首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We measured stable-nitrogen (δ15N) and stable-carbon (δ13C) isotope ratios in muscle and hair from 7 northern fur seals (Callorhinus ursinus) from the Pribilof Islands, Alaska, and 27 Steller sea lions (Eumetopias jubatus), and 14 harbor seals (Phoca vitulina) from the Gulf of Alaska and coast of Washington State, in order to contrast dietary information derived from isotopic vs. available conventional dietary studies. Stable-nitrogen-isotope analysis of muscle revealed that harbor seals were enriched over sea lions (mean δ15N = 18.6‰vs. 17.5‰) which were in turn enriched over northern fur seals (mean δ15N = 16.6‰). Trophic segregation among these species likely results primarily from differential reliance on herring (Clupea harengus), Atka mackerel (Pleurogrammus monopterygius), and large vs. small walleye pollock (Theregra chalcogramma). According to their δ15N values, adult male Steller sea lions showed a higher trophic position than adult females (mean δ15N: 18.0‰vs. 17.2‰), whereas adult female northern fur seals were trophically higher than juvenile male fur seals (mean δ15N: 16.5‰vs. 15.0‰). Each of these observed differences likely resulted from differential reliance on squid or differences in the size range of pollock consumed. Three northern fur seal pups showed higher δ15N enrichment over adults (mean 17.7‰vs. 15.8‰) due to their reliance on their mother's milk. Stable-carbon isotope measurements of hair revealed a cline toward more negative values with latitude. Segregation in hair δ13C between Steller sea lions and harbor seals off the coast of Washington (mean δ13C: ?13.6‰vs.?15.0‰) reflected the greater association of harbor seals with freshwater input from the Columbia River. Our study demonstrates the utility of the stable isotope approach to augment conventional dietary analyses of pinnipeds and other marine mammals.  相似文献   

2.
Stable carbon and nitrogen isotope ratios (δ13C and δ15N) of serum, red blood cells (RBC), muscle, and blubber were measured in captive and wild northeast Pacific harbor seals (Phoca vitulina richardii) at three coastal California sites (San Francisco Bay, Tomales Bay, and Channel Islands). Trophic discrimination factors (ΔTissue‐Diet) were calculated for captive seals and then applied in wild counterparts in each habitat to estimate trophic position and feeding behavior. Trophic discrimination factors for δ15N of serum (+3.8‰), lipid‐extracted muscle (+1.6‰), and lipid‐blubber (+6.5‰) are proposed to determine trophic position. An offset between RBC and serum of +0.3‰ for δ13C and ?0.6‰ for δ15N was observed, which is consistent with previous research. Specifically, weaner seals (<1 yr) had large offsets, suggesting strong trophic position shifts during this life stage. Isotopic values indicated an average trophic position of 3.6 at both San Francisco Bay and Tomales Bay and 4.2 at Channel Islands. Isotopic means were strongly dependent on age class and also suggested that mean diet composition varies considerably between all locations. Together, these data indicate that isotopic composition of blood fractions can be an effective approach to estimate trophic position and dietary behavior in wild pinnipeds.  相似文献   

3.
Female northern elephant seals, Mirounga angustirostris, from Año Nuevo (AN) in central California feed offshore in mid‐latitude waters (40°–55°N). Migratory patterns and foraging locations of seals from Mexico are unknown. Rookeries on San Benitos (SB) islands in Baja California Sur, Mexico, are ~1,170 km south of AN. Although the colonies are similar in size, seals from SB begin breeding earlier and have an earlier breeding birthing peak than seals from AN. To determine if the foraging location of seals from Mexico was similar to that of seals from California, we measured δ13C and δ15N values in the hair of 48 suckling pups at SB and 37 from AN, assuming that their isotopic signatures reflected those of mothers' milk, their exclusive diet. The mean δ13C and δ15N values for SB pups (?16.1‰± 0.9‰ and 17.7‰± 0.9‰, respectively) were significantly higher than those for AN pups (?17.6‰± 0.4‰ and 15.6‰± 1.0‰, respectively). From data on environmental isotope gradients and known behavior of SB and AN populations, we hypothesize that the isotope differences are due to females in the SB colony foraging ~8° south of seals from AN. This hypothesis can be tested by deployment of satellite tags on adult females from the SB colony.  相似文献   

4.
Understanding the ecological patterns of invasive species and their habitats require an understanding of the species’ foraging ecology. Stable carbon (δ13C) and nitrogen (δ15N) isotope values provide useful information into the study of animal ecology and evolution, since the isotope ratios of consumers reflect consumer's dietary patterns. Nevertheless, the lack of species‐ and element‐specific laboratory‐derived turnover rates could limit their application. Using a laboratory‐based dual stable isotope tracer approach (Na15NO3 and NaH13CO3), we evaluated the δ15N and δ13C isotope turnover rates in full‐grown adult invasive Limnomysis benedeni from Lake Constance. We provide δ15N and δ13C turnover rates based on nonlinear least‐squares regression and posterior linear regression models. Model precisions and fit were evaluated using Akaike's information criterion. Within a couple of days, the δ15N and δ13C of mysids began to change. Nevertheless, after about 14 days, L. benedeni did not reach equilibrium with their new isotope values. Since the experiment was conducted on adult subjects, it is evident that turnover was mainly influenced by metabolism (in contrast to growth). Unlike traditional dietary shifts, our laboratory‐based dual stable isotope tracer approach does not shift the experimental organisms into a new diet and avoids dietary effects on isotope values. Results confirm the application of isotopic tracers to label mysid subpopulations and could be used to reflect assimilation and turnover from the labeled dietary sources. Field‐based stable isotope studies often use isotopic mixing models commonly assuming diet‐tissue steady state. Unfortunately, in cases where the isotopic composition of the animal is not in equilibrium with its diet, this can lead to highly misleading conclusions. Thus, our laboratory‐based isotopic incorporation rates assist interpretation of the isotopic values from the field and provide a foundation for future research into using isotopic tracers to investigate invasion ecology.  相似文献   

5.
Determining how marine predators partition resources is hindered by the difficulty in obtaining information on diet and distribution. Stable isotopes (SI) of carbon (13C/12C, δ13C) and nitrogen (15N/14N, δ15N) provide a two‐dimensional estimate of the dietary space of consumers; an animal's isotopic composition is directly influenced by what they consume and where they feed. Harp (Pagophilus groenlandicus) and hooded (Cystophora cristata) seals are abundant phocid species found in the North Atlantic. We measured and contrasted SI values between seals sampled at nearshore and offshore sites to test for effects of sampling location, sex, age‐class, and body size to gain insight into how these species partition space and prey resources. In addition we contrasted previously published results for gray seals (Halichoerus grypus). Isotope values differed significantly by age class and location in harp and hooded seals. We found significant differences in SI values (mean δ13C and δ15N ± SE) between all species. Hooded seals, a continental shelf‐edge, deep‐diving species, exhibited low SI values (juveniles: ?20.9‰ ± 0.03‰, 13.36‰ ± 0.05‰; adults: ?20.41‰ ± 0.03‰, 14.81‰ ± 0.04‰) characteristic of feeding on meso‐ to bathypelagic prey. Harp seals, which dive to moderate depths primarily on the shelf had intermediate SI values (juveniles: ?20.53‰ ± 0.01‰, 13.91‰ ± 0.01‰; adults: ?20.13‰ ± 0.01‰, 14.96‰ ± 0.01‰) characteristic of feeding on epipelagic prey, whereas gray seals, which feed on or near the sea floor in shallow shelf waters, had high SI values (juveniles: ?19.74‰ ± 0.04‰, 17.51‰ ± 0.05‰; adults: ?18.86‰ ± 0.01‰, 17.23‰ ± 0.02‰) characteristic of feeding on demersal prey. In all species, δ13C values increased with body size and age in the same manner, indicating that seals exploit or forage in deeper habitats as they get larger and older. We hypothesize that the consistent ontogenetic shift in foraging niche, despite large differences between species in their diving behavior, geographic range and habitat use, not only reflects increased access to different prey due to increased diving capacity, but a progressive adjustment to balance energy budgets by reducing foraging costs.  相似文献   

6.
We examine the utility of stable carbon and nitrogen isotope variations to characterize the length of the nursing/lactation period and age at weaning for two northern Pacific otariid species, the northern fur seal (Callorhinus ursinus) and California sea lion (Zalophus californianus). We used two sampling strategies to measure ontogenetic trends in isotope value, and compared our results to observational data on the reproductive strategies used by these otariids. For Zalophus, we found evidence for 15N enrichment and 13C‐depletion in bone collagen representing the first and second year of growth, which is consistent with the ~12–14‐mo weaning age in this population after a suitable turnover rate for bone collagen is considered. Analysis of individual tooth annuli from a different suite of Zalophus specimens suggests that half of the individuals were weaned at ~12 mo of age, and half were dependent on milk for a portion of their second year. For Callorhinus, bone collagen for age classes that contain pre‐weaned individuals were 15N‐enriched, but values were significantly lower in specimens between 6 and 20 mo of age. These 15N‐enriched values, presumably acquired during nursing between 0 and 4 mo of age in Callorhinus, were not present in specimens older than 12 mo of age. Thus complete bone collagen turnover in young‐of‐the‐year occurs in 8–10 mo. 15N enrichment is evident in the first annulus of female Callorhinus individuals, but is not detectable in males. Analyses of Callorhinus tooth annuli show no ontogenetic trends in δ13C values. Our study indicates that nitrogen, and in some cases carbon, isotopes can be used to assess reproductive strategies in marine mammals. When coupled with accurate age estimates based on bone growth regressions, this isotopic technique can be applied to historical or fossil otariids to gain insight into the flexibility of maternal strategies within and across species.  相似文献   

7.
Effects of physiological processes such as gestation, lactation and nutritional stress on stable isotope ratios remain poorly understood. To determine their impact, we investigated these processes in simultaneously fasting and lactating northern elephant seals (Mirounga angustirostris). Stable carbon and nitrogen isotope values were measured in blood and milk of 10 mother-pup pairs on days 5 and 22 of lactation. As long- and short-term integrators of diet, blood cells and serum may reflect foraging data or energy reserves from late gestation and lactation, respectively. Limited changes in isotopic signatures of maternal blood over the lactating period were highlighted. Nitrogen isotope fractionation associated with mother-to-offspring transfer of nutrients was generated between mother and offspring during gestation and lactation. This fractionation was tissue and time-specific, it varied between early and late lactation from +0.6‰ to +1.3‰ in blood cells and from +1.1‰ to nonsignificant value in serum. Therefore, if pups appear to be good proxies to investigate the female trophic ecology especially for C sources, much more caution is required in using δ15N values. Further studies are also needed to better define the relative impact of fasting and lactation on the enrichment or depletion of isotopes in different tissues.  相似文献   

8.
The stable isotope ratios (δ13C and δ15N) of three tissues with different metabolic rates (plasma, liver, and muscle) were used to investigate temporal variation in diet among nine individual Baltic ringed seals (Phoca hispida botnica Gmelin) from the Bothnian Bay, northeast Baltic Sea. The isotope values from plasma should reflect the most recent diet, values from liver the diet of the past weeks prior to sampling, and values from muscle should integrate diet over almost the entire breeding season of the ringed seals. In general, δ13C values of liver were more enriched in 13C than were those of either muscle or plasma, suggesting that the diet of the seals may have included a higher proportion of 13C‐enriched benthic prey in April. Females showed more variable δ13C values than males, suggesting possible gender differences in diet or in foraging locations. The differences that were apparent between females possibly reflect individual variation in the onset and duration of parturition and lactation, both of which likely restrict female foraging. Previous data from parasite infections and from alimentary tract contents of the same seals were linked to the isotope data to assist in drawing inferences about changes in the diets of individual seals.  相似文献   

9.
We report isotopic data (δ2H, δ18O n = 196; δ13C, δ15N n = 142; δ34S n = 85) from human hair and drinking water (δ2H, δ18O n = 67) collected across China, India, Mongolia, and Pakistan. Hair isotope ratios reflected the large environmental isotopic gradients and dietary differences. Geographic information was recorded in H and O and to a lesser extent, S isotopes. H and O data were entered into a recently developed model describing the relationship between the H and O isotope composition of human hair and drinking water in modern USA and pre‐globalized populations. This has anthropological and forensic applications including reconstructing environment and diet in modern and ancient human hair. However, it has not been applied to a modern population outside of the USA, where we expect different diet. Relationships between H and O isotope ratios in drinking water and hair of modern human populations in Asia were different to both modern USA and pre‐globalized populations. However, the Asian dataset was closer to the modern USA than to pre‐globalized populations. Model parameters suggested slightly higher consumption of locally producedfoods in our sampled population than modern USA residents, but lower than pre‐globalized populations. The degree of in vivo amino acid synthesis was comparable to both the modern USA and pre‐globalized populations. C isotope ratios reflected the predominantly C3‐based regional agriculture and C4 consumption in northernChina. C, N, and S isotope ratios supported marine food consumption in some coastal locales. N isotope ratios suggested a relatively low consumption of animal‐derived products compared to western populations. Am J Phys Anthropol 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

10.
The ability of stable isotope analysis to provide insight into ontogenetic dietary changes was examined using bottlenose dolphin tooth and skin samples. Teeth were subsampled to compare tissue produced early in life (outer tooth) to that produced later in life (inner tooth). Outer tooth had significantly higher δ15N values than the corresponding inner sample from the same tooth (n= 60, P= 0.0041), indicating that there was a temporal shift to a lower δ15N diet. There were no significant δ13C differences. Higher δ15N values in young have previously been attributed to the period of suckling. Analysis of skin tissue from stranded animals of different developmental stages similarly indicated that the δ15N values were significantly higher in young animals. Further comparisons indicated that the primary influence for this difference was animals with lengths less than or equal to the largest neonatal dolphin. This difference likely reflects an ontogenetic dietary shift from a sole reliance on milk to a combination of milk and prey species during the first year of life.  相似文献   

11.
Abstract: Information on spring migration routes, geographic linkages among winter, spring, and breeding locations, and potential geographic effects on arrival body condition of northern pintails (Anas acuta) are currently unknown. Through a combination of stable-isotope measurements of tissues representing different periods of dietary integration and body composition analyses, we examined these linkages for pintails breeding in Alaska, USA. We collected 77 females at 4 locations upon spring arrival. We performed carbon (δ13C), nitrogen (δ15N), and hydrogen (δD) isotope measurements on flight feathers, breast feathers, and whole blood, and we conducted body composition analyses. Inference based on stable-isotope values in pintail tissues suggests that philopatry to Alaska was strong, as most of the collected females had stable-isotope values consistent with the boreal forest of Canada or western Alaska and most spring migrating females had whole-blood values indicating use of a food web in the boreal forest before collection. These patterns highlight the importance of the boreal forest for production and staging of pintails. Breast feather isotope values grown during prealternate molt were variable and covered the currently documented distribution of wintering pintails. Our results indicate associations among specific geographic areas, habitat use, and arrival condition of female pintails settling in Alaska. Females that wintered or staged in coastal habitat (as indicated by elevated δ13C values) arrived with less body fat compared to those that we inferred to have wintered or staged on inland freshwater habitat. Those females we inferred to use coastal areas appeared to rely more heavily on agricultural fields for nutrient acquisition (as indicated by elevated δ15N but low δ13C values). Our results provide the first link between low-condition females and inferred use of specific geographic areas before arrival. Conservation on wintering grounds should focus on restoration and protection of wetland complexes that provide adequate natural food resources in proximity to coastal systems that are heavily used by wintering pintails. Conservation efforts should also focus on the boreal forest, not only for pintail, but for other boreal-dependent species such as lesser scaup (Aythya affinis) (JOURNAL OF WILDLIFE MANAGEMENT 72(3):715–725; 2008)  相似文献   

12.
Stable carbon and nitrogen isotope analyses were conducted to investigate dietary variation in human skeletons (n = 109) from the Gaya cemetery at Yeanri located near Gimhae City, South Korea. The cemetery contained three distinct grave types dating to 4th–7th century AD. The main purposes of this research were to reconstruct palaeodiet in the Gaya population and to explore correlations between stable isotope compositions and burial types, inferred age, and sex of these individuals. The isotopic data indicate that the people at Yeanri consumed a predominantly C3‐based terrestrial diet supplemented with freshwater and/or marine resources. The comparison of isotopic results reveals significant differences in δ13C values among three adult burial types (wood‐cist coffin: ?18.5 ± 0.5‰, stone‐cist coffin: ?18.1 ± 0.6‰, mausoleum: ?17.8 ± 0.9‰). Males in wood‐cist and stone‐cist coffins have relatively more elevated mean δ13C and δ15N values than females. The isotopic ratios from the two adult age groups (21–40 years and 40–60 years) indicate that there was no significant dietary change in individuals with age. The isotope data from the infants and children suggest the weaning was a gradual process that was completed between 3 and 4 years of age in the Gaya population. This evidence indicates that the dietary variations within the cemetery reflect social status, sex, and childhood consumption patterns. Am J Phys Anthropol, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

13.
Stable carbon, nitrogen, hydrogen and oxygen isotopes have been used to infer aspects of species ecology and environment in both modern ecosystems and the fossil record. Compared to large mammals, stable isotopic studies of small‐mammal ecology are limited; however, high species and ecological diversity within small mammals presents several advantages for quantifying resource use and organism–environment interactions using stable isotopes over various spatial and temporal scales. We analyzed the isotopic composition of hair from two heteromyid rodent species, Dipodomys ordii and Perognathus parvus, from localities across western North America in order to characterize dietary variation in relation to vegetation and climatic gradients. Significant correlations between the carbon isotopic composition (δ13C) of these species and several climatic variables imply that seasonal temperature and precipitation control the composition and distribution of dietary resources (grass seeds). Our results also suggest a moisture influence on the nitrogen isotopic composition (δ15N) of heteromyid diets. Population‐ and species‐level variation in δ13C and δ15N values record fine‐scale habitat heterogeneity and significant differences in resource use between species. Using classification and regression‐tree techniques, we modeled the geographic variation in heteromyid δ13Cdiet values based on 10 climatic variables and generated an isotope landscape model (‘isoscape’). The isoscape predictions for δ13Cdiet differ from expectations based on observed C4 distributions and instead indicate that D. ordii and P. parvus record seasonally abundant grass resources, with additional model deviations potentially attributed to geographic variation in dietary selection. The oxygen and hydrogen isotopic composition of D. ordii is enriched relative to local meteoric water and suggests that individuals rely on highly evaporated water sources, such as seed moisture. Based on the climatic influences on vegetation and diet documented in this study, the isotopic composition of small mammals has high potential for recording ecological responses to environmental changes over short and long time scales.  相似文献   

14.
Abstract: Prior to geochemical analyses, fossil bones and teeth are often extracted from any surrounding lithified sediments using chemical techniques such as immersion in acid. As stable isotope analysis becomes more commonplace in palaeoecological investigations, it is important to consider what effects these chemical preparation techniques may have on any subsequent isotopic data and to constrain these effects as quantitatively as possible. This study aims to elucidate these effects, as it is vital that variability in a data set should not be introduced as a result of protocols used during sample preparation; in addition, it defines the most effective and viable method of carbonate removal for processing bulk fossil samples without causing alteration of their stable isotopic signatures. Various strengths of two weak acids commonly used during palaeontological preparation were tested to evaluate their effects on the δ15N and δ13Corg isotopic signatures of the vertebrae of a large Eocene fossil fish. Changes in the isotopic values occurred over time regardless of which acid was used, each causing a variable response in both δ15N and δ13Corg isotopic values. Without careful monitoring of the acidification process in a controlled environment, any resulting data could therefore confound interpretation. Based on these experiments, it is recommended that 2 m acetic acid be used for the pretreatment of fossils prior to the acquisition of N and C isotope data where carbonate removal is necessary.  相似文献   

15.
This study used naturally occurring carbon and nitrogen stable isotopes of teeth to study the diets of marine mammals. The isotopic ratios of nonchemically preserved teeth from eight species of marine mammals, representing 87 individuals that spanned the trophic continuum, were found to reflect nutritional sources. The δ13C signals distinguished animals that lived in waters dominated by different primary producers (e. g., seagrass, kelp, and phytoplankton), and δ15N values indicated the diet and trophic level of the species. This research suggests that isotopic signatures of teeth can be used in dietary studies to show differences and similarities among age classes, genders, geographic locations, and time periods.  相似文献   

16.
To detect and monitor long‐term ecosystem responses to environmental variability, managers must utilize reliable and quantitative techniques to predict future ecosystem responses. Canine teeth from 67 male Australian fur seals (aged 2–19 yr), collected at Seal Rocks, between 1967 and 1976, were measured for relative growth within the dentine growth layer groups (GLGs), as an index of body growth. Fluctuations in relative growth were apparent during 1956–1971, suggesting interannual variation in prey resources within Bass Strait. These were positively correlated with the Southern Oscillation Index and negatively with the Indian Ocean Subtropical Dipole, both on a 2 yr lag. The observed delay may reflect the time required for the nutrient cascade to filter through to the predominantly benthic prey of Australian fur seals. Stable isotope analysis (δ15N/δ13C) was also used to investigate whether fluctuations in growth were associated with differences in diet. Relative growth was found to be negatively correlated with δ15N, suggesting years of greater resource availability may be associated with individuals consuming proportionally more prey biomass of lower isotopic value. This study demonstrates that fluctuations in the dentine GLGs of male Australian fur seals are related to environmental parameters, suggesting variation in body growth is mediated by changes in prey resources.  相似文献   

17.
Late Pleistocene European cave bears (Ursus spelaeus ) have been considered to be largely vegetarian, although stable isotope data (δ13C and δ15N values) from the Romanian Carpathians has suggested considerable dietary variation. Here we evaluate previous and additional adult cave bear isotopic data from four Marine Isotope Stage 3 (MIS 3) sites in the Carpathians. Pe?tera Ur?ilor (=  35), Pe?tera Cioclovina (=  32), Pe?tera Muierilor (=  8), and Pe?tera cu Oase (=  72) provide both a dichotomy between samples suggesting vegetarian diets (from Cioclovina and Muierilor) and more omnivorous diets (from Ur?ilor and Oase), and considerable isotopic variation within samples from each site. While an inference of a strictly vegetarian diet may apply to groups that lived in ecosystems which restricted the available animal protein for these large ursids, the within and between sample isotopic variation among the Carpathian cave bears indicates considerable flexibility in their sources of protein and hence in their dietary regimes. In addition, developmental assessment of Cioclovina isotopic profiles (neonates, juveniles, sub‐adults and adults) provides patterns of transfer of stable isotope signatures throughout immature life for both δ13C and δ15N (increase and decrease, respectively), whereas those from Ur?ilor show little developmental shift.  相似文献   

18.
The δ13C and δ15N compositions of teeth used in combination with existing data provide dietary information for different populations of western North Atlantic bottlenose dolphins (Tursiops truncatus). The dental isotopic signatures of bottlenose dolphins collected during the 1980s significantly differ for coastal and offshore ecotypes and are consistent with reports that coastal forms feed primarily on fish whereas offshore individuals consume more squid. In a second study, the isotopic compositions of teeth from bottlenose dolphins that span a 100-yr period and data from published stomach content analyses as well as field observations made during the past 100 yr provide evidence that coastal bottlenose dolphins from the 1880s, 1920s, and 1980s had similar diets.  相似文献   

19.
Sea lion and seal populations in Alaskan waters underwent various degrees of decline during the latter half of the twentieth century and the cause(s) for the declines remain uncertain. The stable carbon (13C/12C) and nitrogen (15N/14N) isotope ratios in bone collagen from wild Steller sea lions (Eumetopias jubatus), northern fur seals (Callorhinus ursinus) and harbor seals (Phoca vitulina) from the Bering Sea and Gulf of Alaska were measured for the period 1951-1997 to test the hypothesis that a change in trophic level may have occurred during this interval and contributed to the population declines. A significant change in '15N in pinniped tissues over time would imply a marked change in trophic level. No significant change in bone collagen '15N was found for any of the three species during the past 47 years in either the Bering Sea or the Gulf of Alaska. However, the 15N in the Steller sea lion collagen was significantly higher than both northern fur seals and harbor seals. A significant decline in '13C (almost 2 ‰ over the 47 years) was evident in Steller sea lions, while a declining trend, though not significant, was evident in harbor seals and northern fur seals. Changes in foraging location, in combination with a trophic shift, may offer one possible explanation. Nevertheless, a decrease in '13C over time with no accompanying change in '15N suggests an environmental change affecting the base of the foodweb rather than a trophic level change due to prey switching. A decline in the seasonal primary production in the region, possibly resulting from decreased phytoplankton growth rates, would exhibit itself as a decline in '13C. Declining production could be an indication of a reduced carrying capacity in the North Pacific Ocean. Sufficient quantities of optimal prey species may have fallen below threshold sustaining densities for these pinnipeds, particularly for yearlings and subadults who have not yet developed adequate foraging skills.  相似文献   

20.

Estuaries are complex systems where environmental fluctuations occur over distinct timescales due to local meteorological and large-scale climatic factors. Consequently, studies with low temporal resolution and taxonomic coverage may fail to detect isotopic variations in basal sources, providing biased interpretations of isotope mixing models. We investigated the seasonal and El Niño Southern Oscillation (ENSO)-driven interannual variations in δ13C, δ15N and C:N values among distinct basal sources and their implications for mixing models interpretation in a subtropical estuary. δ13C variations among sources differed in their magnitude and timescales, being large enough to confound source-specific values. Macroalgae and POM δ13C varied seasonally, whereas ENSO effects prevailed for C3 and C4 salt marsh plants, highlighting the contrasting influence of local versus remote environmental drivers on short- and long-lived primary producers, respectively. Peaks of δ15N were detected for all sources during short-term anthropogenic nutrient inputs. Isotope mixing model comparisons showed that overlooking isotopic variations in basal sources under distinct ENSO conditions can cause misinterpretation of local trophic interactions and nutrient cycling. The present study contributes to design appropriate sampling delineations in highly variable aquatic environments, emphasizing the importance of comprehensive, long-term monitoring of estuarine primary producers to encompass environmental drivers of stable isotopic variations.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号