首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Woodborers in the Agrilus genus (Coleoptera: Buprestidae) pose high invasiveness risk as indicated by the recent invasion and continental spread of emerald ash borer, and the associated threat to ash resources in North America. In that context, development of detection tools for potentially invasive Agrilus spp. is a research priority. Experiments carried out in 2013 in Slovakian beech and poplar forests evaluated the attraction of multiple Agrilus species to green and purple sticky prism traps baited with various lures [blank, cubeb oil, (Z)‐3‐hexenol]. The two most abundant species were Agrilus viridis L. in beech (Fagus spp.) forest (146 adults, >95% of which were females) and Agrilus convexicollis Redtenbacher in poplar (Populus spp.) forest (158 adults, two‐thirds of them males). The two species exhibited opposite responses to color: purple traps attracted 2–3× more adult A. viridis than green traps, whereas most (>95%) specimens of A. convexicollis were captured on green traps. Volatile baits did not influence captures of adults for either species. The introduction and establishment of A. viridis in North America is of particular concern owing to its feeding niche (primary pest that can attack healthy trees), large body size, and high level of polyphagy (>10 genera of host trees). Additional experiments conducted in beech forests in 2014 found purple prism traps more attractive to female A. viridis than green prism traps, especially those baited with cubeb oil. No analysis was conducted for males because of their low abundance. Female A. viridis flew earlier in 2013 than in 2014, but neither their body size nor fecundity varied between years. In both years, large females had more eggs in their abdomen than small females, and the number of eggs steadily declined over time, which suggests that female A. viridis are reproductively mature at emergence.  相似文献   

2.
Interactions among members of biological communities can create spatial patterns that effectively generate habitat heterogeneity for other members in the community, and this heterogeneity might be crucial for their persistence. For example, stage‐dependent vulnerability of a predatory lady beetle to aggression of the ant, Azteca instabilis, creates two habitat types that are utilized differently by the immature and adult life stages of the beetle. Due to a mutualistic association between A. instabilis and the hemipteran Coccus viridis – which is A. orbigera main prey in the area – only plants around ant nests have high C. viridis populations. Here, we report on a series of surveys at three different scales aimed at detecting how the presence and clustered distribution of ant nests affect the distribution of the different life stages of this predatory lady beetle in a coffee farm in Chiapas, Mexico. Both beetle adults and larvae were more abundant in areas with ant nests, but adults were restricted to the peripheries of highest ant activity and outside the reach of coffee bushes containing the highest densities of lady beetle larvae. The abundance of adult beetles located around trees with ants increased with the size of the ant nest clusters but the relationship is not significant for larvae. Thus, we suggest that A. orbigera undergoes an ontogenetic niche shift, not through shifting prey species, but through stage‐specific vulnerability differences against a competitor that renders areas of abundant prey populations inaccessible for adults but not for larvae. Together with evidence presented elsewhere, this study shows how an important predator is not only dependent on the existence of two qualitatively distinct habitat types, but also on the spatial distribution of these habitats. We suggest that this dependency arises due to the different responses that the predator's life stages have to this emergent spatial pattern.  相似文献   

3.
Trapping approaches developed for the emerald ash borer (EAB), Agrilus planipennis Fairmaire (Coleoptera: Buprestidae), were adapted for trapping several European oak buprestid species. These approaches included the use of natural leaf surfaces as well as green and purple plastic in sticky trap designs. Plastic surfaces were incorporated into novel ‘branch‐trap’ designs that each presented two 5 × 9‐cm2 rectangular surfaces on a cardboard structure wrapped around the leaves of a branch. We used visual adult Agrilus decoys in an attempt to evoke male mating approaches toward the traps. Our first experiment compared the attractiveness of visual characteristics of the surfaces of branch‐traps. The second looked at the effect on trap captures of adding semiochemical lures, including manuka oil, (Z)‐3‐hexen‐1‐ol, and (Z)‐9‐tricosene. In total, 1 962 buprestid specimens including 14 species from the genus Agrilus were caught on 178 traps in a 22‐day time‐span. Overall, the green plastic‐covered branch‐traps significantly out‐performed the other trap designs. We further found that the presence of an EAB visual decoy placed on the trap surface often increased captures on these green traps, but this effect was stronger for certain Agrilus species than for others. The visual decoy was particularly important for the most serious pest detected, Agrilus biguttatus Fabricius, which was captured 13 times on traps with decoys, but only once without a decoy. There were some small but significant effects of odor treatment on the capture of buprestids of two common species, Agrilus angustulus Illiger and Agrilus sulcicollis Lacordaire. There were also 141 Elateridae specimens on these traps, which were not influenced by trap type or decoys. The results suggest that small branch‐traps of this nature can provide a useful new tool for monitoring of buprestids, which have the potential to be further optimized with respect to visual and olfactory cues.  相似文献   

4.
The objective of the current study was to identify pathogens of the large larch bark beetle, Ips cembrae, which is a secondary pest that has produced several local outbreaks across Europe in recent years. Beetles were collected from pheromone traps, trap trees and emergence traps (Larix decidua) during 2007 to 2011 at 10 study sites in central Europe. A total of 3379 mature and callow beetles were examined with a light microscope, and only two microsporidian pathogens [Chytridiopsis typographi and a diplokaryotic microsporidium (probably Nosema sp.)] and two gregarines (Gregarina typographi and Mattesia schwenkei) were found. Within the I. cembrae populations, the infection rate for C. typographi ranged from 2 to 58%. Nosema sp. occurred in only two beetles in 2007 (at two study sites). G. typographi was recorded only in Austria and Croatia and only in 1–2% of the beetles in those countries. Mattesia schwenkei was observed solely in Croatia in 0.6% of the beetles in that country. Only one fungal pathogen in the genus Fusarium was found and only in two mature beetles (0.7%) in 2010. The pathogen species found during our study of I. cembrae were very similar to the pathogens previously identified for Ips typographus. No species‐specific pathogen was detected.  相似文献   

5.
The emerald ash borer (Agrilus planipennis) is a destructive invasive beetle that has caused mortality of millions of Fraxinus spp. trees in North America. The extended interval between insect establishment, detection and management has allowed this pest to spread over large parts of North America. Artificial purple canopy traps are currently used in national detection surveys for this beetle. The effectiveness of purple canopy traps at low‐to‐moderate A. planipennis population densities in relation to road proximity was evaluated in 2013 and 2014. Transects of traps were established at set distances from roads in northern Michigan near an isolated A. planipennis infestation. It was hypothesized that trap effectiveness is influenced by road proximity, and that traps placed closer to roads were more likely to detect A. planipennis. A significant relationship was established between the mean number of A. planipennis captured on traps and road proximity (nearness), while no significant relationship was observed between detection success and road proximity. These findings suggest establishing traps further from roads (which can be less economically efficient) provides no greater likelihood of detection than establishing traps on or near the road edge. Basal area of non‐ash and ash species, beetle population density, vigour rating, ash tree species and sampling duration were shown to significantly influence the number of A. planipennis captured on traps.  相似文献   

6.
The efficiency of local augmentation releases of the egg parasitoid Anaphes nitens to control the Eucalyptus snout‐beetle Gonipterus platensis was tested in Eucalyptus globulus plantations in Galicia (NW Spain). On May–June 2006, at two localities of Pontevedra province, the release of host egg capsules parasitized by A. nitens at a potential rate of 300 adults/ha was compared with a release density of 900 adults/ha, and a control group of eucalypts not subjected to augmentation. Parasitism rate after 1–2 weeks did not significantly increase over the control plots at both localities. The high release rate did not ensure a higher crop protection and therefore could be not economically justified. On March–April 2017, at four localities of Pontevedra province, the test was replicated by releasing 300 parasitoids/ha. Parasitism level did significantly increase over the control just in one locality. Augmentation of A. nitens at small scale generally failed to achieve a higher protection from the pest, possibly due to the large extension of the E. globulus plantations, the magnitude of the G. platensis population and the fluctuations of the established parasitoid population, whose density is in turn affected by host egg availability and density‐dependent dispersal.  相似文献   

7.
Non‐native ambrosia beetles (Coleoptera: Curculionidae), especially Xylosandrus compactus (Eichhoff), Xylosandrus crassiusculus (Motschulsky) and Xylosandrus germanus (Blandford), are destructive wood‐boring pests of trees in ornamental nurseries and tree fruit orchards. Previous studies have demonstrated the adults are repelled by verbenone and strongly attracted to ethanol. We tested a “push–pull” semiochemical strategy in Ohio, Virginia and Mississippi using verbenone emitters to “push” beetles away from vulnerable trees and ethanol lures to “pull” them into annihilative traps. Container‐grown trees were flood‐stressed to induce ambrosia beetle attacks and then deployed in the presence or absence of verbenone emitters and a perimeter of ethanol‐baited interception traps to achieve the following treatment combinations: (a) untreated control, (b) verbenone only, (c) ethanol only, and (d) verbenone plus ethanol. Verbenone and ethanol did not interact to reduce attacks on the flooded trees, nor did verbenone alone reduce attacks. The ethanol‐baited traps intercepted enough beetles to reduce attacks on trees deployed in Virginia and Mississippi in 2016, but not in 2017, or in Ohio in 2016. Xylosandrus germanus, X. crassiusculus and both Hypothenemus dissimilis Zimmermann and X. crassiusculus were among the predominant species collected in ethanol‐baited traps deployed in Ohio, Virginia and Mississippi, respectively. Xylosandrus germanus and X. crassiusculus were also the predominant species dissected from trees deployed in Ohio and Virginia, respectively. While the ethanol‐baited traps showed promise for helping to protect trees by intercepting ambrosia beetles, the repellent “push” component (i.e., verbenone) and attractant “pull” component (i.e., ethanol) will need to be further optimized in order to implement a “push–pull” semiochemical strategy.  相似文献   

8.
The invasive emerald ash borer, Agrilus planipennis Fairmaire (Coleoptera: Buprestidae), is a major pest of ash trees, Fraxinus spp., in its introduced range in North America. Field studies were conducted to quantify the efficacy of traps baited with kairomone and pheromone lures for early detection of A. planipennis infestation. A trapping experiment demonstrated that green traps baited with the kairomone (3Z)‐hexenol detected at least one adult A. planipennis in 55.3% of plots with ‘nil to low’‐density infestations and in 100% of plots with ‘moderate to high’‐density A. planipennis infestations. Mean trap captures increased significantly with increasing infestation density. In terms of the optimal number of traps per plot, when one (3Z)‐hexenol‐baited trap was placed per plot, the trap detected populations in 62% of the plots with ‘low to moderate’‐density infestations through branch sampling. Detectability was increased to 82% when two traps were placed per plot. Finally, addition of female‐produced (3Z)‐lactone pheromone to traps significantly increased detection rates at both the trap and plot level, as compared with traps baited with the host volatile, (3Z)‐hexenol, alone (88 vs. 60%, respectively). Our results are the first to demonstrate the efficacy of baited green sticky traps for detecting low‐density A. planipennis infestations, particularly when the (3Z)‐lactone pheromone is used. This combination is therefore recommended for development of early‐detection protocols against A. planipennis.  相似文献   

9.
Polyphagous shot hole borer (PSHB), Euwallacea whitfordiodendrus (Schedl) (Coleoptera: Curculionidae, Scolytinae), is an ambrosia beetle that has recently invaded southern California, USA. This beetle successfully attacks and reproduces in a multitude of tree species. As direct control methods are limited, we investigated cultural management options, and sought to determine whether irrigation affects the number of attacks host trees experienced. If irrigation plays a role, cultural control methods could be recommended to managers and growers. Three separate experiments were conducted that monitored the number of attacks on trees with different levels of irrigation. Two experiments examined PSHB attacks in established landscape trees where irrigation was either present or absent. A third experiment used young potted box elder with irrigation controlled with timed emitters. In all three experiments, the level of irrigation received by the trees did not affect the number of attacks. The results suggest that changes in irrigation practices do not affect risk from PSHB attack.  相似文献   

10.
Interspecific competition for shared resources should select for evolutionary divergence in resource use between competing species, termed character displacement. Many purported examples of character displacement exist, but few completely rule out alternative explanations. We reared genetically diverse populations of two species of bean beetles, Callosobruchus maculatus and Callosobruchus chinensis, in allopatry and sympatry on a mixture of adzuki beans and lentils, and assayed oviposition preference and other phenotypic traits after four, eight, and twelve generations of (co)evolution. C. maculatus specializes on adzuki beans; the generalist C. chinensis uses both beans. C. chinensis growing in allopatry emerged equally from both bean species. In sympatry, the two species competing strongly and coexisted via strong realized resource partitioning, with C. chinensis emerging almost exclusively from lentils and C. maculatus emerging almost exclusively from adzuki beans. However, oviposition preferences, larval survival traits, and larval development rates in both beetle species did not vary consistently between allopatric versus sympatric treatments. Rather, traits evolved in treatment‐independent fashion, with several traits exhibiting reversals in their evolutionary trajectories. For example, C. chinensis initially evolved a slower egg‐to‐adult development rate on adzuki beans in both allopatry and sympatry, then subsequently evolved back toward the faster ancestral development rate. Lack of character displacement is consistent with a previous similar experiment in bean beetles and may reflect lack of evolutionary trade‐offs in resource use. However, evolutionary reversals were unexpected and remain unexplained. Together with other empirical and theoretical work, our results illustrate the stringency of the conditions for character displacement.  相似文献   

11.
Agrilus mali Matsumara (Coleoptera: Buprestidae) is a wood‐boring beetle distributed to eastern China that occasionally injures apple species. However, this wood‐boring beetle is new to the wild apple forests (Malus sieversii) of the Tianshan Mountains (western China) and has caused extensive tree mortality. The development of a biological control program for these wild apple forests is a high priority that requires exploration of the life cycle, DNA barcoding and taxonomic status of A. mali. In this study, to determine the diversity of invasive beetles, a fragment of the mitochondrial cytochrome oxidase gene was analyzed. Based on the results, beetles from Gongliu and Xinyuan counties of Xinjiang were identical but differed from those in the apple nursery of Gongliu by a single‐nucleotide substitution. We summarize the taxonomic status, relationships, and genetic distances of A. mali among other Agrilus species using the Tajima‐Nei model in maximum likelihood phylogeny. Analysis revealed that A. mali was closely related to Agrilus mendax and both belong to the Sinuatiagrulus subgenus. The life cycle of A. mali was investigated based on a monthly regular inspection in the wild apple forests of Tianshan. Similar to congeneric species, hosts are injured by larvae of A. mali feeding on phloem tissue, resulting in serpentine galleries constructed between bark and xylem that prevent nutrient transport and leading to tree mortality. Future studies will focus on plant physiological responses to the invasive beetles and include surveys of natural enemies for a potential classical biological control program.  相似文献   

12.
Experiments were conducted in North and South America during 2012–2013 to evaluate the use of lure combinations of sex pheromones (PH), host plant volatiles (HPVs) and food baits in traps to capture the oriental fruit moth, Grapholita molesta (Busck), and codling moth, Cydia pomonella (L.), in pome and stone fruit orchards treated with sex pheromones. The combination of the sex pheromone of both species (PH combo lure) significantly increased G. molesta and marginally decreased C. pomonella captures as compared with captures of each species with either of their sex pheromones alone. The addition of a HPV combination lure [(E,Z)‐2,4‐ethyl decadienoate plus (E)‐β‐ocimene] or acetic acid used alone or together did not significantly increase the catch of either species in traps with the PH combo lure. The Ajar trap baited with terpinyl acetate and brown sugar (TAS bait) caught significantly more G. molesta than the delta trap baited with PH combo plus acetic acid in California during 2012. The addition of a PH combo lure to an Ajar trap significantly increased catches of G. molesta compared to the use of the TAS bait or PH combo lure alone in 2013. Female G. molesta were caught in TAS‐baited Ajar traps at similar levels with or without the use of additional lures. Ajar traps baited with the TAS bait alone or with (E)‐β‐ocimene and/or PH combo lures caught significantly fewer C. pomonella than delta traps with sex pheromone alone. Ajar traps with 6.4‐mm screened flaps caught similar numbers of total and female G. molesta as similarly baited open Ajar traps, and with a significant reduction in the catch of non‐targets. Broader testing of HPV and PH combo lures for G. molesta in either delta or screened or open Ajar traps is warranted.  相似文献   

13.
Tonicia lebruni, a common, lower intertidal and subtidal chiton inhabiting Patagonian rocky shores, is a gonochoristic iteroparous species producing large eggs (≈ 400 μm in diameter), which are fertilized and brooded within the pallial groves until released as juveniles. A free larval stage is absent, despite this, T. lebruni is widely distributed along the south‐western Atlantic. At Puerto Deseado, T. lebruni has a marked seasonality in the reproductive cycle, reproducing only once a year. The reproductive period is quite short and defined in time: spawning and brooding take place during the late austral winter and beginning of spring. Recovery of the female gonad starts very soon after spawning. Oogenesis takes about 10–11 months for completion. Brood size is correlated with length of maternal individual. The number of embryos per brood varied between 785 and 5945. Extensive resorption of abortive eggs is viewed as related to limitation of space available for brooding. The egg hull is formed by a large number of minute pentagonal or hexagonal plates each one bearing a short spine bent onto the egg surface. The morphology and the surface of the hull could contribute to the cohesiveness of the brooded egg mass within the pallial grooves.  相似文献   

14.
Serangium japonicum Chapin (Coleoptera: Coccinellidae) chiefly attacks whiteflies. This study monitored the adult occurrence of the ladybird and the citrus whitefly Dialeurodes citri (Ashmead) (Hemiptera: Aleyrodidae) in citrus groves in central Japan using sticky traps, thereby examining temporal relationships in their abundance. Many S. japonicum adults were captured in a pesticide-free grove where D. citri adults were very abundant, with few adults in neighboring (organic, reduced pesticide, and conventional) groves harboring small numbers of D. citri. The whitefly adults exhibited a large peak in numbers in late May to early June. Two peaks of the ladybird adult numbers were detected in late May to early June and late June to mid-July, ?6 to 7 days, and nearly 1 month after the peak in whitefly adult numbers, respectively. The ladybird adults found during the first peak period would be those that visited citrus trees mainly for oviposition, and the adults caught during the second peak period would be those that newly emerged after consuming immature whiteflies at the larval stage. Based on a yearly change in adult numbers in the pesticide-free grove, i.e., a large increase in S. japonicum numbers followed by a rapid decline in D. citri numbers, the ladybird’s role in controlling the whitefly is discussed.  相似文献   

15.
A study of nematodes associated with the large larch bark beetle Ips cembrae (Heer 1836) was carried out at three locations in the Czech Republic. The proportion of beetles infested by endoparasitic nematodes (representatives of genera Contortylenchus, Parasitylenchus, Cryptaphelenchus and Parasitorhabditis) ranged from 29.9 to 50.9%. Significant differences were determined in nematode infestation levels among locations, generations and sampling methods. No differences were found in infestation rates between males and females. The percentage of bark beetles with phoretic nematodes ranged from 18 to 42.9%. Phoretic nematodes directly found under elytra, on wings and between body segments of the bark beetles belong to the genus Micoletzkya. However, adults and juveniles of other two phoretic species Laimaphelenchus penardi and Bursaphelenchus sp. were found in the gallery frass of I. cembrae. Infestation by phoretic nematodes positively correlated with the presence of mites under elytra.  相似文献   

16.
From 2013 to 2018, surveys were conducted in counties not previously surveyed in order to determine species of mealybugs present in the cocoa orchard in Côte d'Ivoire as well as their abundance according to the age of cocoa trees. Immature and mature cocoa trees were inspected to hand‐height in 5 and 29 counties infected with Cacao swollen shoot virus (CSSV). In each cocoa farm, mealybugs were searched for on fruits, leaves, flowers, twigs and trunks. Mealybug species were identified, and colonies were counted. Five mealybug species were identified on immature cocoa trees: Ferrisia virgata, Formicococcus njalensis, Planococcus citri, Planococcus kenyae and Pseudococcus longispinus. In addition to these species, four species, Dysmicoccus brevipes, Maconellicoccus hirsutus, Phenacoccus hargreavesi and Pseudococcus jackbeardsleyi were identified on mature cocoa trees. On immature cocoa trees, Fo. Njalensis, Pl. citri and Ps. longispinus comprised were, respectively, 35%, 33% and 19% of colonies, respectively. On mature cocoa trees, Fo. Njalensis and Pl. citri comprised 63.2% and 21.0%, and others species 15.8%. Nevertheless, the abundance of mealybug species varied according to the age of cocoa trees. The preferred organs of mealybugs were pods (74.1%) followed by twigs (13.4%) and flowers (7.4%). Previously, the mealybug Paracoccus burnerae (Brain) was found on Theobroma cacao, which is the first record for this species in Côte d'Ivoire and on this host‐plant.  相似文献   

17.
Three aphid species regularly feed on pecan [Carya illinoinensis (Wangenh.) K. Koch (Juglandaceae)] foliage: the black pecan aphid, Melanocallis caryaefoliae (Davis), the yellow pecan aphid, Monelliopsis pecanis Bissell, and the blackmargined aphid, Monellia caryella (Fitch) (all Hemiptera: Aphididae). Adults of M. caryaefoliae and both the nymphs and adults of M. pecanis and M. caryella mainly feed on the lower surface of leaves. Nymphs of M. caryaefoliae appear unique by frequently feeding on the upper surface of pecan leaves. This is risky behavior given the environmental hazards (e.g., rain, solar radiation, and dislodgement) associated with the upper surface. Thus, we determined the leaf surface distribution of M. caryaefoliae on trees in an orchard and on pecan seedlings in the laboratory. A pecan orchard survey found all three aphid species and stages predominantly on the lower leaf surface, except for the nymphs of M. caryaefoliae, which were evenly distributed between upper and lower leaf surfaces. This survey also found aphidophagous lacewing (Neuroptera) larvae predominantly on the lower leaf surface, whereas ladybird beetle (Coleoptera: Coccinellidae) larvae were more evenly distributed between upper and lower surfaces. Laboratory experiments using single or multiple pecan aphid species revealed M. caryaefoliae distribution on pecan seedlings similar to orchard data. Nymphal M. caryaefoliae require nearly 2 days to elicit chlorotic feeding lesions on leaves; without these lesions, nymphal development is hindered. The similar distribution of nymphs of M. caryaefoliae on both leaf surfaces likely reflects a strategy of predator avoidance allowing a proportion of the population to survive.  相似文献   

18.
Plants release volatiles in response to caterpillar feeding that attracts natural enemies of the herbivores, a tritrophic interaction which has been considered to be an indirect plant defence against herbivores. On the other hand, the caterpillar‐induced plant volatiles have been reported to either repel or attract conspecific adult herbivores. This work was undertaken to investigate the response of both herbivores and natural enemies to caterpillar‐induced plant volatiles in apple orchards. We sampled volatile compounds emitted from uninfested apple trees, and apple trees infested with generalist herbivore the pandemis leafroller moth, Pandemis pyrusana (Lepidoptera, Tortricidae) larvae using headspace collection and analysed by gas chromatography/mass spectrometry. Infested apple trees uniquely release six compounds (benzyl alcohol, phenylacetonitrile, phenylacetaldehyde, 2‐phenylethanol, indole and (E)‐nerolidol). These compounds were tested on two species of herbivores and one predator in apple orchards. Binary blends of phenylacetonitrile + acetic acid or 2‐phenylethanol + acetic acid attracted a large number of conspecific male and female adult herbivores. The response of pandemis leafroller to herbivore‐induced plant volatiles (HIPVs) was so pronounced that over one thousand and seven hundred conspecific male and female adult herbivores were caught in traps baited with HIPVs in three‐day trapping period. In addition, significantly higher number of male and female obliquebanded leafroller, Choristoneura rosaceana (Lepidoptera, Tortricidae), was caught in traps baited a binary blend of 2‐phenylethanol + acetic acid, or a ternary blend contains 2‐phenylethanol and phenylacetonitrile + acetic acid. This result challenges the current paradigm hypothesized that HIPVs repel herbivores and question the indirect defensive function proposed for these compounds. On the other hand, a ternary blend of phenylacetonitrile and 2‐phenylethanol + acetic acid attracted the largest numbers of the general predator, the common green lacewing, Chrysoperla plorabunda. To our knowledge, this is the first record of the direct attraction of conspecific adult herbivores as well as a predator to the caterpillar‐induced plant volatiles in the field.  相似文献   

19.
During spring and summer of 2011, a survey was undertaken on some palm groves in the Kerman province (south‐eastern Iran) to determine the fungal pathogens associated with date palm (Phoenix dactylifera L.) decline diseases. Samples were taken from date palm trees showing yellowing, wilting and dieback symptoms. Isolations were made from symptomatic tissues on malt extract agar (MEA) supplemented with 100 mg/l streptomycin sulphate (MEAS). Two species of Phaeoacremonium, Phaeoacremonium aleophilum and Pm. parasiticum, and two species of Botryosphaeriaceae, Botryosphaeria dothidea andDiplodia mutila, were isolated from affected trees and identified on the basis of morphological, cultural and molecular characteristics. Pathogenicity tests were performed on date palm (4‐year‐old potted plants) under greenhouse conditions. Based on the pathogenicity tests, Pm. aleophilum was the most virulent and caused the longest lesions. This is the first report of Pm. aleophilum and B. dothidea and their pathogenicity on date palm tree.  相似文献   

20.
Ips amitinus and I. typographus are two serious pests of spruce in Europe, have similar bionomics and are likely to occur and meet on the same host trees. We therefore hypothesized that the two species support similar levels of similar pathogens. To test this hypothesis, we collected mature beetles from three trap trees at each of eight study sites and determined beetle numbers and pathogen infection levels. In total, 938 mature I. amitinus beetles and 3435 of I. typographus were dissected; five pathogens, as well as intestinal nematodes and endoparasitoids, were detected. The neogregarine Mattesia schwenkei is reported here for the first time as a new pathogen in 9.4% of I. amitinus individuals at one site. Average infection levels of most pathogens (Chytridiopsis typographi, Gregarina typographi, Mattesia schwenkei and parasitoids) were significantly higher in I. typographus than in I. amitinus. Metschnikowia typographi was confirmed only in Ips amitinus, while the microsporidium of Nosema typographi occurred only in I. typographus. Within‐season increases in G. typographi infection levels were documented in Ips amitinus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号