首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Soluble enzyme preparations from pea shoot tips incorporated mevalonic acid-2-14C into ent-kaurene-14C, squalene-14C and other products. The assay for either ent-kaurene or squalene is quite direct; both products can be obtained apparently free of radioactive contaminants by TLC on silica gel G in hexane. The enzyme system is dependent upon added ATP and Mn2+ or Mg2+, with Mn2+ being a more effective activator than Mg2+ under the experimental conditions. Reduced pyridine nucleotide had no effect on ent-kaurene production but stimulated squalene synthesis. The accumulation of both ent-kaurene and squalene was stimulated by dithiothreitol and carbon monoxide and was reduced by the addition of particulate cell components. AMO-1618 inhibited ent-kaurene production and had no effect on the synthesis of squalene. Enzyme extracts from shoot tips are much less active in ent-kaurene synthesis than extracts from the cotyledons of immature seeds on either a fresh weight or protein basis.  相似文献   

2.
Investigations on the sites of ent-kaur-16-ene (ent-kaurene) biosynthesis were conducted with cell-free extracts from several excised parts of 10-, 13-, and 16-d-old tall and dwarf pea (Pisum sativum L.) seedlings. [14C]Mevalonic acid was incorporated into ent-kaurene in cell-free extracts from young developing leaves and elongating internodes of tall (`Alaska') and dwarf (`Progress No.9') pea seedlings at all three stages of development. ent-Kaurene biosynthesis also occurred readily in cell-free extracts from shoot tips, petioles, and stipules near the young elongating internodes. The ent-kaurene-synthesizing activity found in young developing tissues declined as tissues matured. Little or no activity was detectable in enzyme extracts from cotyledons and root tips at different stages. In light grown tall pea internodes ent-kaurene-synthesizing activity was low as they began to elongate, reached a maximum when the internodes reached about 2 cm in length and declined as they matured. Activity in extracts of dwarf shoot tips and internodes was generally lower than in equivalent tall plants, but the activity in dwarf leaves and stipules was somewhat higher than in tall plants. With the exception of root tips, there is a strong correlation between growth potential of a tissue and the rate of ent-kaurene biosynthesis in extracts from that tissue.  相似文献   

3.
Potential sites of gibberellin biosynthesis in 10-day-old `Alaska' pea (Pisum sativum L.) seedlings were investigated using a cell-free ezyme system capable of incorporating [14C]-mevalonic acid into ent-kaurene. In peas, ent-kaurene is assumed to be a committed intermediate in the gibberellin biosynthetic pathway. Comparative results from enzyme assays using extracts from shoot tips, leaf blades, internodes, and root tips indicate that the highest capacity for ent-kaurene (and presumably gibberellin) synthesis is in those tissues with the greatest potential for growth. The highest rates were obtained with extracts prepared from the fifth (youngest) internode, the fourth (youngest) expanded leaf, and the shoot tip itself. This report represents the first direct evidence that the enzymes responsible for early stages in gibberellin biosynthesis occur in internode tissues with potential for rapid elongation.  相似文献   

4.
Biosynthesis of the gibberellin precursor ent-kaurene-14C from mevalonic acid-2-14C was assayed in cell-free extracts of shoot tips of etiolated and light-grown Alaska (normal) and Progress No. 9 (dwarf) peas (Pisum sativum L.). During ontogeny of light-grown Alaska peas, kaurene-synthesizing activity increased from an undectectable level in 3-day-old epicotyls to a maximum in shoot tips of 9-day-old plants and remained relatively constant thereafter until postanthesis. The capacity for kaurene synthesis in extracts from shoot tips of 10-day-old etiolated Alaska seedlings increased approximately exponentially during the first 12 hr of de-etiolation in continuous high intensity white light and remained relatively constant during the succeeding 24 hr of irradiation. Extracts from light-grown Alaska (normal) shoot tips possessed greater capacity for kaurene synthesis than did extracts from light-grown Progress No. 9 (dwarf) shoot tips. Extracts from shoot tips of either light-grown cultivar displayed greater kaurene-synthesizing capacity than was observed in extracts from their dark-grown counterparts. It is concluded that gibberellin biosynthesis in pea shoot tips is subject to partial regulation by factors controlling the rate of biosynthesis of kaurene.  相似文献   

5.
Germinating pea (Pisum sativum L.) seeds of two dwarf cultivars, “Progress No. 9” and “Green Arrow”, and two tall cultivars, “Alaska” and “Alderman”, were treated with low temperature (3–5°C) for 14 days and then transferred to normal growing conditions (19–21°C for 16 h/14.5–16.5°C for 8 h) for an additional 10 days. Biosynthesis of [14C]ent-kaurene from [14C]2-mevalonic acid (2-MVA) was assayed in cell-free enzyme extracts prepared from shoot tips 10 days after cold treatment and was compared with activity in enzyme extracts prepared from noncold-treated, 10-day-old control plants. Shoot lengths of cold-treated plants were measured throughout a 35-day period and compared with shoot lengths of plants grown without cold treatment for 25–35 days. Low temperature induced a five-to 10-fold enhancement ofent-kaurene, hence potentially gibberellin (GA), biosynthesis in seedlings of the two dwarf cultivars but not in the tall cultivars. However, the lack of an increase in growth rate in the cold-treated dwarfs indicated that endogenous GA biosynthesis remained blocked at some point beyondent-kaurene in the biosynthetic pathway. Since the late-flowering “Alderman” cultivar did not exhibit enhanced biosynthesis ofent-kaurene, it appears that if vernalization in late-flowering cultivars of peas is correlated with enhanced GA biosynthesis, it is not the early part of the biosynthetic pathway which is affected.  相似文献   

6.
A cell-free system capable of converting [14C]geranylgeranyl diphosphate to ent-[14C]kaurene and to an unidentified acid-hydrolysable compound was obtained from the basal portions of 5-d-old shoots of wheat seedlings (Triticum aestivum L.). By means of marker enzyme activities, the synthesis of ent-kaurene and the unknown compound could be quantitatively assigned to a plastid fraction obtained by Percoll-gradient centrifugation of the homogenate. The enzyme activities were located within the plastids, probably in the stroma, because they withstood trypsin treatment of the intact plastids, and the plastids had to be broken to release the activity, which was then obtained in soluble form. Plastid membranes had no activity. Plastid stroma preparations obtained from pea (Pisum sativum L.) shoot tips and pumpkin (Cucurbita maxima L.) endosperm also yielded ent-kaurene synthetase activity, but did not form the unknown compound. The exact nature of the active plastids was not ascertained, but the use of methods for proplastid isolation was essential for full activity, and the active tissues are all known to contain high proportions of proplastids, developing chloroplasts or leucoplasts. We therefore believe that ent-kaurene synthesis may be limited to these categories. Mature chloroplasts from the wheat leaves did not contain ent-kaurene synthetase activity and did not yield the unknown component. Incorporation of [14C]geranylgeranyl diphosphate into ent-[14C]kaurene and the unknown component was assayed by high-performance liquid chromatography with on-line radiocounting. ent-[14C]Kaurene was identified by Kovats retention index and full mass spectra obtained by combined gas chromatography-mass spectrometry. The unknown component was first believed to be copalyl diphosphate, because it yielded a compound on acid hydrolysis, which migrated like copalol on high-performance liquid chromatography and gave a mass spectrum very similar to that of authentic copalol. However, differences in the mass spectrum and in retention time on capillary gas chromatography excluded identity with copalol. Furthermore, the unhydrolysed compound was not converted to ent-kaurene by a cell-free system from C. maxima endosperm as copalyl diphosphate would have been.Abbreviations ADH alcohol dehydrogenase - AMO 1618 2isopropyl-4-(trimethylammoniumchloride)-5-methylphenyl piperi-dine-1-carboxylate - BSA bovine serum albumin - DTT dithioth-reitol - GAn gibberellin An - GAPDH NADP+-glyceraldehyde 3-phosphate dehydrogenase - GC-MS combined gas chromatography-mass spectrometry - GGPP all trans-isomer of geranyl-geranyl diphosphate - KS ent-kaurene synthetase - MDH malate dehydrogenase - MAA mevalonate activating activity - SOR shikimate oxidoreductase We thank Mrs. Gudrun Bodtke and Mrs. Dorothee Dasbach for able technical assistance, Prof. L.N. Mander (Australian National University, Canberra, Australia) for ent-[2H2]kaurene and Dr. Yuji Kamiya (RIKEN, Saitama, Japan) for geranylgeraniol and copalol. The work was supported by the Deutsche Forschungsgemeinschaft.  相似文献   

7.
The nonallelicgib-1 andgib-3 tomato (Lycopersion esculentum Mill.) mutants are gibberellin deficient and exhibit a dwarfed growth habit. Previous work has shown that this dwarfed growth pattern can be reversed by the application of a number of gibberellins and their precursors, includingent-kaurene (ent-kaur-16-ene). This indicates that they are blocked in gibberellin biosynthesis at a step prior toent-kaurene metabolism. The normal accumulation of carotenoids observed in these mutants suggests a functionally normal isoprenoid pathway.Ent-kaurene is synthesized from geranylgeranyl pyrophosphate in a two-step process with copalyl pyrophosphate as an intermediate.In vitro assays using young fruit extracts from wild-type andgib-2 plants resulted in the conversion of geranylgeranyl pyrophosphate to copalyl pyrophosphate, and the conversion of copalyl pyrophosphate toentkaurene. Similar assays usinggib-1 plants indicated a reduced ability for synthesis of copalyl pyrophosphate from geranylgeranyl pyrophosphate, and thus a reducedent-kaurene synthetase A activity. Furthermore,gib-3 extracts demonstrated a reduced ability to synthesizeent-kaurene from copalyl pyrophosphate, and thus a reducedent-kaurene synthetase B activity. These results establish the enzymatic conversion of geranylgeranyl pyrophosphate to copalyl pyrophosphate, and copalyl pyrophosphate toent-kaurene, as the sites of the mutations ingib-1 andgib-3 tomatoes, respectively. We also note that tomato fruit extracts contain components which are inhibitory toent-kaurene synthesis.  相似文献   

8.
Net synthesis of [14C]ent-kaurene from [14C]2-mevalonic acid was assayed in cell-free enzyme extracts prepared from Alaska pea (Pisum sativum L.) seedlings throughout 44 h of a regimen consisting of a 16-h day and an 8-h night. Activities generally followed an upward trend during the dark period and a downward trend during the photoperiod. Activity was also assayed in enzyme extracts prepared at intervals during a 12-h photoperiod and a following, continuous 36-h dark period after entrainment of plants to a regimen of 12-h days and 12-h nights.Ent-kaurene synthesis activity again followed an upward trend in enzyme extracts prepared during what would have been the entrainment dark period, and a downward trend during the entrainment photoperiod. The apparent endogenous rhythm ofent-kaurene biosynthesis may have implications for the regulation of gibberellin biosynthesis.  相似文献   

9.
Gibberellins are ent-kaurene derived phytohormones that are involved in seed germination, stem elongation, and flower induction in seed plants, as well as in antheridia formation and spore germination in ferns. Although ubiquitous in vascular plants, the occurrence and potential function(s) of gibberellins in bryophytes have not yet been resolved. To determine the potential role of gibberellin and/or gibberellin-like compounds in mosses, the effect of AMO-1618 on spores of Physcomitrella patens (Hedw.) B.S.G. was tested. AMO-1618, which inhibited ent-kaurene and gibberellin biosynthesis in angiosperms, also inhibited the bifunctional copalyl diphosphate synthase (E.C. 5.5.1.13)/ent-kaurene synthase (E.C. 4.2.3.19) of P. patens. AMO-1618 also caused a decrease in spore germination rates of P. patens, and this inhibitory effect was less pronounced in the presence of ent-kaurene. These results suggest that ent-kaurene biosynthesis is required by P. patens spores to germinate, implying the presence of gibberellin-like phytohormones in mosses.  相似文献   

10.
The nonallelicgib-1 andgib-3 tomato (Lycopersion esculentum Mill.) mutants are gibberellin deficient and exhibit a dwarfed growth habit. Previous work has shown that this dwarfed growth pattern can be reversed by the application of a number of gibberellins and their precursors, includingent-kaurene (ent-kaur-16-ene). This indicates that they are blocked in gibberellin biosynthesis at a step prior toent-kaurene metabolism. The normal accumulation of carotenoids observed in these mutants suggests a functionally normal isoprenoid pathway.Ent-kaurene is synthesized from geranylgeranyl pyrophosphate in a two-step process with copalyl pyrophosphate as an intermediate.In vitro assays using young fruit extracts from wild-type andgib-2 plants resulted in the conversion of geranylgeranyl pyrophosphate to copalyl pyrophosphate, and the conversion of copalyl pyrophosphate toentkaurene. Similar assays usinggib-1 plants indicated a reduced ability for synthesis of copalyl pyrophosphate from geranylgeranyl pyrophosphate, and thus a reducedent-kaurene synthetase A activity. Furthermore,gib-3 extracts demonstrated a reduced ability to synthesizeent-kaurene from copalyl pyrophosphate, and thus a reducedent-kaurene synthetase B activity. These results establish the enzymatic conversion of geranylgeranyl pyrophosphate to copalyl pyrophosphate, and copalyl pyrophosphate toent-kaurene, as the sites of the mutations ingib-1 andgib-3 tomatoes, respectively. We also note that tomato fruit extracts contain components which are inhibitory toent-kaurene synthesis.  相似文献   

11.
Microsomal and soluble cell-free extracts prepared from liquid endosperm of Cucurbita maxima L. were found to contain high concentrations of endogenous ent-kaurene and ent-kaurenol by gas chromatography-mass spectrometry-chemical ionization with deuterated internal standards. Increases in the levels of ent-kaurenol, ent-kaurenoic acid, and ent-7-hydroxykaurenoic acid are correlated with a decline in the amount of endogenous ent-kaurene following a 10 min incubation of microsomes with NADPH and FAD. The rate of oxidation of radiolabeled ent-kaurene by the microsomal fraction was determined, and the need to account for endogenous substrate is shown. Endogenous ent-kaurene present in soluble extracts had the effect of diluting the [14C]ent-kaurene synthesized from [14C]mevalonic acid, resulting in reduced specific radioactivity of the product. The dilution of [14C]ent-kaurene was more pronounced in extracts with higher endogenous ent-kaurene levels or when the reactions were run in the presence of O2 and NADPH. Evidence is presented that suggests differential metabolism of endogenous ent-kaurene and radiolabeled ent-kaurene in both microsomal and soluble extracts.Abbreviations Kaurene ent-kaur-16-ene - MVA mevalonic acid - kaurenol ent-kaur-16-en-19-ol - kaurenoic acid ent-kaur-16-en-19-oic acid - EtOAc ethyl acetate - MeOH methanol - GC-MS-CI gas chromatography-mass spectrometry-chemical ionization - 13-OH KA ent-13-hydroxykaur-16-en-19-oic acid - 7-OH kaurenoic acid ent-7-hydroxykaur-16-en-19-oic acid - kaurenal ent-kaur-16-en-19-al - Me(x) methyl ester of x - TMS(x) trimethylsilyl ether or ester of x - GA(x) gibberellin A(x)  相似文献   

12.
Net synthesis of [14C]ent-kaurene from [14C]2-mevalonic acid was assayed in cell-free enzyme extracts prepared from Alaska pea (Pisum sativum L.) seedlings throughout 44 h of a regimen consisting of a 16-h day and an 8-h night. Activities generally followed an upward trend during the dark period and a downward trend during the photoperiod. Activity was also assayed in enzyme extracts prepared at intervals during a 12-h photoperiod and a following, continuous 36-h dark period after entrainment of plants to a regimen of 12-h days and 12-h nights.Ent-kaurene synthesis activity again followed an upward trend in enzyme extracts prepared during what would have been the entrainment dark period, and a downward trend during the entrainment photoperiod. The apparent endogenous rhythm ofent-kaurene biosynthesis may have implications for the regulation of gibberellin biosynthesis.  相似文献   

13.
Envelope membranes of spinach chloroplasts contain appreciable activities of the carotenogenic enzymes phytoene synthase (formation of phytoene by condensation of two molecules geranylgeranyl pyrophosphate) and phytoene dehydrogenase (formation of lycopene from phytoene), plus a phosphatase activity. These results were obtained by coincubation experiments using isolated envelope membranes and either a phytoene-forming in vitro system (from [1-14C]isopentenyl pyrophosphate) or [14C]geranylgeranyl pyrophosphate or a geranylgeranyl-pyrophosphate-forming in vitro system (from [1-14C]isopentenyl pyrophosphate). Within thylakoids carotenogenic enzymes could not be detected. It is concluded that the chloroplast envelope is at least a principal site of the membrane-bound steps of carotenoid biosynthesis in chloroplasts.Abbreviastions Chlorophyll aGC Chlorophyll a, esterified with geranylgeraniol - GGPP geranylgeranyl pyrophosphate - HPLC high pressure liquid chromatography - IPP isopentenyl pyrophosphate  相似文献   

14.
Experiments were carried out to explore the involvement of the plant hormone gibberellin (GA) in the light-induced germination of lettuce seeds. Three growth retardants known to be inhibitors of GA biosynthesis were tested for their effect on red-light-induced germination. Chlormequat chloride (CCC) and AMO-1618 had no effect, but ancymidol was strongly inhibitory. Moreover, the inhibition caused by ancymidol was completely overcome by GA3. CCC and AMO-1618 inhibit the formation ofent-kaurene, while ancymidol blocks the oxidation ofent-kaurene toent-kaurenoic acid. Ancymidol also was found to inhibit GA-induced dark germination of lettuce seeds, and this inhibition was partially reversed by higher levels of GA. Therefore, the results suggest two possibilities for the relationship between phytochrome and GA in this system: first, the rate-limiting step in the germination of light-sensitive lettuce seeds, that which is regulated by phytochrome, is the oxidation ofent-kaurene toent-kaurenoic acid. Alternatively, red-light treatment may result in the release of active GAlike substances which, in turn, induce germination. In either case the results presented here support the view that phytochrome exerts its effect on lettuce seed germination by means of GA rather than via an independent pathway.  相似文献   

15.
Treatment of etiolated pea (Pisum sativum (L. cv. Alaska) seedlings with 2′-isopropyl-4′-(trimethylammonium chloride)-5′-methylphenyl piperidine-1-carboxylate (Amo-1618) prior to irradiation with white light inhibits photomorphogenesis and formation and stacking of thylakoid membranes in the chloroplasts, as well as (−)-kaur-16-ene (ent-kaurene)biosynthesis. Exogenous gibberellic acid also inhibits greening. A crudely determined action spectrum for the photoinduction of ent-kaurene biosynthesis shows two peaks, one in the blue region at 458 to 490 nanometers and another in the red region at 606 to 678 nanometers. The possible participation of phytochrome in the photoinduction of ent-kaurene biosynthesis is indicated by comparative effects of red, far red, and alternating red/far red irradiations on enhancement of enzyme activity. The activity of blue light as well as red shows a similarity of the photoinduction of ent-kaurene synthesis activity to the high irradiance responses, and indicates probable participation of a second photoreceptor. From these observations, it is concluded that photoinduction of ent-kaurene biosynthesis and chloroplast development in shoots are closely linked processes.  相似文献   

16.
Biosynthesis of ent-kaurene was investigated in extracts of cell suspension cultures derived from tobacco callus (Nicotiana tabacum L.), tomato callus (Solanum lycopersicum L.), and in germinating tomato seeds. Incubation of extracts derived from the two cell cultures with either isopentenyl pyrophosphate-14C or with 14C-labeled mevalonate, followed by alkaline phosphatase hydrolysis, resulted in the formation of trans-geranylgeraniol-14C and trans-farnesol-14C. The corresponding pyrophosphates of trans-geranyl-geraniol-14C and trans-farnesol-14C were also detected. No detectable amount of ent-kaurene-14C was produced by these enzymatic preparations when trans-geranylgeranyl-14C pyrophosphate served as substrate. However, copalyl-14C pyrophosphate served as a substrate for the production of ent-kaurene. Cell-free extracts derived from germinating tomato seeds catalyzed the formation of ent-kaurene-14C from mevalonate-14C, isopentenyl-14C pyrophosphate, trans-geranylgeranyl-14C pyrophosphate, and copalyl-14C pyrophosphate.  相似文献   

17.
Gafni Y  Shechter I 《Plant physiology》1981,67(6):1169-1173
Biosynthesis of ent-kaurene was investigated in extracts of cell suspension cultures and seedlings of castor bean. Both cell-free extracts contain an inhibitor of kaurene synthetase. The inhibition affects mainly the cyclization of geranylgeranyl pyrophosphate to copalyl pyrophosphate (activity A) and has little or no effect on the further cyclization of copalyl pyrophosphate to ent-kaurene (activity B) in both castor bean and Fusarium moniliforme cell-free enzyme preparations. In castor bean cell suspension cultures, the inhibitor diffuses out of the cells to the growth medium. The inhibitor is stable to 100 C heat treatment for 10 minutes and exposure to pH values of 2.0 or 13.0, and it diffuses through a dialysis bag (104-dalton cutoff). Gel filtration chromatography of the inhibitor on a calibrated Bio-Gel P-10 column indicated a molecular weight of 7,500. Kinetic studies indicate that the inhibition of activity of A of kaurene synthetase is noncompetitive and reversible.  相似文献   

18.
Subcellular fractions from germinated barley embryos, chloroplast preparations and whole germinating barley grains are able to carry out the conversions ent-kaurenol → ent-kaurenal → ent-kaurenoic acid → ent-hydroxykaurenoic acid, the initial steps of the biosynthetic pathway to gibberellins. Whole grains, and chloroplasts to a slight extent, incorporate radioactivity from ent-kaurenol-[17-14C] and ent-kaurenoic acid-[17-14C] into materials with similar but distinct properties from the gibberellins GA1, GA3, GA4 and GA7.  相似文献   

19.
The conversion of isopentenyl pyrophosphate to phytoene in Neurospora crassa requires both a soluble and a particulate fraction. Soluble and particulate enzyme fractions obtained from light-treated and dark-grown wild type, albino-1, albino-2, albino-3, and white collar-1 strains were mixed in various combinations, and the activity for conversion of [1-14C]isopentenyl pyrophosphate to phytoene was assayed. From such experiments it can be concluded that: (a) albino-3 is defective in the soluble fraction; (b) albino-2 is defective in the particulate fraction; (c) the in vivo light treatment increases the enzyme activity in the particulate fraction; (d) this light effect occurs in wild type, albino-1, and albino-3 strains; and (e) enzyme activity is present in the particulate fraction obtained from the white collar-1 mutant, but the in vivo light treatment does not cause an increase in this activity. To measure directly the level of particulate enzyme activity, [14C]geranylgeranyl pyrophosphate was used as a substrate. This compound, which is not available commercially, was synthesized enzymically using extracts of pea cotyledons. Particulate enzyme fractions obtained from wild type, albino-1, and albino-3 strains incorporate [14C]geranylgeranyl pyrophosphate into phytoene, and this activity is higher in extracts obtained from light-treated cultures. The particulate fraction obtained from the white collar-1 mutant also incorporates [14C]geranylgeranyl pyrophosphate into phytoene, but the in vivo light treatment does not cause an increase in this activity. No incorporation occurs when particulate fractions obtained from either dark-grown or light-treated albino-2 cultures are assayed. The soluble enzyme fraction obtained from the albino-3 mutant was shown to be almost totally defective in enzyme activity required for the biosynthesis of [14C]geranylgeranyl pyrophosphate from [1-14C]isopentenyl pyrophosphate. An in vivo light treatment increases the level of this activity in wild type, albino-1, albino-2, and albino-3 strains, but not in the white collar-1 mutant. A model is presented to account for all of the results obtained in this investigation. It is proposed that the white collar-1 strain is a regulatory mutant blocked in the light induction process, whereas the albino-1, albino-2, and albino-3 strains are each defective for a different enzyme in the carotenoid biosynthetic pathway.  相似文献   

20.
The effect of light on the metabolism of [14C]kaurene in light-requiring lettuce seeds (Lactuca sativa L. cv Grand Rapids) was investigated. Seeds were soaked in a solution of [14C]ent-kaurene in methylene chloride with 0.01% Tween-20, dried, and incubated in 20% polyethylene glycol (PEG) to prevent seedling development. Labeled metabolites were extracted and analyzed by high performance liquid chromatography and gas chromatography-radio counting. [14C]ent-Kaurenol and [14C]ent-kaurenal were identified in seeds incubated in constant white light, while no ethyl acetate-soluble metabolites were found in seeds incubated in the dark. In time course experiments using acid scarified seeds, metabolism began after 18 hours of incubation and greatly increased after 24 hours of incubation in 20% PEG. By 48 hours, several unidentified, more polar metabolites were found. Germination was induced in seeds imbibed in 20% PEG by 4 hours of red or 4 hours of white light following 20 hours in the dark, and was fully reversed by 2 hours of far red light. However, in metabolism experiments, [14C]ent-kaurene oxidation was observed only with constant white light. These results indicate that although ent-kaurene oxidation is a light sensitive step in the biosynthesis of gibberellins in Grand Rapids lettuce seeds, ent-kaurene metabolism is not required for light-induced germination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号