首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recent studies indicate that hybridization in animals occurs more frequently than previously thought and that it may play an important evolutionary role. Chelonians are capable of extensive hybridization, raising the question how chelonian species evolve and maintain genetic integrity despite hybridization. Here, we use two sister species with parapatric distribution, Mauremys caspica and M. rivulata, as our model. These taxa are estimated to have diverged some 5.3–7.0 million years ago. Using rangewide sampling and 13 unlinked polymorphic microsatellite markers, five nuclear loci and one mitochondrial gene, we show that hybridization is rare along the contact zone of the two species in Turkey. However, we discovered an unexpected hybrid swarm in the southern Levant that has been hitherto identified with M. rivulata. This hybrid swarm is separated from the inland species M. caspica by a 700‐km‐wide distribution gap corresponding to the Syrian Desert. Ecological palaeomodelling suggests that during more humid climatic episodes in the Last Glacial Maximum and mid‐Holocene, the current contact zone extended into the southern Levant, facilitating the establishment of the now isolated hybrid swarm. Our results support that there is not necessarily a general hybridization pattern in a given species couple and that the extent of gene flow may differ considerably in different parts of the distribution range. Moreover, our results highlight that studies on hybridization should not focus only on extant contact and hybrid zones, but should use rangewide sampling to detect signals of ancient hybridization that might otherwise be missed.  相似文献   

2.
Much progress in speciation research stems from documenting patterns of morphological and genetic variation in hybrid zones. Contrasting patterns of marker introgression in different sections of the contact can provide valuable insights on the relative importance of various evolutionary mechanisms maintaining species differences in the face of hybridization and gene flow and on hybrid zone temporal and spatial dynamics. We studied species interactions in the common toads Bufo bufo and B. spinosus in France and northwestern Italy using morphological and molecular data from the mitochondrial and nuclear genomes in an extensive survey, including two independent transects west and east of the Alps. At both, we found sharp, coincident and concordant nuclear genetic transitions. However, morphological clines were wider or absent and mtDNA introgression was asymmetric. We discuss alternative, nonexclusive hypotheses about evolutionary processes generating these patterns, including drift, selection, long‐distance dispersal and spatial shifts in hybrid zone location and structure. The distribution of intraspecific mtDNA lineages supports a scenario in which B. bufo held a local refugium during the last glacial maximum. Present‐day genetic profiles are best explained by an advance of B. spinosus from a nearby Iberian refugium, largely superseding the local B. bufo population, followed by an advance of B. bufo from the Balkans, with prongs north and south of the Alps, driving B. spinosus southwards. A pendulum moving hybrid zone, first northwards and then southwards, explains the wide areas of introgression at either side of the current position of the contact zones.  相似文献   

3.
Geographic range size and genetic diversity are key correlates of extinction risk and evolutionary potential of a species, with species occupying smaller geographic ranges and showing limited genetic diversity assumed to be more threatened by environmental changes. The Italian Aesculapian snake Zamenis lineatus is a narrow‐range endemic of southern Italy and Sicily, once considered as part of the widespread species Z. longissimus. To date, we still lack comprehensive data on geographic range and intraspecific diversity of Z. lineatus. In this study, we analysed 106 Aesculapian snakes across the Italian Peninsula and Sicily in order to define the genetic diversity and distribution range of Z. lineatus, its possible range overlap with Z. longissimus and to assess whether hybridization occurs at the species’ range boundaries. We combined genetic data from mitochondrial and nuclear DNA markers with phenotypic data suitable for taxonomic identification. The observed phylogeographic pattern of Z. lineatus suggests: (i) a reduced peninsular range size, about a half of what is currently considered; (ii) limited genetic diversity and weak population structure; (iii) the occurrence of pervasive introgressive hybridization with Z. longissimus in the eastern contact zone. Together, results from this study indicate a higher extinction risk for Z. lineatus than previously appreciated and provide directions for future studies on the hybridization at the contact zone(s) between Z. lineatus and Z. longissimus.  相似文献   

4.
Reinforcement contact zones, which are secondary contact zones where species are diverging in reproductive behaviors due to selection against hybridization, represent natural laboratories for studying speciation‐in‐action. Here, we examined replicate localities across the entire reinforcement contact zone between North American chorus frogs Pseudacris feriarum and P. nigrita to investigate geographic variation in hybridization frequencies and to assess whether reinforcement may have contributed to increased genetic divergence within species. Previous work indicated these species have undergone reproductive character displacement (RCD) in male acoustic signals and female preferences due to reinforcement. We also examined acoustic signal variation across the contact zone to assess whether signal characteristics reliably predict hybrid index and to elucidate whether the degree of RCD predicts hybridization rate. Using microsatellites, mitochondrial sequences, and acoustic signal information from >1,000 individuals across >50 localities and ten sympatric focal regions, we demonstrate: (1) hybridization occurs and (2) varies substantially across the geographic range of the contact zone, (3) hybridization is asymmetric and in the direction predicted from observed patterns of asymmetric RCD, (4) in one species, genetic distance is higher between conspecific localities where one or both have been reinforced than between nonreinforced localities, after controlling for geographic distance, (5) acoustic signal characters strongly predict hybrid index, and (6) the degree of RCD does not strongly predict admixture levels. By showing that hybridization occurs in all sympatric localities, this study provides the fifth and final line of evidence that reproductive character displacement is due to reinforcement in the chorus frog contact zone. Furthermore, this work suggests that the dual action of cascade reinforcement and partial geographic isolation is promoting genetic diversification within one of the reinforced species.  相似文献   

5.
Natural hybridization of plants can result in many outcomes with several evolutionary consequences, such as hybrid speciation and introgression. Natural hybrid zones can arise in mountain systems as a result of fluctuating climate during the exchange of glacial and interglacial periods, where species retract and expand their territories, resulting in secondary contacts. Willows are a large genus of woody plants with an immense capability of interspecific crossing. In this study, the sympatric area of two diploid sister species, S. foetida and S. waldsteiniana in the eastern European Alps, was investigated to study the genomic structure of populations within and outside their contact zone and to analyze congruence of morphological phenotypes with genetic data. Eleven populations of the two species were sampled across the Alps and examined using phylogenetic network and population genetic structure analyses of RAD Seq data and morphometric analyses of leaves. The results showed that a homoploid hybrid zone between the two species was established within their sympatric area. Patterns of genetic admixture in homoploid hybrids indicated introgression with asymmetric backcrossing to not only one of the parental species but also one hybrid population forming a separate lineage. The lack of F1 hybrids indicated a long-term persistence of the hybrid populations. Insignificant isolation by distance suggests that gene flow can act over large geographical scales. Morphometric characteristics of hybrids supported the molecular data and clearly separated populations of the parental species, but showed intermediacy in the hybrid zone populations with a bias toward S. waldsteiniana. The homoploid hybrid zone might have been established via secondary contact hybridization, and its establishment was fostered by the low genetic divergence of parental species and a lack of strong intrinsic crossing barriers. Incomplete ecological separation and the ability of long-distance dispersal of willows could have contributed to the spatial expansion of the hybrid zone.  相似文献   

6.
Hybrid zones represent natural laboratories to study gene flow, divergence and the nature of species boundaries between closely related taxa. We evaluated the level and extent of hybridization between Crocodylus moreletii and Crocodylus acutus using genetic and morphological data on 300 crocodiles from 65 localities. To our knowledge, this is the first genetic study that includes the entire historic range and sympatric zone of the two species. Contrary to expectations, Bayesian admixture proportions and maximum‐likelihood estimates of hybrid indexes revealed that most sampled crocodiles were admixed and that the hybrid zone is geographically extensive, extending well beyond their historical region of sympatry. We identified a few geographically isolated, nonadmixed populations of both parental species. Hybrids do not appear to be F1s or recent backcrosses, but rather are more likely later‐generation hybrids, suggesting that hybridization has been going on for several to many generations and is mostly the result of natural processes. Crocodylus moreletii is not the sister species of C. acutus, suggesting that the hybrid zone formed from secondary contact rather than primary divergence. Nonadmixed individuals from the two species were distinguishable based on morphological characters, whereas hybrids had a complex mosaic of morphological characters that hinders identification in the wild. Very few nonadmixed C. acutus and C. moreletii populations exist in the wild. Consequently, the last nonadmixed C. moreletii populations have become critically endangered. Indeed, not only the parental species but also the naturally occurring hybrids should be considered for their potential conservation value.  相似文献   

7.
Hybrid zones provide a rare opportunity to explore the processes involved in reproductive isolation and speciation. The southern hybrid zone between the southeastern Australian tree frogs Litoria ewingii and L. paraewingi has been comprehensively studied over the last 40 years, primarily using reproductive compatibility experiments and male advertisement calls. We used mitochondrial DNA (mtDNA) and eight nuclear microsatellite markers to characterize this hybrid zone along a historically studied transect and to test various dispersal‐dependent and dispersal‐independent hybrid zone models. The species are genetically distinct and the level of hybridization within the contact zone is low, with the majority of admixed individuals representing later‐generation hybrids. Based on previous experimental genetic compatibility studies, we predicted that hybrids with L. paraewingi mtDNA would be more frequent than hybrids with L. ewingii mtDNA. Surprisingly, a greater proportion of the identified hybrids had L. ewingii mtDNA. Geographical cline analyses showed a sharp transition in allele frequencies across the transect, and both the mtDNA and microsatellite data showed concordant cline centres, but were best supported by a model that allowed width to vary. Overall, the L. ewingiiL. paraewingi hybrid zone is best characterized as a tension zone, due to the narrow cline width, concordant genetic clines and low levels of hybridization.  相似文献   

8.
Distinguishing between hybrid zones formed by secondary contact versus parapatric divergence-with-gene-flow is an important challenge for understanding the interplay of geographic isolation and local adaptation in the origin of species. Similarly, distinguishing between natural hybrid zones and those that formed as a consequence of recent human activities has important conservation implications. Recent work has demonstrated the existence of a narrow hybrid zone between the plains gartersnake (Thamnophis radix) and Butler’s gartersnake (T. butleri) in the Great Lakes region of North America, raising questions about the history and conservation value of genetically admixed populations. Both taxa are of conservation concern, and it is not clear whether to regard hybridization as a threat or a natural interaction. Here we use phylogeographic and population genetic methods to assess the timescales of divergence and hybridization, and test for evidence that the hybrid zone is of recent origin. We assayed AFLP markers and ND2 mitochondrial DNA (mtDNA) sequences from T. radix, T. butleri, and the closely related short-headed gartersnake (T. brachystoma) throughout their North American ranges. We find shallow mtDNA divergence overall and high levels of variation within the contact zone. These patterns are inconsistent with recent contact of long-diverged taxa. It is not possible to distinguish true divergence-with-gene-flow from a long-term secondary contact zone, but we infer that the hybrid zone is a long-standing, natural interaction.  相似文献   

9.
Secondary contact between closely related species can lead to the formation of hybrid zones, allowing for interspecific gene flow. Hybrid zone movement can take place if one of the species possesses a competitive advantage over the other, ultimately resulting in species replacement. Such hybrid zone displacement is predicted to leave a genomic footprint across the landscape in the form of asymmetric gene flow (or introgression) of selectively neutral alleles from the displaced to the advancing species. Hybrid zone movement has been suggested for marbled newts in the Iberian Peninsula, supported by asymmetric gene flow and a distribution relict (i.e., an enclave) of Triturus marmoratus in the range of T. pygmaeus. We developed a panel of nuclear and mitochondrial SNP markers to test for the presence of a T. marmoratus genomic footprint in the Lisbon peninsula, south of the enclave. We found no additional populations of T. marmoratus. Analysis with the software Structure showed no genetic traces of T. marmoratus in T. pygmaeus. A principal component analysis showed some variation within the local T. pygmaeus, but it is unclear if this represents introgression from T. marmoratus. The results may be explained by (a) species replacement without introgressive hybridization and (b) displacement with hybridization followed by the near‐complete erosion of the footprint by purifying selection. We predict that testing for a genomic footprint north of the reported enclave would confirm that species replacement in these marbled newts occurred with hybridization.  相似文献   

10.
Measuring the diffusion of genes between diverging taxa through zones of secondary contact is an essential step to understand the extent and nature of the reproductive isolation that has been achieved. Previous studies have shown that the ocellated lizard (Lacerta lepida Daudin, 1802) has endured repeated range fragmentation associated with the climatic oscillations of the Plio‐Pleistocene that promoted diversification of many different evolutionary units within the species. However, the oldest divergence within the group is estimated to have occurred much earlier, during the Miocene, around 9 Ma and corresponds to the split between the subspecies Lacerta lepida nevadensis Buchholz (1963) and Lacerta lepida lepida Daudin (1802). Although these two evolutionary units have documented genetic and morphological differentiation, most probably accumulated during periods of allopatry, little is known about patterns of gene flow between them. In this study, we performed a population genetic analysis of a putative area of secondary contact between these two taxa, using mtDNA and microsatellite data. We assessed levels of gene flow across the contact zone to clarify to what extent gene flow may be occurring. Hybridization between the subspecies was observed by the presence of genetically introgressed individuals. However, the overall coincidence of mitochondrial and multilocus nuclear clines and generally steep clines support the idea that this contact zone is acting as a barrier to gene flow. Taken together, these results suggest that L. l. lepida and L. l. nevadensis are in independent evolutionary trajectories and should be considered as two different species.  相似文献   

11.
The dampwood termite genus ZootermopsisEmerson contains three recognized species with four distinct and consistent hydrocarbon phenotypes. Agonistic behaviors among nonreproductive insects from colonies of the same and different hydrocarbon phenotypes were observed in the laboratory. Various combinations of soldier versus nymphs, pseudergate versus pseudergate, and soldier versus soldier encounters were used in experimental trials. Soldiers or pseudergates seldom attack individuals of the same hydrocarbon phenotype. Z. angusticollis(Hagen) (phenotype II) is typically aggressive toward phenotype III of Z. nevadensis(Hagen) but not always aggressive against phenotype I of Z. nevadensis.The variation in response is dependent on which castes are placed in the bioassay arena: soldier versus soldier bouts result in consistent aggression, while pseudergate versus pseudergate or soldier versus nymphs contacts do not. Both pseudergates and soldiers of Z. laticeps(Banks) (phenotype IV) respond agonistically toward the other three phenotypes: Z. angusticollis (II) and Z. nevadensis(I and III). Although hydrocarbon phenotypes I and III, both Z. nevadensis,are morphologically indistinguishable, agonistic behavioral responses between phenotype I and phenotype III are not equivalent to I versus I or III versus III behavioral responses. The I versus III engagements, regardless of the castes involved, display a greater proportion of avoidance and aggressive responses than I or III intraphenotype encounters. We interpret the lack of avoidance or aggressive behavior within each of the two phenotypes of Z. nevadensisand the significant avoidance and aggressive behavior between phenotypes as definite evidence of discrimination between disparate hydrocarbon phenotypes. These agonistic bioassays along with data on distinct hydrocarbon patterns and geographic distributions serve as the basis for creating two subspecies of Z. nevadensis: Z. n. nevadensis(Hagen) and Z. n. nuttingiHaverty and Thorne, ssp. nov.  相似文献   

12.
The role of environment and the relative significance of endogenous versus exogenous selection in shaping hybrid zones have been crucial issues in the studies of hybridization. Recent advances in ecological niche modeling (ENM) offer new methodological tools, especially in combination with the genotyping of individuals in the hybrid zone. Here, we study the hybrid zone between the widely known spices Origanum onites and Origanum vulgare ssp. hirtum in Crete. We analyze the genetic structure of both parental taxa and their hybrid Origanum × intercendens using AFLP markers on 15 sympatric and 12 allopatric populations and employ ecological niche modeling and niche similarity tests to study their niche patterns. We complement these analyses with seed viability measurements. Our study revealed that the hybridizing taxa O. onites and O. vulgare ssp. hirtum and the resulting genotypic classes showed geographical and environmental niche similarities based on the predictions of ENMs and the subsequent similarity tests. The occurrence of the hybrid zone is not directly dependent on environmental factors which favor the fitness of the hybrid compared to the parental taxa, but rather on aspects such as historical factors and management practices, which may contribute to the localization and maintenance of the contact zone between parental species. Our results suggest that if a minimum required niche differentiation between genotypic classes is not achieved, environmental dependence might not have a prominent role on the outcome of the hybridization.  相似文献   

13.
The ecological and genetic factors determining the extent of introgression between species in secondary contact zones remain poorly understood. Here, we investigate the relative importance of isolating barriers and the demographic expansion of invasive Mytilus galloprovincialis on the magnitude and the direction of introgression with the native Mytilus trossulus in a hybrid zone in central California. We use double‐digest restriction‐site‐associated DNA sequencing (ddRADseq) to genotype 1337 randomly selected single nucleotide polymorphisms and accurately distinguish early and advanced generation hybrids for the first time in the central California Mytilus spp. hybrid zone. Weak levels of introgression were observed in both directions but were slightly more prevalent from the native M. trossulus into the invasive M. galloprovincialis. Few early and advanced backcrossed individuals were observed across the hybrid zone confirming the presence of strong barriers to interbreeding. Heterogeneous patterns of admixture across the zone of contact were consistent with the colonization history of M. galloprovincialis with more extensive introgression in northern localities furthest away from the putative site of introduction in southern California. These observations reinforce the importance of dynamic spatial and demographic expansions in determining patterns of introgression between close congeners, even in those with high dispersal potential and well‐developed reproductive barriers. Our results suggest that the threat posed by invasive M. galloprovincialis is more ecological than genetic as it has displaced, and continues to displace the native M. trossulus from much of central and southern California.  相似文献   

14.
The frequency of plant species introductions has increased in a highly connected world, modifying species distribution patterns to include areas outside their natural ranges. These introductions provide the opportunity to gain new insight into the importance of flowering phenology as a component of adaptation to a new environment. Three Coffea species, C. arabica, C. canephora (Robusta), and C. liberica, native to intertropical Africa have been introduced to New Caledonia. On this archipelago, a secondary contact zone has been characterized where these species coexist, persist, and hybridize spontaneously. We investigated the impact of environmental changes undergone by each species following its introduction in New Caledonia on flowering phenology and overcoming reproductive barriers between sister species. We developed species distribution models and compared both environmental envelopes and climatic niches between native and introduced hybrid zones. Flowering phenology was monitored in a population in the hybrid zone along with temperature and precipitation sequences recorded at a nearby weather station. The extent and nature of hybridization events were characterized using chloroplast and nuclear microsatellite markers. The three Coffea species encountered weak environmental suitability compared to their native ranges when introduced to New Caledonia, especially C. arabica and C. canephora. The niche of the New Caledonia hybrid zone was significantly different from all three species' native niches based on identity tests (I Similarity and D Schoener's Similarity Indexes). This area appeared to exhibit intermediate conditions between the native conditions of the three species for temperature‐related variables and divergent conditions for precipitation‐related ones. Flowering pattern in these Coffea species was shown to have a strong genetic component that determined the time between the triggering rain and anthesis (flower opening), specific to each species. However, a precipitation regime different from those in Africa was directly involved in generating partial flowering overlap between species and thus in allowing hybridization and interspecific gene flow. Interspecific hybrids accounted for 4% of the mature individuals in the sympatric population and occurred between each pair of species with various level of introgression. Adaptation to new environmental conditions following introduction of Coffea species to New Caledonia has resulted in a secondary contact between three related species, which would not have happened in their native ranges, leading to hybridization and gene flow.  相似文献   

15.
Studies of hybridization have increased our understanding of the nature of species boundaries, the process of speciation, and the effects of hybridization on the evolution of populations and species. In the present study we use genetic and morphological data to determine the outcome and consequences of secondary contact and hybridization between the butterfly species Lycaeides idas and L. melissa in the Rocky Mountains. Admixture proportions estimated from structure and geographical cline analysis indicate L. idas and L. melissa have hybridized extensively in the Rocky Mountains and that reproductive isolation was insufficient to prevent introgression for much of the genome. Geographical patterns of admixture suggest that hybridization between L. idas and L. melissa has led to the formation of a hybrid zone. The hybrid zone is relatively wide, given estimates of dispersal for Lycaeides butterflies, and does not show strong evidence of cline concordance among characters. We believe the structure of the Lycaeides hybrid zone might be best explained by the patchy distribution of Lycaeides, local extinction and colonization of habitat patches, environmental variation and weak overall selection against hybrids. We found no evidence that hybridization in the Rocky Mountains has resulted in the formation of independent hybrid species, in contrast to the outcome of hybridization between L. idas and L. melissa in the Sierra Nevada. Finally, our results suggest that differences in male morphology between L. idas and L. melissa might contribute to isolation, or perhaps even that selection has favoured the spread of L. melissa male genitalia alleles.  相似文献   

16.
Two grasshopper species Stenobothrus rubicundus and S. clavatus were previously shown to meet in a narrow hybrid zone on Mount Tomaros in northern Greece. The species are remarkable for their complex courtship songs accompanied by conspicuous movements of antennae and wings. We analyzed variations in forewing morphology, antenna shape, and courtship song across the hybrid zone using a geographic information system, and we documented three contact zones on Mount Tomaros. All male traits and female wings show abrupt transitions across the contact zones, suggesting that these traits are driven by selection rather than by drift. Male clines in antennae are displaced toward S. clavatus, whereas all clines in wings are displaced toward S. rubicundus. We explain cline discordance as depending on sexual selection via female choice. The high covariance between wings and antennae found in the centers of all contact zones results from high levels of linkage disequilibria among the underlying loci, which in turn more likely results from assortative mating than from selection against hybrids. The covariance is found to be higher in clavatus‐like than rubicundus‐like populations, which implies asymmetric assortative mating in parental‐like sites of the hybrid zone and a movement of the hybrid zone in favor of S. clavatus.  相似文献   

17.
Hybrid zones provide unique natural laboratories for studying mechanisms of evolution. But identification and classification of hybrid individuals (F1, F2, backcross, etc.) can be complicated by real population changes over time as well as by use of different marker types, both of which challenge documentation of hybrid dynamics. Here, we use multiple genetic markers (mitochondrial DNA, microsatellites and genomewide single nucleotide polymorphisms) to re‐examine population structure in a hybrid zone between two species of swallowtail butterflies in western Canada, Papilio machaon and P. zelicaon. Our aim was to test whether their hybrid dynamics remain the same as found 30 years ago using morphology and allozymes, and we compared different genetic data sets as well as alternative hybrid identification and classification methods. Overall, we found high differentiation between the two parental species, corroborating previous research from the 1980s. We identified fewer hybrid individuals in the main zone of hybridization in recent years, but this finding depended on the genetic markers considered. Comparison of methods with simulated data sets generated from our data showed that single nucleotide polymorphisms were more powerful than microsatellites for both hybrid identification and classification. Moreover, substantial variation among comparisons underlined the value of multiple markers and methods for documenting evolutionarily dynamic systems.  相似文献   

18.
Hybridization has presented a challenge for taxonomists and conservation biologists, since hybridizing forms could be stable evolutionary entities or ephemeral forms that are blending together. However, hybrid zones also provide a unique opportunity for evolutionary biologists who study the interaction between gene flow and reproductive isolation in speciation. Three forms of woodpeckers (sapsuckers; genus Sphyrapicus) in North America that are mostly geographically separated but hybridize with each other where they come into contact present a remarkable system for the study of hybridization. We provide the first comprehensive analysis of phenotypic and genetic variation across a hybrid zone between two of these forms, the red‐breasted Sphyrapicus ruber and yellow‐bellied S. varius sapsuckers. The objective was to infer whether selection maintains the differences between forms. Our analysis of eight morphometric and 20 plumage traits, and two molecular markers showed clear differences between the forms and roughly concordant clinal variation across a narrow hybrid zone. Thirty percent of sampled birds in the hybrid zone had mixed west/east genotypes at the genetic markers examined. The center of the genetic cline was located 20 km west of the crest of the Rocky Mountains. The width of the zone was 122 km, narrower than would be expected under neutral blending given reasonable estimates of the age of the zone and individual dispersal distances. Heterozygote deficit and cytonuclear disequilibrium at the centre of the hybrid zone suggested nonrandom mating or limited hybridization. Given these patterns and lack of evidence for habitat segregation we conclude that this hybrid zone is maintained by selection, most likely in the form of hybrid inferiority. This study provides an illustrative example of extensive hybridization between stable entities, providing additional evidence against the historical practice of treating hybridizing forms as members of the same species.  相似文献   

19.
Hybrid zones are windows into the speciation process, and their study can give clues into the maintenance and breakdown of species boundaries. Using both genetic and ecological tools, we investigate lineage diversification across a contact zone characterized by chromosome rearrangements. We show that black fly sibling species, Simulium arcticum sensu stricto (s.s.) and Simulium saxosum, lack genetic differentiation at both microsatellite and mtDNA loci in allopatry and sympatry, as well as exhibit high levels of gene flow and continuous chromosome variation in sympatry. Furthermore, hybrid frequencies at the contact zone are similar to those seen between races, rather than species. In contrast, S. arcticum s.s. and S. saxosum maintain ecological differences and distinct habitat associations ‐ the contact zone situated at the margin of suitable habitat for each sibling species. Moreover, gene flow occurs only in a narrow band along an ecological transition. Except for the contact zone, S. arcticum s.s. and S. saxosum hybrids do not occur elsewhere within the sibling species' ranges. Although S. arcticum s.s. and S. saxosum maintain the potential to interbreed freely, we conclude that habitat associations and, perhaps, chromosome systems prevent expansion of ranges and assimilation of lineages.  相似文献   

20.
Under different environmental conditions, hybridization between the same species might result in different patterns of genetic admixture. Particularly, species pairs with large distribution ranges and long evolutionary history may have experienced several independent hybridization events over time in different zones of overlap. In birds, the diverse hybrid populations of the house sparrow (Passer domesticus) and the Spanish sparrow (Passer hispaniolensis) provide a striking example. Throughout their range of sympatry, these two species do not regularly interbreed; however, a stabilized hybrid form (Passer italiae) exists on the Italian Peninsula and on several Mediterranean islands. The spatial distribution pattern on the Eurasian continent strongly contrasts the situation in North Africa, where house sparrows and Spanish sparrows occur in close vicinity of phenotypically intermediate populations across a broad mosaic hybrid zone. In this study, we investigate patterns of divergence and admixture among the two parental species, stabilized and nonstabilized hybrid populations in Italy and Algeria based on a mitochondrial marker, a sex chromosomal marker, and 12 microsatellite loci. In Algeria, despite strong spatial and temporal separation of urban early‐breeding house sparrows and hybrids and rural late‐breeding Spanish sparrows, we found strong genetic admixture of mitochondrial and nuclear markers across all study populations and phenotypes. That pattern of admixture in the North African hybrid zone is strikingly different from i) the Iberian area of sympatry where we observed only weak asymmetrical introgression of Spanish sparrow nuclear alleles into local house sparrow populations and ii) the very homogenous Italian sparrow population where the mitogenome of one parent (P. domesticus) and the Z‐chromosomal marker of the other parent (P. hispaniolensis) are fixed. The North African sparrow hybrids provide a further example of enhanced hybridization along with recent urbanization and anthropogenic land‐use changes in a mosaic landscape.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号