首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
In British Columbia, Canada, infectious hematopoietic necrosis virus (IHNV) is prevalent in wild sockeye salmon Oncorhynchus nerka and has caused disease in seawater net-pen reared Atlantic salmon Salmo salar. In this study, chinook salmon Oncorhynchus tshawytscha experimentally exposed to an isolate of IHNV found in British Columbia became carriers of the virus. When Atlantic salmon were cohabited with these virus-exposed chinook salmon, IHNV was isolated from the Atlantic salmon. Identification of chinook salmon populations that have been exposed to IHNV may be difficult, as virus isolation was successful only in fish that were concurrently infected with either Renibacterium salmoninarum or Piscirickettisia salmonis. Also, IHNV-specific antibodies were detected in only 2 of the 70 fish experimentally exposed to the virus. Two samples collected from chinook salmon exposed to IHNV while at a salt water net-pen site had a seroprevalence of 19 and 22%; however, the inconsistencies between our laboratory and field data suggest that further research is required before we can rely on serological analysis for identifying potential carrier populations. Because of the difficulty in determining the exposure status of populations of chinook salmon, especially if there is no concurrent disease, it may be prudent not to cohabit Atlantic salmon with chinook salmon on a farm if there is any possibility that the latter have been exposed to the virus.  相似文献   

2.
Infectious hematopoietic necrosis (IHN) leads to periodic epidemics among certain wild and farmed fish species of the Northeast (NE) Pacific. The source of the IHN virus (IHNV) that initiates these outbreaks remains unknown; however, a leading hypothesis involves viral persistence in marine host species such as Pacific herring Clupea pallasii. Under laboratory conditions we exposed specific pathogen-free (SPF) larval and juvenile Pacific herring to 10(3) to 10(4) plaque-forming units (pfu) of IHNV ml(-1) by waterborne immersion. Cumulative mortalities among exposed groups were not significantly different from those of negative control groups. After waterborne exposure, IHNV was transiently recovered from the tissues of larvae but absent in tissues of juveniles. Additionally, no evidence of viral shedding was detected in the tank water containing exposed juveniles. After intraperitoneal (IP) injection of IHNV in juvenile herring with 10(3) pfu, IHNV was recovered from the tissues of sub-sampled individuals for only the first 5 d post-exposure. The lack of susceptibility to overt disease and transient levels of IHNV in the tissues of exposed fish indicate that Pacific herring do not likely serve a major epizootiological role in perpetuation of IHNV among free-ranging sockeye salmon Oncorhynchus nerka and farmed Atlantic salmon Salmo salar in the NE Pacific.  相似文献   

3.
Understanding how pathogenic organisms spread in the environment is crucial for the management of disease, yet knowledge of propagule dispersal and transmission in aquatic environments is limited. We conducted empirical studies using the aquatic virus, infectious hematopoietic necrosis virus (IHNV), to quantify infectious dose, shedding capacity, and virus destruction rates in order to better understand the transmission of IHN virus among Atlantic salmon marine net-pen aquaculture. Transmission of virus and subsequent mortality in Atlantic salmon post-smolts was initiated with as low as 10 plaque forming units (pfu) ml−1. Virus shedding from IHNV infected Atlantic salmon was detected before the onset of visible signs of disease with peak shed rates averaging 3.2×107 pfu fish−1 hour−1 one to two days prior to mortality. Once shed into the marine environment, the abundance of free IHNV is modulated by sunlight (UV A and B) and the growth of natural biota present in the seawater. Virus decayed very slowly in sterilized seawater while rates as high as k =  4.37 d−1 were observed in natural seawater. Decay rates were further accelerated when exposed to sunlight with virus infectivity reduced by six orders of magnitude within 3 hours of full sunlight exposure. Coupling the IHNV transmission parameter estimates determined here with physical water circulation models, will increase the understanding of IHNV dispersal and provide accurate geospatial predictions of risk for IHNV transmission from marine salmon sites.  相似文献   

4.
The efficacy of teflubenzuron (Calicide) for the treatment of farmed Atlantic salmon Salmo salar L. infested with sea lice Lepeophtheirus salmonis (Kr?yer, 1838), was investigated at low water temperatures in 2 commercial salmon farms. Calicide, coated on commercial feed pellets, was administered orally at 10 mg kg(-1) d(-1) for 7 consecutive days. Fish were randomly sampled and lice numbers recorded from both treated and control groups on 3 or 4 sampling occasions post-medication. Statistically significant reductions in the number of L. salmonis per fish were recorded. Maximum efficacy was observed toward chalimus and preadult stages of L. salmonis, and was achieved approximately 26 d post-medication. No adverse drug reactions or palatability problems were associated with the treatments.  相似文献   

5.
Sexually mature female Chinook salmon Oncorhynchus tshawytscha with no prior history of exposure to infectious hematopoietic necrosis virus (IHNV) were susceptible to experimental infection induced by additions of virus to the water. The resulting infections resembled those observed among naturally infected hatchery and wild populations of Chinook salmon. Virus was detected as early as 4 d post-exposure (p.e.) and subsequently in all virus-exposed fish that died or that were examined at 14 d p.e. when the study was terminated. The greatest concentrations of virus, up to 10(8) plaque-forming units (pfu) ml(-1), were found in the ovarian fluid at 13 to 14 d p.e., but the virus was also found in high concentrations in the gill, kidney/spleen and plasma. In contrast, the virus was not recovered from unexposed control adult salmon that died or were sampled at the end of the study. Despite detecting concentrations of IHNV in excess of 10(7) pfu g(-1) of tissue, no specific microscopic lesions were found in IHNV-exposed compared to unexposed control salmon. The results of this initial study suggest that virus in the spawning environment, either from adult salmon or other sources, may contribute to its rapid spread among adult Chinook salmon, thereby considerably increasing the prevalence of IHNV infection in both wild and hatchery populations of adult Chinook salmon.  相似文献   

6.
Adult and mobile preadult sea lice Lepophtheirus salmonis were incubated with mucus samples from rainbow trout (Oncorhynchus mykiss), coho salmon (O. kisutch), Atlantic salmon (Salmo salar), and winter flounder (Pseudopleuronectes americanus) to determine the response of L. salmonis to fish skin mucus as assessed by the release of proteases and alkaline phosphatase. There was variation in the release of respective enzymes by sea lice in response to different fish. As well, sealice collected from British Columbia responded differently than New Brunswick sea lice to coho salmon mucus. Fish mucus and seawater samples were also analyzed using protease gel zymography to observe changes in the presence of low molecular weight (LMW) proteases after L. salmonis incubation. Significantly higher proportions of sea lice secreted multiple bands of L. salmonis-derived LMW proteases after incubation with rainbow trout or Atlantic salmon mucus in comparison with seawater, coho salmon, or winter flounder mucus. Susceptibility to L. salmonis infections may be related to the stimulation of LMW proteases from L. salmonis by fish mucus. The resistance of coho salmon to L. salmonis infection may be due to agents in their mucus that block the secretion of these LMW proteases or factors may exist in the mucus of susceptible species that stimulate their release.  相似文献   

7.
A Scottish isolate of Piscirickettsia salmonis (SCO-95A), previously shown by intraperitoneal injection to have a lethal dose (LD50) of < 2 x 10(3) infectious rickettsial units, was tested for virulence by bath challenge, surface application to the skin, or dorsal median sinus injection. Atlantic salmon Salmo salar post-smolts were used in all experiments, and exposure to 1 x 10(5) tissue culture infective doses (TCID) of P. salmonis ml(-1) for 1 h in a bath challenge resulted in only 1 mortality, 18 d later, in 10 exposed fish. Application of 2.5 x 10(6) TCID of P. salmonis SCO-95A to paper discs on the skin failed to induce any mortalities within 42 d. Intraperitoneally, fish were administered vaccines containing 10(9) heat-inactivated (100 degrees C, 30 min) or 10(9) formalin-inactivated P. salmonis SCO-95A in adjuvant, with a control group receiving phosphate-buffered saline (PBS) in adjuvant. After an induction period of over 6 mo fish were challenged by injection of P. salmonis into the dorsal median sinus. Mortalities in the control group reached 81.8% and the heat-inactivated and formalin-inactivated vaccines gave significant protection from P. salmonis, with relative percentage survivals of 70.7 and 49.6%, respectively. The nature of the protective antigen is unknown, but could be lipopolysaccharide or a heat-stable outer membrane protein. Fish that survived a dorsal median sinus challenge of P. salmonis or were cohabitants showed a strong immune response to P. salmonis.  相似文献   

8.
The search for effective and long-term solutions to the problems caused by salmon lice Lepeophtheirus salmonis (Kr?yer, 1837) has increasingly included biological/ecological mechanisms to combat infestation. One aspect of this work focuses on the host-associated stimuli that parasites use to locate and discriminate a compatible host. In this study we used electrophysiological recordings made directly from the antennule of adult lice to investigate the chemosensitivity of L. salmonis to putative chemical attractants from fish flesh, prepared by soaking whole fish tissue in seawater. There was a clear physiological response to whole fish extract (WFX) with threshold sensitivity at a dilution of 10 . When WFX was size fractionated, L. salmonis showed the greatest responses to the water-soluble fractions containing compounds between 1 and 10 kDa. The results suggest that the low molecular weight, water-soluble compounds found in salmon flesh may be important in salmon lice host choice.  相似文献   

9.
Atlantic salmon Salmo salar naturally and experimentally exposed to infectious hematopoietic necrosis virus (IHNV) in British Columbia, Canada, developed antibodies against the virus. More than 50% of the fish exposed to IHNV remained seropositive for several months after the IHN epizootic had subsided. The virus itself could not be detected in asymptomatic fish once the fish had recovered from IHN. The persistence of IHNV-specific antibodies in a large percentage of Atlantic salmon, from 4 different populations that survived an outbreak of IHN, and the lack of IHNV-specific antibodies in fish with no history of the disease, suggests that serology may be a useful tool for determining previous exposure to the virus. It may be important to determine whether Atlantic salmon have been infected with IHNV because, although the virus is difficult to detect in asymptomatic fish, an incidental finding suggests it may persist in a small number of fish after the outbreak has subsided. Furthermore, the presence of seropositive fish would be an indication that the virus may be enzootic at a farm, and such information would thus aid producers with stocking decisions.  相似文献   

10.
The detection of infectious hematopoietic necrosis virus (IHNV) in infected rainbow trout Oncorhynchus mykiss and in cell culture supernatants stored under different conditions was studied. IHNV-positive fish visceral organ homogenates and cell culture supernatants were incubated at 4 and 25 degrees C. Virus titre was measured by virus isolation on epithelioma papulosum cyprini (EPC) cells and the IHNV RNA was detected by RT-PCR and semi-nested RT-PCR. The influence of repeated freezing and thawing on the virus isolation from organ homogenates and from cell culture supernatants was studied as well. It was possible to isolate the virus from IHNV-positive organ material during the 3 d of incubation at 4 degrees C but, only on the first day of incubation at 25 degrees C. Viral RNA could be amplified during the incubation period of 35 d at 4 degrees C but only during 8 d of incubation at 25 degrees C. In IHNV-infected cell culture supernatant stored at 4 degrees C, it was possible to detect virus for 36 and 16 d in supernatant stored at 25 degrees C. Viral RNA could be followed by using molecular methods during the entire experimental period of 123 d. Each cycle of freezing and thawing of samples resulted in a reduction of IHNV titre in the suspension of visceral organs, while the virus titre in cell culture supernatant remained almost the same following 33 freezing-thawing cycles. The present results show that rapid laboratory processing and storage of potentially virus-containing tissue samples as well as the use of different detection methods are very important for efficient IHNV diagnosis.  相似文献   

11.
12.
Naked DNA vaccination of Atlantic salmon Salmo salar against IHNV   总被引:7,自引:0,他引:7  
A naked plasmid DNA encoding the glycoprotein (pCMV4-G) of a 1976 isolate of infectious hematopoietic necrosis virus (IHNV) obtained from steelhead Oncorhynchus mykiss was used to vaccinate Atlantic salmon Salmo salar against IHNV. Eight weeks post-vaccination the fish were challenged with a strain of IHNV originally isolated from farmed Atlantic salmon undergoing an epizootic. Fish injected with the glycoprotein-encoding plasmid were significantly (p < 0.05) protected against IHNV by both immersion and cohabitation challenge. Survivors of the first challenges were pooled and re-challenged by immersion 12 wk after the initial challenge. Significant (p < 0.05) protection was observed in all of the previously challenged groups including those receiving the complete vaccine. Fish injected with the glycoprotein-encoding plasmid produced low levels of virus-neutralizing antibodies prior to the first challenge. Neutralizing antibodies increased in all groups after exposure to the IHNV. Passive transfer of pooled sera from pCMV4-G vaccinates and IHN survivors provided relative survivals of 40 to 100% compared to fish injected with sera collected from fish immunized with control vaccines or left unhandled. In this study, DNA vaccination effectively protected Atlantic salmon smolts against challenges with IHNV.  相似文献   

13.
In studies of the salmon louse Lepeophtheirus salmonis (Kr?yer, 1837), experimental design is complicated by a highly variable and unpredictable lice loss among common experimental tanks and a substantial rate of host transfer within tanks. When fish hosting L. salmonis are maintained in individual tanks, unspecific effects such as host transfer, louse predation by cohabitant hosts and agonistic host interactions are excluded. This study suggests that it is possible to maintain Atlantic salmon Salmo salar infected with L. salmonis in an array of small, single fish tanks and, by doing so, provide an experimental system in which the loss of motile pre-adult and adult stages of L. salmonis is predictable. Here, lice can be collected shortly after detachment for detailed studies or to provide mortality curves of lice from individual fish. This represents an experimental approach improving precision in studies of L. salmonis, such as drug and vaccine efficacy assays, RNA interference (RNAi) studies and host-parasite interactions. The natural loss of pre-adult/adult L. salmonis from the system was higher for males than females. The loss of females appeared to be a process somewhat selective against large individuals. Inherent qualities of the host appeared to be of little significance in explaining the variability in loss of preadult/adult lice.  相似文献   

14.
Two trials were conducted at commercial salmon farms to evaluate the efficacy of emamectin benzoate (Slice, 0.2% aquaculture pre-mix, Schering-Plough Animal Health) as a treatment for sea lice Lepeophtheirus salmonis (Kr?yer) and Caligus elongatus Nordmann infestations in Atlantic salmon Salmo salar L. Trials were carried out in 15 m2 commercial sea pens, at temperatures of 5.5 to 7.5 degrees C and 10.8 to 13.8 degrees C. Each pen was stocked with 14,000 to 17,500 fish with mean weights of 0.44 to 0.74 and 1.33 to 1.83 kg. Fish were naturally infested with sea lice at the start of each trial. At Day -1, samples of 10 or 15 fish were taken from each pen to determine pre-treatment numbers of lice. Emamectin benzoate was administered in feed, to 4 replicate pens, at a dose of 50 micrograms kg-1 biomass d-1 for 7 consecutive days (Days 0 to 6). Sea lice were counted again, between Days 7 and 77, and comparisons made with untreated control fish. Despite adverse weather conditions, wide variations in fish weights and exposure to new infestations, treatment was effective against chalimus and motile stages of L. salmonis. In the autumn trial, efficacy at Day 27 was 89%, and lice numbers remained lower on treated fish than on control fish 64 d from the start of treatment. In the winter trial, reductions in lice numbers at low temperatures were slower but good efficacy was achieved by Day 35. Although control fish had to be treated with hydrogen peroxide at Day 21, fish treated only with emamectin benzoate on Days 0 to 6 still had 89% fewer lice than control fish at Day 35. There were very few C. elongatus present, but at the end of both trials numbers were lower on treated fish. No adverse effects were associated with treatment of fish with emamectin benzoate.  相似文献   

15.
Physiological, immunological and biochemical parameters of blood and mucus, as well as skin histology, were compared in 3 salmonid species (rainbow trout Oncorhynchus mykiss, Atlantic salmon Salmo salar and coho salmon O. kisutch) following experimental infection with sea lice Lepeophtheirus salmonis. The 3 salmonid species were cohabited in order to standardize initial infection conditions. Lice density was significantly reduced on coho salmon within 7 to 14 d, while lice persisted in higher numbers on rainbow trout and Atlantic salmon. Lice matured more slowly on coho salmon than on the other 2 species, and maturation was slightly slower on rainbow trout than on Atlantic salmon. Head kidney macrophages from infected Atlantic salmon had diminished respiratory burst and phagocytic capacity at 14 and 21 d post-infection (dpi), while infected rainbow trout macrophages had reduced respiratory burst and phagocytic capacities at 21 dpi, compared to controls. The slower development of lice, coupled with delayed suppression of immune parameters, suggests that rainbow trout are slightly more resistant to lice than Atlantic salmon. Infected rainbow trout and Atlantic salmon showed increases in mucus lysozyme activities at 1 dpi, which decreased over the rest of the study. Mucus lysozyme activities of infected rainbow trout, however, remained higher than controls over the entire period. Coho salmon lysozyme activities did not increase in infected fish until 21 dpi. Mucus alkaline phosphatase levels were also higher in infected Atlantic salmon compared to controls at 3 and 21 dpi. Low molecular weight (LMW) proteases increased in infected rainbow trout and Atlantic salmon between 14 and 21 dpi. Histological analysis of the outer epithelium revealed mucus cell hypertrophy in rainbow trout and Atlantic salmon following infection. Plasma cortisol, glucose, electrolyte and protein concentrations and hematocrit all remained within physiological limits for each species, with no differences occurring between infected and control fish. Our results demonstrate that significant differences in mucus biochemistry and numbers of L. salmonis occur between these species.  相似文献   

16.
Integrated multitrophic aquaculture (IMTA) reduces the environmental impacts of commercial aquaculture systems by combining the cultivation of fed species with extractive species. Shellfish play a critical role in IMTA systems by filter-feeding particulate-bound organic nutrients. As bioaccumulating organisms, shellfish may also increase disease risk on farms by serving as reservoirs for important finfish pathogens such as infectious pancreatic necrosis virus (IPNV). The ability of the blue mussel (Mytilus edulis) to bioaccumulate and transmit IPNV to naive Atlantic salmon (Salmo salar) smolts was investigated. To determine the ability of mussels to filter and accumulate viable IPNV, mussels were held in water containing log 4.6 50% tissue culture infective dose(s) (TCID50) of the West Buxton strain of IPNV ml−1. Viable IPNV was detected in the digestive glands (DGs) of IPNV-exposed mussels as early as 2 h postexposure. The viral load in mussel DG tissue significantly increased with time and reached log 5.35 ± 0.25 TCID50 g of DG tissue−1 after 120 h of exposure. IPNV titers never reached levels that were significantly greater than that in the water. Viable IPNV was detected in mussel feces out to 7 days postdepuration, and the virus persisted in DG tissues for at least 18 days of depuration. To determine whether IPNV can be transmitted from mussels to Atlantic salmon, IPNV-exposed mussels were cohabitated with naive Atlantic salmon smolts. Transmission of IPNV did occur from mussels to smolts at a low frequency. The results demonstrate that a nonenveloped virus, such as IPNV, can accumulate in mussels and be transferred to naive fish.  相似文献   

17.
Atlantic salmon Salmo salar L. artificially infected with salmon lice Lepeophtheirus salmonis (Kr?yer 1837) recovered from detrimental physiological changes and skin damage induced by preadult lice as the parasites matured. Growth rates of Atlantic salmon remained unaffected by lice infection, but food consumption decreased with increasing feeding and movement of the lice prior to and post-mating, correlating with the appearance of head erosions and detrimental changes in physiological integrity. Food consumption of the fish increased as the lice moulted to the adult stage and gravid female lice settled in a posterior location on the fish, subsequently reducing the impact of infection and allowing recovery of the skin damage. However, the impact of preadults was limited, as the decrease in food consumption of fish at 21 d post-infection had no effect on either the specific growth rate or condition factor of the fish. Furthermore, the intensity of lice infections at each of the sample days was not correlated with food consumption, specific growth rate or any of the haematological or physiological parameters measured, either before or after infection, indicating that lice intensity was independent of social dominance/subordinance. This work has provided the first evidence that infected fish can recover from the detrimental changes caused by lice infection, even when they are still infected with lice. If fish can survive the preadult stage of lice, then the mortal impact of lice infections is greatly reduced.  相似文献   

18.
Using cluster random sampling theory and empirical estimates of the intra‐class correlations for sea lice Lepeophtheirus salmonis abundances, methods on how best to sample Atlantic salmon Salmo salar from cages on farms were derived. Estimates of intra‐class correlations for the abundance of the chalimus and mobile sea lice stages on Atlantic salmon in Scottish farms are given. These correlations were higher for mobile stages than for chalimus, and they had a substantive effect on increasing the number of cages and fish to be sampled for all sea lice stages. An important finding is that it is better to have a procedure that randomly samples a large number of cages using a small number of fish from each. This finding and the cluster random sampling approach have relevance to the monitoring of all marine species being farmed in cages or tanks.  相似文献   

19.
Animal migrations can affect disease dynamics. One consequence of migration common to marine fish and invertebrates is migratory allopatry-a period of spatial separation between adult and juvenile hosts, which is caused by host migration and which prevents parasite transmission from adult to juvenile hosts. We studied this characteristic for sea lice (Lepeophtheirus salmonis and Caligus clemensi) and pink salmon (Oncorhynchus gorbuscha) from one of the Canada's largest salmon stocks. Migratory allopatry protects juvenile salmon from L. salmonis for two to three months of early marine life (2-3% prevalence). In contrast, host diversity facilitates access for C. clemensi to juvenile salmon (8-20% prevalence) but infections appear ephemeral. Aquaculture can augment host abundance and diversity and increase parasite exposure of wild juvenile fish. An empirically parametrized model shows high sensitivity of salmon populations to increased L. salmonis exposure, predicting population collapse at one to five motile L. salmonis per juvenile pink salmon. These results characterize parasite threats of salmon aquaculture to wild salmon populations and show how host migration and diversity are important factors affecting parasite transmission in the oceans.  相似文献   

20.
Adult male sea lice Lepeophtheirus salmonis were more likely to leave host fish Atlantic salmon Salmo salar if they detected the chemical cues of other adult male lice than if they detect cues of female lice. The detection of both male and female chemical cues yielded an intermediate response. These results suggest that males use chemical cues to balance competition for resources and mate acquisition, and they highlight the need for further studies of the chemical ecology of this important parasite.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号