首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
We examined the purine alkaloid content and purine metabolism in cacao (Theobroma cacao L.) plant leaves at various ages: young small leaves (stage I), developing intermediate size leaves (stage II), fully developed leaves (stage III) from flush shoots, and aged leaves (stage IV) from 1-year-old shoots. The major purine alkaloid in stage I leaves was theobromine (4.5 μmol g–1 fresh weight), followed by caffeine (0.75 μmol g–1 fresh weight). More than 75% of purine alkaloids disappeared with subsequent leaf development (stages II–IV). In stage I leaves, 14C-labelled adenine, adenosine, guanine, guanosine, hypoxanthine and inosine were converted to salvage products (nucleotides and nucleic acids), to degradation products (ureides and CO2) and to purine alkaloids (3- and 7-methylxanthine, 7-methylxanthosine and theobromine). In contrast, 14C-labelled xanthine and xanthosine were not used for nucleotide synthesis. They were completely degraded, but nearly 20% of [8-14C]Xanthosine was converted in stage I leaves to purine alkaloids. These observations are consistent with the following biosynthetic pathways for theobromine: (a) AMP → IMP → 5′-xanthosine monophosphate → xanthosine → 7-methylxanthosine → 7-methylxanthine → theobromine; (b) GMP → guanosine → xanthosine → 7-methylxanthosine → 7-methylxanthine → theobromine; (c) xanthine → 3-methylxanthine → theobromine. Although no caffeine biosynthesis from 14C-labelled purine bases and nucleosides was observed during 18 h incubations, exogenously supplied [8-14C]Theobromine was converted to caffeine in young leaves. Conversion of theobromine to caffeine may, therefore, be slow in cacao leaves. No purine alkaloid synthesis was observed in the subsequent growth stages (stages II–IV). Significant degradation of purine alkaloids was found in leaves of stages II and III, in which [8-14C]Theobromine was degraded to CO2 via 3-methylxanthine, xanthine and allantoic acid. [8-14C]Caffeine was catabolised to CO2 via theophylline (1,3-dimethylxanthine) or theobromine.  相似文献   

2.
The biosynthesis and metabolism of purine alkaloids in leaves ofCamellia ptilophylla (cocoa tea), a new tea resource in China, have been investigated. The major purine alkaloid was theobromine, with theophylline also being present as a minor component. Caffeine was not accumulated in detectable quantities. Theobromine was synthesized from [8-14C] adenine and the rate of its biosynthesis in the segments from young and mature leaves from flush shoots was approximately 10 times higher than that from aged leaves from 1-year old shoots. Neither cellfree extracts nor segments fromC. ptilophylla leaves could convert theobromine to caffeine. A large quantity of [2-14C] xanthine taken up by the leaf segments was degraded to14CO2 via the conventional purine catabolic pathway that includes allantoin as an intermediate. However, small amounts of [2-14C] xanthine were also converted to theobromine. Considerable amounts of [8-14C] caffeine exogenously supplied to the leaf segments ofC. ptilophylla was changed to theobromine. These results indicate that leaves ofC. ptilophylla exhibit unusual purine alkaloid metabolism as i) they have the capacity to synthesize theobromine from adenine nucleotides, but they lack adequate methyltransferase activity to convert of theobromine to caffeine in detectable quantities, ii) the leaves have a capacity to convert xanthine to theobromine, probably via 3-methylxanthine.  相似文献   

3.
Biosynthesis of Caffeine in Flower Buds of Camellia sinensis   总被引:1,自引:0,他引:1  
The biosynthesis of purine alkaloids in flower buds of tea plantswas investigated. More than 25% of total radioactivity of [8-14C]adeninetaken up by stamens isolated from tea flower buds was foundto have been incorporated into purine alkaloids, namely, theobromineand caffeine, 24 h after administration of the labelled compound.Pulse-chase experiments indicated that [8-14C]adenine takenup by the stamens was converted to adenine nucleotides and subsequentlyincorporated into theobromine and caffeine. Since 5 µMcoformycin, an inhibitor of AMP deaminase, inhibited the incorporationof radioactivity into the purine alkaloids, synthesis of caffeinefrom adenine nucleotides seems to be initiated by the reactionof AMP deaminase. Although most of the radioactivity from [8-14C]inosinewas recovered as CO2 and ureides, considerable amounts of radioactivitywere recovered as purine alkaloids. The incorporation of radioactivityfrom [8-14C]inosine into the purine alkaloids was not affectedby coformycin. The five enzymes involved in synthesis of 5-phosphoribosyl-1-pyrophosphatefrom glucose were present in the stamens and petals of tea flowerbuds. From present and previous results, the pathway for thebiosynthesis of caffeine from adenine nucleotides in flowerbuds of tea is discussed.Copyright 1993, 1999 Academic Press Camellia sinensis, tea, stamen, flower, biosynthesis, purine alkaloids, caffeine, theobromine, adenine nucleotides, nucleotide biosynthesis  相似文献   

4.
In anti-sense and RNA interference transgenic plants of Coffea canephora in which the expression of CaMXMT1 was suppressed, caffeine biosynthesis from [8-(14)C]adenine was investigated, together with the overall metabolism of [8-(14)C]adenine. Compared with wild type control plants, total purine alkaloid biosynthesis from adenine and conversion of theobromine to caffeine were both reduced in the transgenic plants. As found previously, [8-(14)C]adenine was metabolised to salvage products (nucleotides and RNA), to degradation products (ureides and CO(2)) and to purine alkaloids (theobromine and caffeine). In the transgenic plants, metabolism of [8-(14)C]adenine shifted from purine alkaloid synthesis to purine catabolism or salvage for nucleotides. HPLC analysis revealed a significantly reduced caffeine content in the transgenic plants. A small quantity (less than 20 nmol g(-1) fresh weight) of xanthosine had accumulated in at least one of the transgenic plants.  相似文献   

5.
Purine alkaloid catabolism pathways in young, mature and agedleaves of tea (Camellia sinensis L.) were investigated by incubatingleaf sections with 14C-labelled theobromine, caffeine, theophyllineand xanthine. Incorporation of label into CO2 was determinedand methanol-soluble metabolites were analysed by high-performanceliquid chromatography-radiocounting and thin layer chro-matography.The data obtained demonstrate that theobromine is the immediateprecursor of caffeine, which accumulates in tea leaves becauseits conversion to theophylline is the rate limiting step inthe purine alkaloid catabolism pathway. The main fate of [8-14C]theophyllineincubated with mature and aged leaves, and to a lesser extentyoung leaves, is conversion to 3-methylxanthine and onto xanthinewhich is degraded to 14CO2 via the purine catabolism pathway.However, with young leaves, sizable amounts of [8-14C]-theophyllinewere salvaged for the synthesis of caffeine via a 3-methylxanthine  相似文献   

6.
Metabolic fate of guanosine in higher plants   总被引:2,自引:1,他引:1  
The aim of the present study was to investigate the metabolic fate of guanine nucleotides in higher plants. The rate of uptake of [8-14C]guanosine by suspension-cultured Catharanthus roseus cells was more than 20 times higher than that of [8-14C]guanine. The rate of uptake of [8-14C]guanosine increased with the age of the culture. Pulse-chase experiments with [8-14C]guanosine revealed that some of the guanosine that had been taken up by the cells was converted to guanine nucleotides and incorporated into nucleic acids. A significant amount of [8-14C]guanosine was degraded directly to xanthine, allantoin and allantoic acid, with the generation of 14CO2 as the final product. The rate of salvage of [8-14C]guanosine for the synthesis of nucleic acids was highest in young cells, while the rate of degradation increased with the age of the cells. In segments of roots from Vigna mungo seedlings, nearly 50% of the [8-14C]guanosine that had been absorbed over the course of 15 min was recovered in guanine nucleotides. A significant amount of the radioactivity in nucleotides became associated with nucleic acids and ureides during ‘chase’ periods. In segments of young leaves of Camellia sinensis, [8-14C]guanosine was initially incorporated into guanine nucleotides, nucleic acids, theobromine and ureides, and the radioactivity in these compounds was transferred to caffeine and CO2 during a 24-h incubation. Our results suggest that guanosine is an intermediate in the catabolism of guanine nucleotides and that it is re-utilised for nucleotide synthesis by ‘salvage’ reactions. Guanosine was catabolised by the conventional degradation pathway via xanthine and allantoin. In some plants, guanosine is also utilised for the formation of ureide or the biosynthesis of caffeine.  相似文献   

7.
Caffeine (1,3,7-trimethylxanthine) and theobromine (3,7-dimethylxanthine) are purine alkaloids that are present in high concentrations in plants of some species of Camellia. However, most members of the genus Camellia contain no purine alkaloids. Tracer experiments using [8-14C]adenine and [8-14C]theobromine showed that the purine alkaloid pathway is not fully functional in leaves of purine alkaloid-free species. In five species of purine alkaloid-free Camellia plants, sufficient evidence was obtained to show the occurrence of genes that are homologous to caffeine synthase. Recombinant enzymes derived from purine alkaloid-free species showed only theobromine synthase activity. Unlike the caffeine synthase gene, these genes were expressed more strongly in mature tissue than in young tissue. The nucleotide sequence data reported here have been deposited in the GenBank database under the accession numbers AB297451 (CjCS1), AB362882 (CgCS1), AB362883 (CgCS2), AB362884 (CkCS1), AB362885 (ClCS1), and AB362886 (CcCS2).  相似文献   

8.
Keya CA  Crozier A  Ashihara H 《FEBS letters》2003,554(3):473-477
The effects of ribavirin, an inhibitor of inosine-5'-monophosphate (IMP) dehydrogenase, on [8-(14)C]inosine metabolism in tea leaves, coffee leaves and coffee fruits were investigated. Incorporation of radioactivity from [8-(14)C]inosine into purine alkaloids, such as theobromine and caffeine, guanine residues of RNA, and CO(2) was reduced by ribavirin, while incorporation into nucleotides, including IMP and adenine residues of RNA, was increased. The results indicate that inhibition of IMP dehydrogenase by ribavirin inhibits both caffeine and guanine nucleotide biosynthesis in caffeine-forming plants. The use of IMP dehydrogenase-deficient plants as a potential source of good quality caffeine-deficient tea and coffee plants is discussed.  相似文献   

9.
1. The metabolism of xanthine and hypoxanthine in excised shoot tips of tea was studied with micromolar amounts of [2(-14)C]xanthine or [8(-14)C]hypoxanthine. Almost all of the radioactive compounds supplied were utilized by tea shoot tips by 30 h after their uptake. 2. The main products of [2(-14)C]xanthine and [8(-14)C]hypoxanthine metabolism in tea shoots were urea, allantoin and allantoic acid. There was also incorporation of the label into theobromine, caffeine and RNA purine nucleotides. 3. The results indicate that tea plants can catabolize purine bases by the same pathways as animals. It is also suggested that tea plants have the ability to snythesize purine nucleotides from glycine by the pathways of purine biosynthesis de novo and from hypoxanthine and xanthine by the pathway of purine salvage. 4. The results of incorporation of more radioactivity from [8(-14)C]hypoxanthine than from [2(-14)C]xanthine into RNA purine nucleotides and caffeine suggest that hypoxanthine is a more effective precursor of caffeine biosynthesis than xanthine. The formation of caffeine from hypoxanthine is a result of nucleotide synthesis via the pathway of purine salvage.  相似文献   

10.
Biosynthesis of Purine Alkaloids in Camellia Plants   总被引:2,自引:0,他引:2  
The metabolism of [8-14C]adenine and [8-14C]hypoxanthine infour species of Camellia plants was investigated in relationto the synthesis of purine alkaloids, caffeine and theobromine.Young leaves of C. sinensis had the ability to synthesize caffeine,but in C. irrawadiensis, these labelled precursors were incorporatedinto theobromine, not caffeine. No synthesis of purine alkaloidscould be detected in C. japonica and C. sasanqua leaves. Conventional"salvage" and degradation pathways of purines were present inall species of Camellia plants examined. 1 Present address: Research Center, Mitsubishi Chemical IndustriesLtd., 1000 Kamisida-cho, Midori-ku, Yokohama, 227 Japan. (Received September 29, 1986; Accepted January 22, 1987)  相似文献   

11.
1. Caffeine biosynthesis was studied by following the incorporation of 14C into the products of L-[Me-14C]methionine metabolism in tea shoot tips. 2. After administration of a 'pulse' of L-[Me-14C]methionine, almost all of the L-[Me-14C]methionine supplied disappeared within 1 h, and 14C-labelled caffeine synthesis increased throughout the experimental periods, whereas the radioactivities of an unknown compound and theobromine were highest at 3 h after the uptake of L-[Me-14C]methionine, followed by a steady decrease. There was also slight incorporation of the label into 7-methylxanthine, serine, glutamate and aspartate, disappearing by 36 h after the absorption of L-[Me-14C]methionine. 3. The radioactivities of nucleic acids derived from L-[Me-14C]methionine increased rapidly during the first 12 h incubation period and then decreased steadily. Sedimentation analysis of nucleic acids by sucrose-gradient centrifugation showed that methylation of nucleic acids in tea shoot tips occurred mainly in the tRNA fraction. The main product among the methylated bases in tea shoot tips was identified as 1-methyladenine. 4. The results indicated that the purine ring in caffeine is derived from the purine nucleotides in the nucleotide pool rather than in nucleic acids. A metabolic scheme to show the production of caffeine and related methylxanthines from the nucleotides in tea plants is discussed.  相似文献   

12.
Katahira R  Ashihara H 《Planta》2006,225(1):115-126
To find general metabolic profiles of purine ribo- and deoxyribonucleotides in potato (Solanum tuberosum L.) plants, we looked at the in situ metabolic fate of various 14C-labelled precursors in disks from growing potato tubers. The activities of key enzymes in potato tuber extracts were also studied. Of the precursors for the intermediates in de novo purine biosynthesis, [14C]formate, [2-14C]glycine and [2-14C]5-aminoimidazole-4-carboxyamide ribonucleoside were metabolised to purine nucleotides and were incorporated into nucleic acids. The rates of uptake of purine ribo- and deoxyribonucleosides by the disks were in the following order: deoxyadenosine > adenosine > adenine > guanine > guanosine > deoxyguanosine > inosine > hypoxanthine > xanthine > xanthosine. The purine ribonucleosides, adenosine and guanosine, were salvaged exclusively to nucleotides, by adenosine kinase (EC 2.7.1.20) and inosine/guanosine kinase (EC 2.7.1.73) and non-specific nucleoside phosphotransferase (EC 2.7.1.77). Inosine was also salvaged by inosine/guanosine kinase, but to a lesser extent. In contrast, no xanthosine was salvaged. Deoxyadenosine and deoxyguanosine, was efficiently salvaged by deoxyadenosine kinase (EC 2.7.1.76) and deoxyguanosine kinase (EC 2.7.1.113) and/or non-specific nucleoside phosphotransferase (EC 2.7.1.77). Of the purine bases, adenine, guanine and hypoxanthine but not xanthine were salvaged for nucleotide synthesis. Since purine nucleoside phosphorylase (EC 2.4.2.1) activity was not detected, adenine phosphoribosyltransferase (EC 2.4.2.7) and hypoxanthine/guanine phosphoribosyltransferase (EC 2.4.2.8) seem to play the major role in salvage of adenine, guanine and hypoxanthine. Xanthine was catabolised by the oxidative purine degradation pathway via allantoin. Activity of the purine-metabolising enzymes observed in other organisms, such as purine nucleoside phosphorylase (EC 2.4.2.1), xanthine phosphoribosyltransferase (EC 2.4.2.22), adenine deaminase (EC 3.5.4.2), adenosine deaminase (EC 3.5.4.4) and guanine deaminase (EC 3.5.4.3), were not detected in potato tuber extracts. These results suggest that the major catabolic pathways of adenine and guanine nucleotides are AMP → IMP → inosine → hypoxanthine → xanthine and GMP → guanosine → xanthosine → xanthine pathways, respectively. Catabolites before xanthosine and xanthine can be utilised in salvage pathways for nucleotide biosynthesis.  相似文献   

13.
We have studied the purine alkaloid content and purine metabolism in Theobroma cacao fruits at differing growth stages: Stage A (young small fruit, fresh weight, ca. 2 g); stage B (medium size fruit, fresh weight, ca. 100 g) and stage C (large size, fresh weight, ca. 500 g). The major purine alkaloid in stage A fruits (mainly pericarp) was theobromine (0.7 micromol g(-1) fresh weight), followed by caffeine (0.09 micromol g(-1) fresh weight). The theobromine content of the pericarp decreased sharply with tissue age, and the caffeine content decreased gradually. A large amount of theobromine (22 micromol g(-1) fresh weight) had accumulated in seeds (mainly cotyledons) of stage C fruits. Theobromine was found also in the seed coat and placenta. Tracer experiments with [8-(14)C]adenine show that the major sites of theobromine synthesis are the young pericarp and cotyledons of T. cacao fruits. Limited amounts of purine alkaloids may be transported from the pericarp to seed tissue, but most purine alkaloids that accumulated in seeds appeared to be synthesised in cotyledons. Degradation of [8-(14)C]theobromine and [8-(14)C]caffeine to CO2 via 3-methylxanthine and ureides (allantoin and allantoic acid) was detected only in the pericarp of stage C fruits.  相似文献   

14.
In a study of purine alkaloid catabolism pathways in coffee,14C-labelled theobromine, caffeine, theophylline and xanthine were incubated with leaves ofCoffea arabica. Incorporation of label into14CO2 was determined and methanol-soluble metabolites were analysed by high-performance liquid chromatography-radiocounting. The data obtained demonstrate catabolism of caffeine theophylline 3-methylxanthine xanthine. Xanthine is degraded further by the conventional purine catabolism pathway to CO2 and NH3 via uric acid, allantoin and allantoic acid. The conversion of caffeine to theophylline is the rate-limiting step in purine alkaloid catabolism and provides a ready explanation for the high concentration of endogenous caffeine found inC. arabica leaves. Although theobromine is converted primarily to caffeine, a small portion of the theobromine pool appears to be degraded to xanthine by a caffeine-independent pathway. In addition to being broken down to CO2, via the purine catabolism pathway, xanthine is metabolised to 7-methylxanthine. Metabolism of [2-14C]xanthine byC. arabica leaves in the presence of 5 mM allopurinol results in very large increases in incorporation of radioactivity into 7-methylxanthine as degradation of the substrate via the purine catabolism pathway is blocked. The identity of 7-methylxanthine in these studies was confirmed by gas chromatography-mass spectrometry analysis.Abbreviations HPLC-RC high-performance liquid chromatography-radiocounting This work was supported by the British Council which provided H.A. with Japan-UK travel grants. F.M.G. was supported by a Biotechnology and Biological Sciences Research Council grant to A.C.  相似文献   

15.
Biosynthesis of Caffeine in Leaves of Coffee   总被引:6,自引:0,他引:6       下载免费PDF全文
The levels of endogenous caffeine and theobromine were much higher in buds and young leaves of Coffea arabica L. cv Kent than in fully developed leaves. Biosynthesis of caffeine from 14C-labeled adenine, guanine, xanthosine, and theobromine was observed, whereas other studies (H. Ashihara, A.M. Monteiro, T. Moritz, F.M. Gillies, A. Crozier [1996] Planta 198: 334-339) have indicated that there is no detectable incorporation of label into caffeine when theophylline and xanthine are used as substrates for in vivo feeds with leaves of C. arabica. The capacity for caffeine biosynthesis, especially from guanine and xanthosine, was reduced markedly in both fully developed mature and aged leaves. Data obtained in pulse-chase experiments with young leaves indicate the operation of an AMP -> IMP -> xanthosine 5[prime]-monophosphate (or GMP -> guanosine) -> xanthosine -> 7-methylxanthosine -> 7-methylxanthine -> theobromine -> caffeine pathway. The data obtained provide strong evidence against proposals by G.M. Nazario and C.J. Lovatt ([1993] Plant Physiol 103: 1203-1210) concerning the independence of caffeine and theobromine biosynthesis pathways and the role of xanthine as a key intermediate in caffeine biosynthesis.  相似文献   

16.
以[8-14C]标记的腺嘌呤和黄嘌呤为底物,对两种可以合成少量咖啡碱和茶叶碱的木荷属和柃木属植物(Schima mertensiana,Eurya japonica)叶片的嘌呤代谢进行了检测研究。发现木荷属和柃木属植物中嘌呤代谢相似,14C标记的腺嘌呤可以整合到嘌呤核苷酸、RNA、酰脲(包括尿囊素和尿囊酸)、二氧化碳中。经过24 h培养,在叶片吸收的放射能中,仅有6%~7%用于甲基黄嘌呤类化合物的合成(3-甲基黄嘌呤、7-甲基黄嘌呤核苷、7-甲基黄嘌呤、茶叶碱)。和其他植物一样,绝大多数14C标记的黄嘌呤整合到嘌呤的分解代谢物中(二氧化碳和酰脲),少量的放射能分布在3-甲基黄嘌呤及茶叶碱中。根据结果可以推断木荷属和柃木属植物具有N-甲基转移酶活性,可以用来合成咖啡碱和茶叶碱,相对于茶树而言,活性不高。综上,本文对木荷属和柃木属植物的嘌呤代谢以及嘌呤碱合成进行了研究。  相似文献   

17.
Yeast cells inhibited by benzimidazole accumulate hypoxanthine with an associated efflux of xanthine. Unlike control cells, inhibited cells contain no detectable free UMP and CMP. Benzimidazole decreases uptake of [8-14C]-hypoxanthine into the intracellular pool of hypoxanthine and xanthine but causes radioactive xanthine to accumulate in the medium. In inhibited cultures there is a threefold increase in incorporation of [8-14C]hypoxanthine into the total (intracellular plus extracellular) xanthine. Uptake of [8-14C]hypoxanthine into free nucleotides and into bound adenine and guanine was inhibited by 70%. Uptake of [U-14C]glycine into IMP, AMP, GMP, DNA and RNA was also substantially decreased. Incorporation of [2-14C]uracil into the intracellular uracil pool was inhibited by 30% and into free uridine and cytidine by over 90%. Benzimidazole inhibited incorporation of [8-3H]IMP into AMP and GMP, and decreased substantially the activity of glutamine-amidophosphoribosyltransferase (EC 2.4.2.14). Yeast cultures were shown to N-ribotylate benzimidazole. Results are consistent with benzimidazole inhibiting yeast growth by competing for P-rib-PP and so depriving other ribotylation processes such as the ‘salvage’ pathways and de novo synthesis of purines and pyrimidines.  相似文献   

18.
Incubation of human peripheral blood T-lymphocytes with phytohemagglutinin (PHA) resulted in increased rates of metabolism of the purine bases adenine, hypoxanthine, and guanine. The respective rates decreased to unmeasurable levels in cells incubated without PHA. [14C]Adenine was converted predominantly into adenine nucleotides, with slight catabolism to hypoxanthine and very low conversion into guanine nucleotides. [14C]Guanine labeled predominantly the guanine nucleotide pool, but some adenine nucleotide formation also took place. From [14C]hypoxanthine, adenine nucleotides in the soluble pool were more heavily labeled than the guanine nucleotides, whereas in the nucleic acid fraction the latter contained more radioactivity. Adenosine at low concentrations was mainly phosphorylated to adenine nucleotides, but at higher concentrations this process leveled off, while deamination continued to increase linearly. PHA-stimulation resulted in an increased rate of adenosine metabolism but no qualitative differences in comparison to unstimulated cells were observed. Enzyme assays indicated that after PHA-stimulation the activities of adenine and hypoxanthine phosphoribosyltransferases, and those of adenosine deaminase and kinase, increased with a peak at 48 h, when expressed on a per cell basis, but not at all when expressed per mg of protein. We conclude that stimulation of human T-lymphocytes with PHA increases the capacity of the cells for purine nucleotide synthesis from all the directly re-utilizable catabolic products, namely the purine bases and adenosine.  相似文献   

19.
Changes in the activity of adenine and guanine salvage in nucleotideand nucleic acid synthesis during the growth of Catharanthusroseus were investigated. Incorporation of [8-14C]adenine intoATP and ADP and that of [8-14C]guanine into GTP and GDP increasedmarkedly in the lag phase of cell growth and then sharply decreased.The incorporation into RNA from both precursors showed a similarpattern. The role of rapid purine salvage observed in the lagphase of cell growth is discussed. Catharanthus roseus, Madagascar periwinkle, suspension culture cells, purine salvage, adenine, guanine  相似文献   

20.
In order to examine the biosynthesis, interconversion, and degradation of purine and pyrimidine nucleotides in white spruce cells, radiolabeled adenine, adenosine, inosine, uracil, uridine, and orotic acid were supplied exogenously to the cells and the overall metabolism of these compounds was monitored. [8‐14C]adenine and [8‐14C]adenosine were metabolized to adenylates and part of the adenylates were converted to guanylates and incorporated into both adenine and guanine bases of nucleic acids. A small amount of [8‐14C]inosine was converted into nucleotides and incorporated into both adenine and guanine bases of nucleic acids. High adenosine kinase and adenine phosphoribosyltransferase activities in the extract suggested that adenosine and adenine were converted to AMP by these enzymes. No adenosine nucleosidase activity was detected. Inosine was apparently converted to AMP by inosine kinase and/or a non‐specific nucleoside phosphotransferase. The radioactivity of [8‐14C]adenosine, [8‐14C]adenine, and [8‐14C]inosine was also detected in ureide, especially allantoic acid, and CO2. Among these 3 precursors, the radioactivity from [8‐14C]inosine was predominantly incorporated into CO2. These results suggest the operation of a conventional degradation pathway. Both [2‐14C]uracil and [2‐14C]uridine were converted to uridine nucleotides and incorporated into uracil and cytosine bases of nucleic acids. The salvage enzymes, uridine kinase and uracil phosphoribosyltransferase, were detected in white spruce extracts. [6‐14C]orotic acid, an intermediate of the de novo pyrimidine biosynthesis, was efficiently converted into uridine nucleotides and also incorporated into uracil and cytosine bases of nucleic acids. High activity of orotate phosphoribosyltransferase was observed in the extracts. A large proportion of radioactivity from [2‐14C]uracil was recovered as CO2 and β‐ureidopropionate. Thus, a reductive pathway of uracil degradation is functional in these cells. Therefore, white spruce cells in culture demonstrate both the de novo and salvage pathways of purine and pyrimidine metabolism, as well as some degradation of the substrates into CO2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号