首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
2.
The pilus antigenic variation (Av) system of Neisseria gonorrhoeae is one of several high-frequency variation systems that utilize gene conversion to switch between numerous forms of an antigen on the cell surface. We have tested three predictions of the first models that explain the movement of DNA during pilin Av: (i) Av requires two recombinations at short regions of identity, (ii) circular intermediates exist that carry pilE/pilS hybrid loci and (iii) these pilE/pilS hybrid loci target the pilS sequences to a recipient pilE gene. We confirm that normal pilin Av utilizes recombination at very short regions of DNA sequence identity and that these recombination events can occur independent of homologous recombination functions. We have isolated covalently closed circular DNA molecules carrying hybrid pilin loci, but propose that an alternative hybrid molecule is the intermediate of pilin Av. Our most striking finding is that transformation of isolated pilE/pilS hybrid loci targets the pilS sequences of the hybrid to a recipient pilE at frequencies much higher than normal recombination frequencies. These results show that the different steps of a model that explains pilin Av can be separately tested to support the validity of these novel models that account for the high-frequency gene conversions that mediate pilin Av.  相似文献   

3.
The L1 family of long interspersed nucleotide sequences (LINES) has recently been identified and characterized in the small polydisperse circular DNA (spc-DNA) populations of monkey (1), human (2) and mouse (3) cells. In monkey spc-DNA, the L1 (also known as Kpn I) family is present in discrete size classes (ranging from 300 to 6000 base pairs (bp)) which appear to be generated by non homologous recombination events within chromosomal elements. In this communication it is shown that different regions of the consensus L1 family are present at different frequencies in monkey spc-DNA (as they are in chromosomal DNA), that all regions of the family are present in extrachromosomal DNA, and that each region appears to be represented in an identical discrete spc-DNA size distribution. This size distribution reflects a non-sequence specific mechanism that generates spc-DNA size classes by chromosomal DNA recombination events that are in some way constrained to occur between sites separated by relatively defined lengths.  相似文献   

4.
RNA recombination plays an important role in the diversification and evolution of RNA viruses. Most of these events are believed to be mediated by an actively copying viral replicase switching from a donor template to an acceptor template, where it resumes synthesis. In addition, intramolecular replicase-mediated events (i.e., rearrangements) can lead to the generation of replicable deleted forms of a viral genome, termed defective interfering (DI) RNAs. To gain further insight into the recombination process, the effect of various primary and secondary structures on recombination site selection in vivo was examined using plant RNA tombusviruses. The effect of sequence identity and complementarity on deletion events that generate DI RNAs was also investigated. Our results suggest that (1) 5' termini and strong hairpin structures in donor templates represent preferred sites for recombinations, (2) junction sites in acceptor templates do not occur in double-stranded regions, (3) nucleotide homology can shift donor and acceptor recombination sites closer to regions of identity and, (4) both sequence identity and complementarity can direct deletion sites in DI RNAs. These results further define RNA determinants of tombusvirus RNA recombination and rearrangement.  相似文献   

5.
6.
Many factors can promote speciation, and one which has received much attention is chromosomal inversions. A number of models propose that the recombination suppressing effects of inversions facilitate the maintenance of differences between interbreeding populations in genes affecting adaptive divergence and reproductive isolation. These models predict that such genes will disproportionately reside within inversions, rather than in collinear regions. This hypothesis has received some support, but exceptions exist. Additionally, the effects of known low levels of recombination within inversions on these models are uninvestigated. Here, simulations are used to compare the maintenance of genetic differences between populations following secondary contact and hybridization in different inversion models. We compare regions with no recombination within them to regions with low recombination and to collinear regions with free recombination. Our most general finding is that the low levels of recombination within an inversion often result in the loss of accentuated divergence in inverted regions compared to collinear ones. We conclude that inversions can facilitate the maintenance of species differences under some conditions, but that large or qualitative differences between inverted and collinear regions need not occur. We also find that strong selection facilitates maintenance of divergence in a manner analogous to inversions.  相似文献   

7.
We have studied the meiotic recombination behavior of strains carrying two types of duplications of an 18.6-kilobase HIS4 Bam HI fragment. The first type is a direct duplication of the HIS4 Bam HI fragment in which the repeated sequences are separated by Escherichia coli plasmid sequences. The second type, a tandem duplication, has no sequences intervening between the repeated yeast DNA. The HIS4 genes in each region were marked genetically so that recombination events between the duplicated segments could be identified. Meiotic progeny of the strains carrying the duplication were analyzed genetically and biochemically to determine the types of recombination events that had occurred. Analysis of the direct vs. tandem duplication suggests that the E. coli plasmid sequences are recombinogenic in yeast when homozygous. In both types of duplications recombination between the duplicated HIS4 regions occurs at high frequency and involves predominantly interchromosomal reciprocal exchanges (equal and unequal crossovers). The striking observation is that intrachromosomal reciprocal recombination is very rare in comparison with interchromosomal reciprocal recombination. However, intrachromosomal gene conversion occurs at about the same frequency as interchromosomal gene conversion. Reciprocal recombination events between regions on the same chromatid are the most infrequent exchanges. These data suggest that intrachromosomal reciprocal exchanges are suppressed.  相似文献   

8.
Goldfarb T  Lichten M 《PLoS biology》2010,8(10):e1000520
Recombination between homologous chromosomes of different parental origin (homologs) is necessary for their accurate segregation during meiosis. It has been suggested that meiotic inter-homolog recombination is promoted by a barrier to inter-sister-chromatid recombination, imposed by meiosis-specific components of the chromosome axis. Consistent with this, measures of Holliday junction-containing recombination intermediates (joint molecules [JMs]) show a strong bias towards inter-homolog and against inter-sister JMs. However, recombination between sister chromatids also has an important role in meiosis. The genomes of diploid organisms in natural populations are highly polymorphic for insertions and deletions, and meiotic double-strand breaks (DSBs) that form within such polymorphic regions must be repaired by inter-sister recombination. Efforts to study inter-sister recombination during meiosis, in particular to determine recombination frequencies and mechanisms, have been constrained by the inability to monitor the products of inter-sister recombination. We present here molecular-level studies of inter-sister recombination during budding yeast meiosis. We examined events initiated by DSBs in regions that lack corresponding sequences on the homolog, and show that these DSBs are efficiently repaired by inter-sister recombination. This occurs with the same timing as inter-homolog recombination, but with reduced (2- to 3-fold) yields of JMs. Loss of the meiotic-chromosome-axis-associated kinase Mek1 accelerates inter-sister DSB repair and markedly increases inter-sister JM frequencies. Furthermore, inter-sister JMs formed in mek1Δ mutants are preferentially lost, while inter-homolog JMs are maintained. These findings indicate that inter-sister recombination occurs frequently during budding yeast meiosis, with the possibility that up to one-third of all recombination events occur between sister chromatids. We suggest that a Mek1-dependent reduction in the rate of inter-sister repair, combined with the destabilization of inter-sister JMs, promotes inter-homolog recombination while retaining the capacity for inter-sister recombination when inter-homolog recombination is not possible.  相似文献   

9.
Relaxation data obtained previously for the double helix coil transition of oligoriboadenylates and oligoribouridylates are compared to the results of numerical calculations according to various models. In these models the helix coil transition is described by individual rate constants for the first steps of helix formation, whereas the rate constants of the following steps of helix chain growth are assumed to be uniform. The existence of various helix intermediates containing the same number of base pairs is accounted for by statistical factors. First a quasistationary treatment of a zipper model is used for an analysis of the influence of various model parameters. Then relaxation spectra are calculated including helix coil intermediates explicitly without any assumption of quasistationarity. The relaxation spectrum calculated for any chain length N comprises N—1 fast processes with time constants in the range of 0.1 to 0.5 μs and one slow process with a time constant τ depending upon the nucleotide concentration (τ is usually in the ms time range). The fast processes are associated mainly with the unzippering at helix ends and are usually characterized by relatively small amplitudes, whereas the slow process represents the overall helix coil transition usually characterized by a very large amplitude.Consideration of staggered helix series (where the different helix scries are coupled to each other by the single stranded state) leads to a spectrum of slow relaxation processes with one separate relaxation process for each helix series. It is shown that this “non-sliding” staggering zipper model is not consistent with the experimental results. The measured relaxation curves can be represented by single exponentials for nucleotide chain lengths 8 to 11 (within experimental accuracy). This is also true for conditions where several, clearly separated time constants should be expected according to the theoretical model. The experimental data suggest the existence of a direct coupling between different series of staggered helices by a chain sliding mechanism with a time constant < 1ms. Chain sliding may be explained by diffusion of helix defects along the double helix such as diffusion of small loops. A simple model calculation for the diffusion of a bulge loop assuming quasistationarity suggests a sliding time constant around 100 μs for a helix comprising 10 base pairs.Finally some thermodynamic and kinetic parameters are evaluated according to the “sliding” staggering zipper model: The negative activation enthalpy observed for helix recombination can he described using a series of nucleation parameters indicating reduced stability constants for the first three base pairs. Nucleation may usually be achieved with the formation of the third or fourth base pair depending upon the magnitude of the chain growth parameter. The rate constant of helix chain growth is around 106 s?1 at 0.05 M [Na+] and increases to about 4 × 106 s?1 at 0.17 M [Na+].  相似文献   

10.
Phylogeneticists have developed several statistical methodsto infer recombination among molecular sequences that are evolutionarilyrelated. Of these methods, Markov change-point models currentlyprovide the most coherent framework. Yet, the Markov assumptionis faulty in that the inferred relatedness of homologous sequencesacross regions divided by recombinant events is not independent,particularly for nonrecombinant sequences as they share thesame history. To correct this limitation, we introduce a novelrandom tips (RT) model. The model springs from the idea thata recombinant sequence inherits its characters from an unknownnumber of ancestral full-length sequences, of which one onlyobserves the incomplete portions. The RT model decomposes recombinantsequences into their ancestral portions and then augments eachportion onto the data set as unique partially observed sequences.This data augmentation generates a random number of sequencesrelated to each other through a single inferable tree with thesame random number of tips. While intuitively pleasing, thissingle tree corrects the independence assumptions plaguing previousmethods while permitting the detection of recombination. Thesingle tree also allows for inference of the relative timesof recombination events and generalizes to incorporate multiplerecombinant sequences. This generalization answers importantquestions with which previous models struggle. For example,we demonstrate that a group of human immunodeficiency type 1recombinant viruses from Argentina, previously thought to havethe same recombinant history, actually consist of 2 groups:one, a clonal expansion of a reference sequence and anotherthat predates the formation of the reference sequence. In anotherexample, we demonstrate that 2 hepatitis B virus recombinantstrains share similar splicing locations, suggesting a commondescent of the 2 viruses. We implement and run both examplesin a software package called StepBrothers, freely availableto interested parties.  相似文献   

11.
The susceptibility to recombination of a plasmid inserted into a chromosome varies with its genomic position. This recombination position effect is known to correlate with the average G+C content of the flanking sequences. Here we propose that this effect could be mediated by changes in the susceptibility to superhelical duplex destabilization that would occur. We use standard nonparametric statistical tests, regression analysis and principal component analysis to identify statistically significant differences in the destabilization profiles calculated for the plasmid in different contexts, and correlate the results with their measured recombination rates. We show that the flanking sequences significantly affect the free energy of denaturation at specific sites interior to the plasmid. These changes correlate well with experimentally measured variations of the recombination rates within the plasmid. This correlation of recombination rate with superhelical destabilization properties of the inserted plasmid DNA is stronger than that with average G+C content of the flanking sequences. This model suggests a possible mechanism by which flanking sequence base composition, which is not itself a context-dependent attribute, can affect recombination rates at positions within the plasmid.  相似文献   

12.
Many methods for fitting demographic models to data sets of aligned sequences rely upon an assumption that the data have a branching coalescent history without recombination within regions or loci. To mitigate the effects of the failure of this assumption, a common approach is to filter data and sample regions that pass the four‐gamete criterion for recombination, an approach that allows data to run, but that is expected to detect only a minority of recombination events. A series of empirical tests of this approach were conducted using computer simulations with and without recombination for a variety of isolation‐with‐migration (IM) model for two and three populations. Only the IMa3 program was used, but the general results should apply to related genealogy‐sampling‐based methods for IM models or subsets of IM models. It was found that the details of sampling intervals that pass a four‐gamete filter have a moderate effect, and that schemes that use the longest intervals, or that use overlapping intervals, gave poorer results. A simple approach of using a random nonoverlapping interval returned the smallest difference between results with and without recombination, with the mean difference between parameter estimates usually less than 20% of the true value (usually much less). However, the posterior probability distributions for migration rates were flatter with recombination, suggesting that filtering based on the four‐gamete criterion, while necessary for methods like these, leads to reduced resolution on migration. A distinct, alternative approach, of using a finite sites mutation model and not filtering the data, performed quite poorly.  相似文献   

13.
In this study we investigated the role of several parameters governing the efficiency of gene targeting mediated by homologous recombination in the protozoan parasite Leishmania. We evaluated the relative targeting frequencies of different replacement vectors designed to target several sequences within the parasite genome. We found that a decrease in the length of homologous sequences <1 kb on one arm of the vector linearly influences the targeting frequency. No homologous recombination was detected, however, when the flanking homologous regions were <180 bp. A requirement for a very high degree of homology between donor and target sequences was found necessary for efficient gene targeting in Leishmania , as targeted recombination was strongly affected by base pair mismatches. Targeting frequency increased proportionally with copy number of the target only when the target was part of a linear amplicon, but remained unchanged when it was present on circles. Different chromosomal locations were found to be targeted with significantly variable levels of efficiency. Finally, different strains of the same species showed differences in gene targeting frequency. Overall, gene targeting mediated by homologous recombination in Leishmania shares similarities to both the yeast and the mammalian recombination systems.  相似文献   

14.
Herpes simplex virus type 1 (HSV-1) genome isomerization occurs as a result of DNA replication-mediated homologous recombination between several sets of inverted repeat sequences present in the viral DNA. The frequency with which this recombination occurs has been demonstrated to be dependent upon DNA homology length rather than specific sequences. However, the smallest of the viral inverted repeats, the alpha sequence, has been shown to function as a recombinational hot spot, leading to speculation that this sequence may represent a specific element through which genome isomerization is mediated. To investigate this apparent paradox, a quantitative transient recombination assay system was developed and used to examine the recombinogenic properties of a panel of alpha sequence mutants. This analysis revealed that the presence of both the pac1 and pac2 elements was both necessary and sufficient for the induction of high-frequency recombination events by the alpha sequence. However, it was the double-strand break promoted by pac1 and pac2 during cleavage and packaging at the alpha sequence, and not the DNA sequences of the elements themselves, which appeared to be critical for recombination. This was illustrated (i) by the inability of the same pac1 and pac2 sequences to mediate inversion events in cells infected with an HSV-1 mutant which was competent for DNA replication-dependent recombination but defective for the cleavage and packaging process and (ii) by the ability of double-strand breaks generated in non-HSV-1 DNA by an in vivo-expressed restriction endonuclease to significantly stimulate the initiation of recombination events in virus-infected cells. Thus, the alpha sequence appears to act as a hot spot for homologous recombination simply because it happens to coincide with the site of the double-strand break which is generated during the cleavage and packaging process, not because it contains discrete sequences which are required for this activity. However, it was found that this enhanced recombinogenicity disappeared when the element was flanked by regions of extensive sequence homology, particularly that of the large inverted repeats which flank the alpha sequence at its natural site in the HSV-1 genome. These findings are consistent with a model for HSV-1 genome isomerization in which recombination is initiated primarily by multiple random double-strand breaks which arise during DNA replication across the inverted repeats of the genome, rather than by a single specific break which occurs at the alpha sequence during the cleavage and packaging process.  相似文献   

15.
Indirect tests have detected recombination in mitochondrial DNA (mtDNA) from many animal lineages, including mammals. However, it is possible that features of the molecular evolutionary process without recombination could be incorrectly inferred by indirect tests as being due to recombination. We have identified one such example, which we call "patchy-tachy" (PT), where different partitions of sequences evolve at different rates, that leads to an excess of false positives for recombination inferred by indirect tests. To explore this phenomena, we characterized the false positive rates of six widely used indirect tests for recombination using simulations of general models for mtDNA evolution with PT but without recombination. All tests produced 30-99% false positives for recombination, although the conditions that produced the maximal level of false positives differed between the tests. To evaluate the degree to which conditions that exacerbate false positives are found in published sequence data, we turned to 20 animal mtDNA data sets in which recombination is suggested by indirect tests. Using a model where different regions of the sequences were free to evolve at different rates in different lineages, we demonstrated that PT is prevalent in many data sets in which recombination was previously inferred using indirect tests. Taken together, our results argue that PT without recombination is a viable alternative explanation for detection of widespread recombination in animal mtDNA using indirect tests.  相似文献   

16.
Nucleosomes are the fundamental repeating unit of chromatin and comprise the structural building blocks of the living eukaryotic genome. Micrococcal nuclease (MNase) has long been used to delineate nucleosomal organization. Microarray-based nucleosome mapping experiments in yeast chromatin have revealed regularly-spaced translational phasing of nucleosomes. These data have been used to train computational models of sequence-directed nuclesosome positioning, which have identified ubiquitous strong intrinsic nucleosome positioning signals. Here, we successfully apply this approach to nucleosome positioning experiments from human chromatin. The predictions made by the human-trained and yeast-trained models are strongly correlated, suggesting a shared mechanism for sequence-based determination of nucleosome occupancy. In addition, we observed striking complementarity between classifiers trained on experimental data from weakly versus heavily digested MNase samples. In the former case, the resulting model accurately identifies nucleosome-forming sequences; in the latter, the classifier excels at identifying nucleosome-free regions. Using this model we are able to identify several characteristics of nucleosome-forming and nucleosome-disfavoring sequences. First, by combining results from each classifier applied de novo across the human ENCODE regions, the classifier reveals distinct sequence composition and periodicity features of nucleosome-forming and nucleosome-disfavoring sequences. Short runs of dinucleotide repeat appear as a hallmark of nucleosome-disfavoring sequences, while nucleosome-forming sequences contain short periodic runs of GC base pairs. Second, we show that nucleosome phasing is most frequently predicted flanking nucleosome-free regions. The results suggest that the major mechanism of nucleosome positioning in vivo is boundary-event-driven and affirm the classical statistical positioning theory of nucleosome organization.  相似文献   

17.
RNA二级结构预测系统构建   总被引:9,自引:0,他引:9  
运用下列RNA二级结构预测算法:碱基最大配对方法、Zuker极小化自由能方法、螺旋区最优堆积、螺旋区随机堆积和所有可能组合方法与基于一级螺旋区的RNA二级结构绘图技术, 构建了RNA二级结构预测系统Rnafold. 另外, 通过随机选取20个tRNA序列, 从自由能和三叶草结构两个方面比较了前4种二级结构预测算法, 并运用t检验方法分析了自由能的统计学差别. 从三叶草结构来看, 以随机堆积方法最好, 其次是螺旋区最优堆积方法和Zuker算法, 以碱基最大配对方法最差. 最后, 分析了两种极小化自由能方法之间的差别.  相似文献   

18.
19.
Publication of the rice genome sequence has allowed an in-depth analysis of genome organization in a model monocot plant species. This has provided a powerful tool for genome analysis in large-genome unsequenced agriculturally important monocot species such as wheat, barley, rye, Lolium, etc. Previous data have indicated that the majority of genes in large-genome monocots are located toward the ends of chromosomes in gene-rich regions that undergo high frequencies of recombination. Here we demonstrate that a substantial component of the coding sequences in monocots is localized proximally in regions of very low and even negligible recombination frequencies. The implications of our findings are that during domestication of monocot plant species selection has concentrated on genes located in the terminal regions of chromosomes within areas of high recombination frequency. Thus a large proportion of the genetic variation available for selection of superior plant genotypes has not been exploited. In addition our findings raise the possibility of the evolutionary development of large supergene complexes that confer a selective advantage to the individual.  相似文献   

20.
The levels of intramolecular plasmid recombination, following transfection of a plasmid substrate for homologous recombination into normal and immortally transformed cells, have been examined by two independent assays. In the first assay, recovered plasmid was tested for DNA rearrangements which regenerate a functional neomycin resistance gene from two overlapping fragments. Following transformation of bacteria, frequencies of recombinationlike events were determined from the ratio of neomycin-resistant (recombinant) colonies to ampicillin-resistant colonies (indicating total plasmid recovery). Such events, yielding predominantly deletions between the directly repeated sequences, were substantially more frequent in five immortal cell lines than in any of three normal diploid cell strains tested. Effects of plasmid replication or interaction with T antigen and of bacterially mediated rejoining of linear molecules generated in mammalian cells were excluded by appropriate controls. The second assay used limited coamplification of a control segment of plasmid DNA, and of the predicted recombinant DNA region, primed by two sets of flanking oligonucleotides. Each amplified band was quantitated by reference to a near-linear standard curve generated concurrently, and recombination frequencies were determined from the ratio of recombinant/control DNA regions. The results confirmed that recombinant DNA structures were generated within human cells at direct repeats in the transfected plasmid and were markedly more abundant in an immortal cell line than in the diploid normal cells from which that line was derived.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号