首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 903 毫秒
1.
Synopsis The chevron butterflyfish,Chaetodon trifascialis, is found throughout the Indo-Pacific. It is a territorial, diurnal, corallivore found in close association withAcropora spp. corals. The feeding behavior of 33 individuals was studied over six seasons in three habitats.Chaetodon trifascialis spent one third of its active time feeding. However, there was much individual variation. Fish had significantly higher feeding rates during the early afternoon, and there were no significant differences in the feeding rates between the seasons. Feeding rates were significantly different between the three habitats. TheMontipora-rich habitat had the highest feeding rates (x = 10.74 bites min-1 ± 0.87, all corals combined) and theAcropora-Montipora mixed habitat had the lowest feeding rates (x = 4.58 bites min-1 ± 0.63, all corals combined). Females fed significantly more than males. WhileC. trifascialis had been thought to only eatAcropora spp. corals, it occasionally fed onMontipora spp. andPocillopora sp. corals whenAcropora spp. were scarce.Chaetodon trifascialis exhibited patterns predicted by foraging theory of an energy maximizer. Territory sizes were inversely related to food density and feeding rates were inversely related to intruder rates. This is a promising system for future testing of foraging strategy models.  相似文献   

2.
Behavioural development was compared between two flatfish species (Japanese flounder and spotted halibut) from hatching to settlement (juvenile stage) in order to speculate on the ecology of their early life stages and to provide fundamental knowledge for improving seedling production techniques for stock enhancement. Fish were cultured under identical rearing conditions (500‐L tank maintained at 17.8 ± 0.4°C, 34 ppt, 10L : 14D light regime and an initial stocking density of 20 larvae L?1). Behavioural observations were conducted at about 4‐day intervals from hatching to the juvenile stage. Fish were sampled randomly from the rearing tank, and one fish was transferred into a 250‐ml observation container. Behaviour was video‐recorded for 5 min without food and for an additional 5 min with live feed (rotifer or Artemia). All behavioural data were sorted according to eight developmental stages and compared among developmental stages and between species. The average standard length of the spotted halibut was significantly greater than that of the Japanese flounder in all developmental stages, while the development of Japanese flounder was faster than that of the spotted halibut. For Japanese flounder, feeding, swimming and Ohm‐posture (typical shivering behaviour observed during early life stages in flatfishes) frequency were highest before metamorphosis (mean ± SD; 1.0 ± 2.0 attacks min?1, 24.0 ± 9.6 actions min?1, 1.1 ± 1.1 counts min?1, respectively). Spotted halibut expressed feeding behaviour frequently from the beginning of metamorphosis (3.6 ± 5.2 attacks min?1), had relatively low swimming activity during all developmental stages, and showed a peak of Ohm‐posture frequency during the flexion stage (2.6 ± 1.0 counts min?1).  相似文献   

3.
Many migratory water birds are known to feed both during day and night outside the breeding season, but the underlying factors and mechanisms determining this foraging pattern are poorly understood. We addressed this topic by comparing both diurnal and nocturnal foraging activity (FA) and metabolizable energy intake rate (MEIR) in migrating black‐tailed godwits Limosa limosa staging in two different habitats, rice fields and coastal salt pans. Black‐tailed godwits staging in rice fields during pre‐breeding migration fed on rice seeds, and only foraged during the daylight period (FA: 81.89 ± 3.03%; MEIR: 1.15 ± 0.03 kJ · min?1). Daily energy consumption (DEC) of godwits relying on seeds was enough to meet the theoretical daily energy expenditure (DEE). In contrast, black‐tailed godwits staging in salt pans during post‐breeding migration fed on chironomid larvae, and they foraged during both daylight (FA: 67.36 ± 4.30%; MEIR: 0.27 ± 0.01 kJ · min?1) and darkness (FA: 69.89 ± 6.89%; MEIR: 0.26 ± 0.00 kJ · min?1). Nocturnal energy intake contributed 31.7% to DEC, the latter being insufficient to fully meet DEE. Our findings give empirical support to the view that diurnal foraging is the norm in many migratory water birds outside the breeding season, and nocturnal foraging occurs when the daily energy requirements are not met during the daylight period, supporting the supplementary food hypothesis.  相似文献   

4.
Striped trumpeter larvae reared in algal cell‐induced turbid water (greenwater) fed equally well in clearwater in a light intensity range of 1–10 μmol s‐1 m‐2, when evaluated in terms of both the proportion of larvae feeding and larval feeding intensity. An ontogenetic improvement in photopic visual sensitivity of larvae was indicated by improved feeding at 0·1 μmol s‐1 m‐2, from 26±5% of larvae feeding and 0·027±0·005 rotifers consumed per feeding larva min‐1 on day 8, to 96±2% and 0·221±0·007 rotifers consumed larva‐1 min‐1 on day 23 post‐hatching. Algal cell‐induced turbidity was shown to reduce incident irradiance with depth, indicated by increasing coefficients of attenuation (1·4–33·1) with increasing cell densities (0–2×106 cells ml‐1), though light intensities in the feeding experiment test chambers, at the algal cell densities tested, were within the optimal range for feeding (1–10 μmol s‐1 m‐2). Algae‐induced turbidity had different effects on larval feeding response dependent upon the previous visual environment of the larvae. Young larvae (day 9 post‐hatching) reared in clearwater showed decreased feeding capabilities with increasing turbidity, from 98±1% feeding and 0·153±0·022 rotifers consumed larva‐1 min‐1 in clearwater to 61±10% feeding and 0·042±0·004 rotifers consumed larva‐1 min‐1 at 56 NTU, while older clearwater reared larvae fed well at all turbidities tested. Likewise, greenwater reared larvae had increased feeding capabilities in the highest algal cell densities tested (32 and 66 NTU) compared with those in low algal cell density (6 NTU), and clearwater (0·7 NTU) to which they were naïve.  相似文献   

5.
Ventilation was measured directly in the hagfish, Myxine glutinosa L., by means of an electro-magnetic blood flowmeter. Ventilatory flow and frequency increased from 0.86 ± 0.27 ml·min?, and 18.2 ± 5.1·min?, respectively, at 7°C to 1.70 ± 0.20 ml·min?, and 70.1 ± 9.5·min? at 15 ·C.Standard oxygen consumption,V?O2, was measured in non-buried hagfish. V?O2 was 0.57 ± 0.17μl O2·g?1·min?1 at 7°C, and 0.85 ± 0.12μl O2·g?1·min?1 at 15°C.  相似文献   

6.
At 7 days after first feeding (DAFF), the peptide hormone cholecystokinin (CCK) content (fmol individual?1) and the tryptic activity [μmol arginine‐methyl‐coumarinyl‐7‐amide (MCA) min?1 individual?1] per individual gut of Atlantic halibut Hippoglossus hippoglossus larvae were low: 0·2 ± 0·1 and 0·14 ± 0·10, respectively. Thereafter, both parameters increased with the increase in gut mass and reached 19·67 ± 5·58 and 2·71 ± 0·64 at 26 DAFF, respectively. Due to the small sample size, the dry mass (MG, mg) of the individual gut could not be determined accurately at 7 DAFF. At 13 DAFF MG represented 5·5% of whole body dry mass (Mw, mg) while at 26 DAFF it had increased to 23%. The mass specific tryptic activity [μmol MCA min?1 per mg dry mass (M)] in the gut increased from 2·74 ± 1 ± 98 at 13 DAFF to 5·00 ± 0·78 at 26 DAFF. There was more individual variation in the mass specific CCK content (fmol M?1) but no significant differences were found, although the data indicated an increase (from 23·38 ± 11·26 at 13 DAFF to 36·27 ± 8·96 fmol M?1 at 26 DAFF). At 7 DAFF the CCK content of the gut represented c. 2% of the whole body CCK content while it increased to c. 62% of the whole body CCK content at 26 DAFF. This demonstrates that it is necessary to separate neural and gastrointestinal sources of CCK in order to determine its alimentary role in fish larvae. Trypsin activity was only found in the gut compartment. In larvae aged 45 DAFF dietary proteins delivery into the gut by tube‐feeding appeared to stimulate post‐prandial secretion of CCK from the gut as well as stimulate pancreatic trypsin secretion, suggesting that both factors contribute to protein digestion.  相似文献   

7.
This is the first study investigating the plant–herbivore interaction between Sarpa salpa, which has overgrazed seagrass transplants in Portugal, and the seagrasses Cymodocea nodosa, Zostera marina and Zostera noltii, which have been considered for restoration. When offered the choice between the three seagrasses in outdoor tanks, adult S. salpa clearly preferred Z. noltii. Testing the seagrasses separately, mean ± s.d. feeding rates ranged from 21 ± 11 g seagrass fresh mass kg?1 fish mass day?1 for Z. marina to 32 ± 9 g seagrass fresh mass kg?1 fish mass day?1 for C. nodosa and 40 ± 11 g seagrass fresh mass kg?1 fish mass day?1 for Z. noltii (temperature = 16° C). Food‐processing rate in S. salpa did not differ between seagrasses, and there was no evidence of a regulation of processing rate according to food intake. Seagrasses differed substantially in nitrogen content and C:N, with C. nodosa containing the highest nitrogen content and lowest C:N (2·5 ± 0·1% and 14·0 ± 1·0), followed by Z. noltii (2·1 ± 0·1% and 17·0 ± 1·0) and Z. marina (1·4 ± 0·1% and 26·0 ± 2·0). Food‐processing rate in S. salpa and the nutritional value of the seagrasses were not correlated with the observed feeding preference and rate. The study suggests that C. nodosa and Z. marina are less at risk of overgrazing by S. salpa and might thus be preferable to Z. noltii for seagrass restoration in areas with noticeable abundances of this fish.  相似文献   

8.
In two populations of Patella vulgata in the Isle of Man foraging activity is restricted to daytime high waters, with about 75 per cent of the population foraging on any one day. Movement commences as the tide covers the limpets, and they travel an average of 0·4 m from their home sites to which they return at least an hour before the falling tide exposes them again. The mean speed on the outward and return journey is around 0·60 cm min?, and during the intervening browsing period about 0·08 cm min?. This behaviour contrasts with that of the same species in Alderney, where foraging is limited to nocturnal low waters: there is possibly a geographical trend in behaviour. P. vulgata, especially in the Isle of Man, is one of the more mobile limpets.  相似文献   

9.
Ventilation frequency (FV) in motionless common sole Solea solea was measured before and after a startling stimulus in normoxia and in hypoxia (15% air saturation). Startling reduced FV in normoxia (from mean ±s.e. 41 ± 3·3 beats min?1 to near zero, i.e. 2·0 ± 1·8 beats min?1) and in hypoxia (from mean ±s.e. 80 ± 4·4 to 58·8 ± 12·9 beats min?1). It is suggested that the maintenance of high FV in hypoxia may increase the probability of detection by predators compared to normoxia.  相似文献   

10.
Cardiac cholinergic and adrenergic tones were determined in minimally instrumented African lungfish Protopterus annectens. Mean ±S.E. routine heart rate (fH) was 31·6 ± 1·4 beats min?1, cholinergic tone was 34·6 ± 5·2% and adrenergic tone was 9·4 ± 2·3%, while the intrinsic fH after blockade of both adrenergic and cholinergic control systems was 39·1 ± 1·3 beats min?1. It is demonstrated that routine cholinergic tone has probably been underestimated in previous studies on lungfishes, suggesting that withdrawal of vagal tone may provide an important mechanism to increase fH in this group of fishes during, for example, air breathing.  相似文献   

11.
Synopsis Nocturnal foraging habitats of Haemulon flavolineatum and H. sciurus were investigated in the backreef habitat around Tobacco Caye, Belize. Grunts leave the reef at dusk to forage in the grass beds and sand flats surrounding the reef. The hypothesis that French and bluestriped grunts use separate foraging habitats was examined by following tagged fishes from their diurnal territories or schooling sites to nocturnal foraging grounds. The tag consisted of a small, glowing Cyalume light stick sutured to the dorsal musculature of the fish, next to the first dorsal fin. Surveys of foraging habitats were done to support the tracking study. Large quadrats (225 m2) were set out over the sand flats and grass beds during the day. The numbers of French and bluestriped grunts feeding in each habitat were counted one hour after dark. Foraging French grunts used sand flats, whereas bluestriped grunts usually fed in grass beds. Repeated sightings of two French grunts and one bluestriped grunt in the same individual night-time locations support the hypothesis that nocturnal foraging sites may be used repeatedly by the same individuals.  相似文献   

12.
Ultrasonic telemetry was used to compare post‐release survival and movements of Atlantic sharpnose sharks Rhizoprionodon terraenovae in a coastal area of the north‐east Gulf of Mexico. Ten fish were caught with standardized hook‐and‐line gear during June to October 1999. Atlantic sharpnose sharks were continuously tracked after release for periods of 0·75 to 5·90 h and their positions recorded at a median interval of 9 min. Individual rate of movement was the mean of all distance and time measurements for each fish. Mean ± s.e . individual rate of movement was 0·45 ± 0·06 total lengths per second (LT s?1) and ranged from 0·28 to 0·92 LT s?1 over all fish. Movement patterns did not differ between jaw and internally hooked Atlantic sharpnose sharks. Individual rate of movement was inversely correlated with bottom water temperature at capture (r2 = 0·52, P ≤ 0·05). No consistent direction in movement was detected for Atlantic sharpnose sharks after release, except that they avoided movement towards shallower areas. Capture‐release survival was high (90%), with only one fish not surviving, i.e. this particular fish stopped movement for a period of 10 min. Total rate of movement was total distance over total time (m min?1) for each Atlantic sharpnose shark. Mean total rate of movement was significantly higher immediately after release at 21·5 m min?1 over the first 1·5 h of tracking, then decreased to 11·2 m min?1 over 1·5–6 h, and 7·7 m min?1 over 3–6 h (P ≤ 0·002), which suggested initial post‐release stress but quick recovery from capture. Thus, high survival (90%) and quick recovery indicate that the practice of catch‐and‐release would be a viable method to reduce capture mortality for R. terraenovae.  相似文献   

13.
Δ53β hydroxysteroid dehydrogenase activity transforms biologically inactive Δ53β hydroxy steroids into the active Δ43-keto products (e.g. pregnenolone to progesterone). Using a cytochemical procedure which allows for the continuous microdensitometric monitoring of an enzyme reaction as it proceeds and a well described cytochemical assay for Δ53β HSD we have analysed the initial velocity rates (Vo) for dehydroepiandrosterone (DHEA) binding to this enzyme in regressing (i.e. 20α hydroxy steroid dehydrogenase positive) corpus luteum (CL) cells in unfixed tissue sections (5 μm) of the dioestrous and proestrous rat ovary. The results are mean ± S.E.M. The relationship between DHEA concentration (0 to 50 μM) and Δ53β HSD activity in the dioestrous corpora lutea was sigmoidal and had an atypical 1/Vo versus 1/S plot, the x intercept being positive. Using a 1/Vo versus 1/S2 plot the Vmax was determined to be 1·0 ± 0·08 μmol min?1 mg?1 CL (n = 6). The Hill constant was 2·7 ± 0·02 (n = 6) suggesting a high degree of positive co-operativity for DHEA binding. The S concentration for half maximal activity was 17 ± 1 μmoles (n = 6). In the corpora lutea cells of the proestrous ovary, the Vmax for DHEA transformation was unchanged (0·95 ± 0·04 μmol min?1 mg?1, n = 3) whilst the S0·5 was significantly increased to 27 ± 0·1 (p < 0·01, n = 3). The Hill constant remained positive being 2·9 ± 0·2 (n = 3). NAD+ binding to 3β HSD in regressing corpora lutea of the proestrous ovary has been demonstrated previously to be hyperbolic and fit the classical Michaelis-Menten model.1 Extending the analysis of NAD+ binding to the regressing corpus luteum of the dioestrous rat ovary revealed similar kinetic characteristics to that seen with the proestrous enzyme, the apparent Vmax and Km being 0·84 ± 0·04 μmol min?1 mg?1 CL (n = 3) and 27 ± 7 μmol 1?1 (n = 3) respectively. The Hill constant was 1·1 ± 0·03 (n = 3), indicating no co-operativity of co-factor binding.  相似文献   

14.
The respiratory physiology, heart rates and metabolic rates of two captive juvenile male harbour porpoises (both 28 kg) were measured using a rapid-response respiratory gas analysis system in the laboratory. Breath-hold durations in the laboratory (12 ± 0.3 s, mean ± SEM) were shorter than field observations, although a few breath-holds of over 40 s were recorded. The mean percentage time spent submerged was 89 ± 0.4%. Relative to similarly-sized terrestrial mammals, the respiratory frequency was low (4.9 ± 0.19 breaths · min−1) but with high tidal volumes (1.1 ± 0.01 l), enabling a comparatively high minute rate of gas exchange. Oxygen consumption under these experimental conditions (247 ± 13.8 ml O2 · min−1) was 1.9-fold higher than predicted by standard scaling relations. These data together with an estimate of the total oxygen stores predicted an aerobic dive limit of 5.4 min. The peak end-tidal O2 values were related to the length of the previous breath-hold, demonstrating the increased oxygen uptake from the lung for the longer dives. Blood oxygen capacity was 23.5 ± 1.0 ml · 100 ml−1, and the oxygen affinity was high, enabling rapid oxygen loading during ventilation. Accepted: 11 August 1999  相似文献   

15.
利用同源克隆技术得到1个毛白杨细胞质抗坏血酸过氧化物酶基因,命名为PcAPX。该基因编码249个氨基酸残基,预测分子量为33.01kD。采用原核表达技术在大肠杆菌中表达并纯化该蛋白并进行酶活性分析,结果表明:重组PcAPX蛋白对抗坏血酸(AsA)和过氧化氢(H2O2)有很高的活性,其对抗坏血酸的米氏常数(Km)和最大反应速度(Vmax)分别为(0.71±0.03)mmol·L-1和(0.41±0.02)mmol·L-1·min-1·mg-1;对过氧化氢的Km和Vmax分别为(0.60±0.21)mmol·L-1和(0.35±0.12)mmol·L-1·min-1·mg-1,表明PcAPX对AsA和H2O2拥有较高的催化底物的能力和催化效率。利用实时定量RT-PCR分析毛白杨PcAPX基因的表达模式,结果表明其在老叶中表达量高于新叶、韧皮部、形成层和根部。该研究结果将进一步促进毛白杨APX基因家族成员参与植物生长调控的研究。  相似文献   

16.
Rumen adaptation plays an important role in the productive cycle of dairy cattle. In this study, the time course of functional rumen epithelium adaptation after a change from hay feeding (ad libitum) to a mixed hay/concentrate diet was monitored by measuring Na+ transport rates in Ussing chamber experiments. A total of 18 sheep were subjected to different periods of mixed hay/concentrate feeding ranging from 0 weeks (control; hay ad libitum) to 12 weeks (800 g hay plus 800 g concentrate per day in two equal portions). For each animal, the net absorption of sodium was measured following the mixed hay/concentrate feeding period. Net Na transport, Jnet, significantly rose from 2.15 ± 0.43 (control) to 3.73 ± 1.02 μeq · cm?2 · h?1 after one week of mixed hay/concentrate diet, reached peak levels of 4.55 ± 0.50 μEq · cm?2 · h?1 after four weeks and levelled out at 3.92 ± 0.36 μeq · cm?2 · h?1 after 12 weeks of mixed feeding. Thus, 73% of functional adaptation occurred during the first week after diet change. This is in apparent contrast to findings that morphological adaptation takes approximately six weeks to reach peak levels. Hence, early functional adaptation to a mixed hay/concentrate diet is characterised by enhanced Na absorption rates per epithelial cell. Absorption rates are likely to be further enhanced by proliferative effects on the rumen epithelium (number and size of papillae) when concentrate diets are fed over longer periods of time. Early functional adaptation without surface area enlargement of the rumen epithelium appears to be the first step in coping with altered fermentation rates following diet change.  相似文献   

17.
18.
Tsounis  G.  Steele  M. A.  Edmunds  P. J. 《Coral reefs (Online)》2020,39(5):1299-1311

Increasing abundance of arborescent octocorals (often referred to as gorgonians) on Caribbean reefs raises the question of whether habitat structure provided by octocorals can mediate a transition between coral- and algal- dominated states by increasing fish abundance and herbivory. This study tested the hypotheses that feeding rates and densities of demersal reef fishes are affected by the habitat structure provided by dense octocoral communities. Surveys of fishes on coral reefs in St John, US Virgin Islands, found 1.7-fold higher densities, and 2.4-fold higher feeding rates within versus outside of dense octocoral canopies. This difference, however, was only seen at sites with octocoral densities > 8 colonies m−2. Furthemore, the proximity of octocoral colonies to fish had an effect on the grazing rate of key herbivores (surgeonfishes and parrotfishes), with a 53% higher feeding rate (1.90 ± 0.11 bites min−1 m−2) near octocorals (< 20 or 30 cm, depending on the site) versus farther from them (1.24 ± 0.09 bites min−1 m−2). Finally, within the canopy of dense octocoral communities (17 colonies m−2), reef fishes fed at a rate that was 2.2-fold higher within the community than at the edge of the community that faced an adjacent sand patch. Fish abundance, however, was not uniformly higher within versus at the edge of the octocoral community, as ecotone specialists such as gobiids, blennioids, ostraciids, holocentrids, labrids, and pomacentrids were 1.3—2.3 times more abundant at the edge. In contrast, other taxa of demersal fishes, notably herbivores, were twice as abundant within octocoral communities than at the edges. Together, these results reveal an association between habitat structure created by octocorals on shallow reefs and increased feeding rates of demersal fishes (including those of herbivores). The potential of octocorals to increase herbivory that could mediate stony coral recovery is therefore worthy of further study.

  相似文献   

19.
The rate of emergence of micropredatory gnathiid isopods from the benthos, the proportion of emerging gnathiids potentially eaten by Labroides dimidiatus, and the volume of blood that gnathiids potentially remove from fishes (using gnathiid gut volume) were determined. The abundance (mean ±s.e .) of emerging gnathiids was 41·7 ± 6·9 m?2 day?1 and 4552 ± 2632 reef?1 day?1 (reefs 91–125 m2). The abundance of emerging gnathiids per fish on the reef was 4·9 ± 0·8 day?1; but excluding the rarely infested pomacentrid fishes, it was 20·9 ± 3·8 day?1. The abundance of emerging gnathiids per patch reef was 66 ± 17% of the number of gnathiids that all adult L. dimidiatus per reef eat daily while engaged in cleaning behaviour. If all infesting gnathiids subsequently fed on fish blood, their total gut volume per reef area would be 17·4 ± 5·6 mm3 m?2 day?1; and per fish on the reefs, it would be 2·3 ± 0·5 mm?3 fish?1 day?1 and 10·3 ± 3·1 mm3 fish?1 day?1 (excluding pomacentrids). The total gut volume of gnathiids infesting caged (137 mm standard length, LS) and removed from wild (100–150 mm LS) Hemigymnus melapterus by L. dimidiatus was 26·4 ± 24·6 mm3 day?1 and 53·0 ± 9·6 mm3 day?1, respectively. Using H. melapterus (137 mm LS, 83 g) as a model, gnathiids had the potential to remove, 0·07, 0·32, 0·82 and 1·63% of the total blood volume per day of each fish, excluding pomacentrids, caged H. melapterus and wild H. melapterus, respectively. In contrast, emerging gnathiids had the potential of removing 155% of the total blood volume of Acanthochromis polyacanthus (10·7 mm LS, 0·038 g) juveniles. That L. dimidiatus eat more gnathiids per reef daily than were sampled with emergence traps suggests that cleaner fishes are an important source of mortality for gnathiids. Although the proportion of the total blood volume of fishes potentially removed by blood‐feeding gnathiids on a daily basis appeared to be low for fishes weighing 83 g, the cumulative effects of repeated infections on the health of such fish remains unknown; attacks on small juvenile fishes, may result in possibly lethal levels of blood loss.  相似文献   

20.
This study explored differences in the feeding rate among 20 species of coral reef butterflyfishes (Chaetodontidae) from Lizard Island, Great Barrier Reef. Feeding rate, measured as bites per minute (b.p.m.), varied between 2.98 ± 0.65 and 12.29 ± 0.27 (mean ± SE) according to species and was positively related to the proportional consumption of coral (r 2 = 0.40, n = 20, P < 0.01), independent of phylogeny (standardised independent contrasts r 2 = 0.29, n = 19, P < 0.05). All species fed actively throughout the day, with obligate corallivores having a higher feeding rate at all times than either facultative corallivores or non-corallivores. The feeding rate of the obligate corallivores was also highest during the middle of the day. For eight of the species for which data was available, there was a positive correlation between bite rate and competitive dominance (r = 0.71, P < 0.05). Chaetodon ephippium was the only species for which the feeding rate of pairs was higher than for solitary individuals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号