by deuteration at nitrogens that are attached to slowly exchanging hydrogens. For holo-PBGS at neutral pH, the NMR spectra reflect the structure of the enzyme-bound product porphobilinogen (PBG), whose chemical shifts are uniformly consistent with deprotonation of the amino group whose solution pKa is 11. Despite this local environment, the protons of the amino group are in rapid exchange with solvent (kexchange greater than 10(2) s-1). For methyl methanethiosulfonate (MMTS) modified PBGS, the NMR spectra reflect the chemistry of an enzyme-bound Schiff base intermediate that is formed between C4 of ALA and an active-site lysine. The 13C chemical shift of [3,3-2H2,3-13C]ALA confirms that the Schiff base is an imine of E stereochemistry. By comparison to model imines formed between [15N]ALA and hydrazine or hydroxylamine, the 15N chemical shift of the enzyme-bound Schiff base suggests that the free amino group is an environment resembling partial deprotonation; again the protons are in rapid exchange with solvent. Deprotonation of the amino group would facilitate formation of a Schiff base between the amino group of the enzyme-bound Schiff base and C4 of the second ALA substrate. This is the first evidence supporting carbon-nitrogen bond formation as the initial site of interaction between the two substrate molecules.  相似文献   

20.
Contributions of C3 and C4 plants to respiration of C3-C4 ecosystems can be estimated on the basis of their contrasting 13C discrimination. But accurate partitioning requires accurate measurements of the isotope signature of whole system respiratory CO2 (deltaR), and of its members (delta3 and delta4). Unfortunately, experimental determination of representative delta3 and delta4 values is virtually impossible in nature, generating a need for proxies (surrogates) of delta3 and delta4 values (e.g., the delta of leaf biomass). However, recent evidence indicates that there may be systematic differences among the delta of respiratory and biomass components. Thus, partitioning may be biased depending on the proxy. We tested a wide range of biomass- and respiration-based delta proxies for the partitioning of respiration of mixed Lolium perenne (C3) - Paspalum dilatatum (C4) stands growing at two temperatures inside large 13CO2/ 12CO2 gas exchange chambers. Proxy-based partitioning was compared with results of reference methods, including (i) the delta of whole plant respiratory CO2 (delta3 and delta4) or (ii) respiration rate of intact C3 and C4 plants. Results of the reference methods agreed near perfectly. Conversely, some proxies yielded erroneous partitioning results. Partitioning based on either the delta of shoot or root respiratory CO2 produced the worst bias, because shoot respiratory CO2 was enriched in 13C by several per thousand and root respiratory CO2 was depleted by several per thousand relative to whole plant respiratory CO2. Use of whole plant or whole shoot biomass delta gave satisfactory partitioning results under the constant conditions of the experiments, but their use in natural settings is cautioned if environmental conditions are variable and the time scales of respiration partitioning differ strongly from the residence time of C in biomass. Other biomass-based proxies with faster turnover (e.g., leaf growth zones) may be more useful in changing conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号