首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 342 毫秒
1.
核磁共振技术在土壤-植物-大气连续体研究中的应用   总被引:2,自引:0,他引:2  
植物体内的水分状态与传输过程是土壤-植物-大气连续体(SPAC)水分传输理论的核心内容,也是研究植物水分利用与调控的基础.植物体内水分的传输过程受外界环境影响较大,植物需要通过对体内水分状态的适当调整来适应环境变化和维持自身的生长发育.由于蒸发通量、压力室、高压流速仪、热脉冲等传统检测方法往往会对植株造成破坏和损伤,因此难以准确反映和定量描述植物体内水分传输的真实过程.核磁共振技术(NMR)由于其无损、非侵入的特点,在植物水分分布和传输相关研究中日益得到关注.本文概述了NMR在检测植物体内水分分布、传输以及含量测定等方面的研究进展,还分析了目前NMR技术在SPAC系统研究中存在的问题及可能的解决方法,并指出NMR技术将来可能在植物水分生理、植物与环境互作以及水分代谢等相关研究领域的应用.NMR技术在SPAC系统研究中的应用在我国仍处于初级阶段,开发户外便携式、开放式检测仪器是NMR技术在SPAC研究领域进一步应用和推广的关键所在.  相似文献   

2.
植物叶片的水分传输是SPAC系统中的一个重要环节,不仅受植物本身的调节和控制,而且还受外界环境条件的影响,是复杂的生理过程。为了搞清SPAC系统水分传输机理,人们对植物叶片导水率进行了大量的研究。本文综述了近年来植物体叶片导水率研究的一些新的进展和发展动态,就叶片水分传输在植物水分平衡中的作用、叶片导水率的定义及其影响因素等方面进行了综述。影响植物叶片导水率的内部、外部环境因素各异,文章重点阐述了土壤因素、气象因素、植物激素、生育阶段和解剖特性等对叶片导水率的影响,提出植物叶片导水率研究中亟需考虑的问题,并对今后SPAC系统中叶片导水率研究的重点发展方向做了展望。  相似文献   

3.
基于SPAC系统干旱区水分循环和水分来源研究方法综述   总被引:3,自引:0,他引:3  
土壤-植物-大气连续体(SPAC)是研究植物水分利用与循环的核心,研究其水分传输过程对于旱区植被恢复具有重要指导意义.本文从土壤水分和植物蒸腾两个方面进行阐述,对土壤水分的研究主要涉及热惯量法、中子仪法和时域反射仪法,植物蒸腾则从枝叶尺度、单木尺度、林分尺度和区域尺度4个层面分类总结;并重点介绍了稳定同位素方法在研究植物不同水分来源中的应用.  相似文献   

4.
林木耗水调控机理研究进展   总被引:15,自引:2,他引:13  
林木的蒸腾耗水量是造林设计与环境水分研究的重要参数。本文就林木耗水的气孔与非气孔调节机制、木质部空穴和栓塞的发生和恢复机理、树体组织水容等方面进行了综述,对它们在树木水分传输过程中的调控作用和意义开展了探讨。目前在蒸腾气孔调节方面,包括,蒸腾午休、夜间蒸腾、气孔振荡和补偿现象等气孔行为的研究工作有待深入。栓塞木质部和空穴化导管恢复的临界条件与重新充注对植物水分运输的重要生理作用要进一步加强。树体组织水容对树木水分传输和耗水的调控机制问题应加以重视。  相似文献   

5.
土壤-植物-大气连续体(SPAC)是生态水文学的重点研究对象,其水分运移过程对于干旱半干旱区生态植被建设和水资源综合管理具有重要意义。氢氧稳定同位素较高的灵敏性和准确度有助于揭示这一过程。介绍了氢氧稳定同位素在土壤-大气界面、土壤-地下水界面、土壤-植物界面和植物-大气界面水分补给传输过程中的应用,包括土壤水分来源和蒸发;水分补给入渗机制和滞留时间;植物水分来源和水力再分配;蒸散发分割和叶片吸水的相关研究,同时明确了氢氧稳定同位素技术在应用过程中存在的一些不确定性以及未来亟需加强的方面,以期为利用稳定同位素技术对生态水文过程的研究提供参考依据。  相似文献   

6.
讨论了植物气孔气态失水与SPAC系统液态供水相互作用研究领域的一些重要现象和行为.当植物水力信号和化学信号共同作用促进气孔对叶水势的调节时,植物对叶水势的调节表现为等水行为.气孔对环境湿度变化响应的反馈机制可用来解释土壤干旱条件下气孔和光合的午休现象,以及气孔导度和水流导度之间的相关关系;而气孔对环境湿度变化响应的前馈机制,则可用来解释气孔导度对大气 叶片间水汽饱和差的滞后反应.植物最大限度地利用木质部传输水分的策略,要求气孔快速响应以避免木质部过度气穴化和短时间内将气穴逆转的相应机制.  相似文献   

7.
根源信号参与调控气孔行为的机制及其农业节水意义   总被引:12,自引:5,他引:7  
在土壤干旱情况下,根源信号一方面向植物地上部分的长距离传输,为地上部分提供了土壤水分获取能力的测度,另一方面调控气孔开度,抑制蒸腾作用并提高植物的水分利用效率.文中综述了根源信号参与调控植物水分利用的生理机制和理论模型,指出该模型与根系吸水模型、气孔导度模型耦合,能够更好地反映植物叶片对土壤干旱以及大气干旱的响应、评述了在根源信号参与调控植物水分关系的基础上发展的调亏灌溉(RDI)、部分根系干旱(PRD)和控制性交替灌溉(CAI)等有效灌溉手段,有助于合理配置根系层供水量,通过根土相互作用和信号物质的传输,降低蒸腾和提高水分利用效率、另外,根源信号在调控根系生长发育、延缓地上部分生长以调节根冠比例,优化资源分配以利于生殖生长等方面均有所为,为全面提高农田水分利用效率提供节水生理基础。  相似文献   

8.
不同肥力水平农田生态系统SPAC水分状态及能量特征   总被引:6,自引:0,他引:6  
刘思春  王玉  吕家珑  张一平  陈建文 《生态学报》2002,22(12):2104-2110
通过对农田生态系统土壤 -植物 -大气连续体系 (SPAC)水分、温度等昼夜观测 ,确定温度是影响 SPAC水分能量的重要因素 ,土壤水势呈现温度正效应 ,植物、大气水势呈现温度负效应。温度与土壤 -植物间水势差 (ψS- P)和植物 -大气间水势差 (ψP- A)呈正相关。农田生态系统 SPAC水分热力学函数研究得出 ,不论高、低肥区 ,冬小麦在不同生长发育时期 ,水分的相对偏摩尔自由能 (ΔG)均为土壤 >植物 >大气 ;水分相对偏摩尔熵 (ΔS)、焓 (ΔH)均为大气 >植物 >土壤 ;冬小麦在拔节期和扬花期 ,土壤水 ΔG皆为高肥区 <低肥区 ;植物水分 ΔG拔节期为高肥区 >低肥区 ,扬花期相反为高肥区 <低肥区 ;两个生育期大气水分 ΔG均为高肥区 >低肥区。在拔节期土壤 -植物间水分的 ΔG差值 (ΔGS- P=ΔGS-ΔGP)、植物 -大气间水分ΔG差值 (ΔGP- A=ΔGP-ΔGA)均为高肥区 <低肥区 ,扬花期ΔGS- P为高肥区 >低肥区 ,而ΔGP- A为高肥区 <低肥区。  相似文献   

9.
干旱胁迫是严重影响全球作物生产的非生物胁迫之一,研究植物耐旱机制已成为一个重要领域。水通道蛋白是一类特异、高效转运水及其它小分子底物的膜通道蛋白,在植物中具有丰富的亚型,参与调节植物的水分吸收和运输。近10年来,水通道蛋白在植物不同生理过程中的作用,一直受到研究人员的关注,特别是在非生物胁迫方面,而研究表明水通道蛋白在干旱胁迫下对植物的耐旱性起着至关重要的作用,能维持细胞水分稳态和调控环境胁迫快速响应。水通道蛋白在植物耐旱过程中的调控机制及功能较复杂,而关于其应答机制和不同亚型功能性研究的报道甚少。该文综述了植物水通道蛋白的分类、结构、表达调控和活性调节,分别从植物水通道蛋白响应干旱表达调控机制、水通道蛋白基因表达的时空特异性、水通道蛋白基因的表达与蛋白丰度,水通道蛋白基因的耐旱转化四个方面阐明干旱胁迫下植物水通道蛋白的表达,重点阐述其参与植物干旱胁迫应答的作用机制,并提出水通道蛋白研究的主要方向。  相似文献   

10.
景观内部地下水-土壤-植物-大气界面的水分传输和不同景观界面间的水力联系是干旱区生态水文学研究的理论基础, 对提高认识不同景观格局水文连通性具有重要意义。鉴于干旱区水分循环的复杂性, 稳定同位素(δ2H、δ18O)在干旱区生态系统水分传输研究中广泛应用。综述了稳定同位素在干旱区植物/土壤-大气界面水分转换、植物根系-土壤界面水力联系与根系吸水过程和土壤水-地下水相互作用方面的研究。提出未来研究发展方向: 加强对干旱区非稳态条件蒸散发同位素量化; 优化不同生境植物根系吸水的同位素模型; 基于区域地下水-土壤-植被长时间序列同位素观测, 阐明干旱区不同景观界面间的水力连通性机制。  相似文献   

11.
Herein we review the current state-of-the-art of plant hydraulics in the context of plant physiology,ecology, and evolution, focusing on current and future research opportunities. We explain the physics of water transport in plants and the limits of this transport system,highlighting the relationships between xylem structure and function. We describe the great variety of techniques existing for evaluating xylem resistance to cavitation. We address several methodological issues and their connection with current debates on conduit refilling and exponentially shaped vulnerability curves. We analyze the trade-offs existing between water transport safety and efficiency. We also stress how little information is available on molecular biology of cavitation and the potential role of aquaporins in conduit refilling. Finally,we draw attention to how plant hydraulic traits can be used for modeling stomatal responses to environmental variables and climate change, including drought mortality.  相似文献   

12.
It is well known that the arbuscular mycorrhizal (AM) symbiosis helps the host plant to overcome several abiotic stresses including drought. One of the mechanisms for this drought tolerance enhancement is the higher water uptake capacity of the mycorrhizal plants. However, the effects of the AM symbiosis on processes regulating root hydraulic properties of the host plant, such as root hydraulic conductivity and plasma membrane aquaporin gene expression, and protein abundance, are not well defined. Since it is known that K(+) status is modified by AM and that it regulates root hydraulic properties, it has been tested how plant K(+) status could modify the effects of the symbiosis on root hydraulic conductivity and plasma membrane aquaporin gene expression and protein abundance, using maize (Zea mays L.) plants and Glomus intraradices as a model. It was observed that the supply of extra K(+) increased root hydraulic conductivity only in AM plants. Also, the different pattern of plasma membrane aquaporin gene expression and protein abundance between AM and non-AM plants changed with the application of extra K(+). Thus, plant K(+) status could be one of the causes of the different observed effects of the AM symbiosis on root hydraulic properties. The present study also highlights the critical importance of AM fungal aquaporins in regulating root hydraulic properties of the host plant.  相似文献   

13.
植物干旱胁迫下水分代谢、碳饥饿与死亡机理   总被引:5,自引:0,他引:5  
董蕾  李吉跃 《生态学报》2013,33(18):5477-5483
植物在生长发育过程中受众多环境因子共同作用。随着全球气候变化,气温升高、降水量下降等问题频繁出现。目前气象学家一致预测未来环境变暖会使干旱更加频繁剧烈,这一环境改变使植物死亡更加严重。植物在水分胁迫、特别是干旱胁迫条件下,体内水分代谢与碳代谢会发生失衡现象:光合速率降低、蒸腾速率降低,带来生长降低;为维持植物新陈代谢,植物呼吸作用必然下调。在长期干旱胁迫条件下植物体内碳水化合物储存发生失衡现象,这种失衡使植物陷入碳饥饿现象。另外,由于水分失衡而出现的木质部栓塞和空穴会进一步加剧水分运输障碍,而修复空穴则需要大量非结构性碳水化合物(NSC),这使植物陷入两难选择。总结了植物干旱胁迫下,碳饥饿与水分代谢、植物死亡关系的相关研究,对未来的研究方向和重点提出建议,以期对未来的植物死亡研究提供帮助。  相似文献   

14.
Maintenance of water transport is very important for plant growth and survival. We studied seven woody species that inhabit the semi-arid Mu Us Sandy Land, China, to understand their strategies for maintaining hydraulic function. We evaluated water transport properties, including cavitation resistance, hydraulic recovery, and water loss regulation by stomatal control, which are associated with xylem structural and leaf physiological traits. We also discussed the water-use characteristics of these species by comparing them with those of species in other regions. Species with tracheids had higher levels of xylem resistance to cavitation and a smaller midday transpiration rate than the other species studied. Although species with vessels were less resistant to cavitation, some recovered hydraulic conductivity within 12 h of rehydration. Species with xylem tracheids could maintain their hydraulic function through resistance to cavitation and by relaxing xylem tension. Although species with vessels had less resistant xylem, they could maintain hydraulic function through hydraulic recovery even when xylem dysfunction occurred. Additionally, the species studied here were less resistant to cavitation than species in semi-arid environments, and equally or less resistant than species in humid environments. Rather than allow hydraulic dysfunction due to drought-induced dehydration, they may develop water absorption systems to avoid or recover quickly from hydraulic dysfunction. Thus, not only stem cavitation resistance to drought but also stem–root coordination should be considered when selecting plants for the revegetation of arid regions.  相似文献   

15.
Water uptake by plant roots: an integration of views   总被引:20,自引:0,他引:20  
Steudle  Ernst 《Plant and Soil》2000,226(1):45-56
A COMPOSITE TRANSPORT MODEL is presented which explains the variability in the ability of roots to take up water and responses of water uptake to different factors. The model is based on detailed measurements of 'root hydraulics' both at the level of excised roots (root hydraulic conductivity, Lpr) and root cells (membrane level; cell Lp) using pressure probes and other techniques. The composite transport model integrates apoplastic and cellular components of radial water flow across the root cylinder. It explains why the hydraulic conductivity of roots changes in response to the nature (osmotic vs. hydraulic) and intensity of water flow. The model provides an explanation of the adaptation of plants to conditions of drought and other stresses by allowing for a `coarse regulation of water uptake' according to the demands from the shoot which is favorable to the plant. Coarse regulation is physical in nature, but strongly depends on root anatomy, e.g. on the existence of apoplastic barriers in the exo- and endodermis. Composite transport is based on the composite structure of roots. A `fine regulation' results from the activity of water channels (aquaporins) in root cell membranes which is assumed to be under metabolic and other control.  相似文献   

16.
The ubiquitous cell membrane proteins called aquaporins are now firmly established as channel proteins that control the specific transport of water molecules across cell membranes in all living organisms. The aquaporins are thus likely to be of fundamental significance to all facets of plant growth and development affected by plant–water relations. A majority of plant aquaporins have been found to share essential structural features with the human aquaporin and exhibit water-transporting ability in various functional assays, and some have been shown experimentally to be of critical importance to plant survival. Furthermore, substantial evidence is now available from a number of plant species that shows differential gene expression of aquaporins in response to abiotic stresses such as salinity, drought, or cold and clearly establishes the aquaporins as major players in the response of plants to conditions that affect water availability. This review summarizes the function and regulation of these genes to develop a greater understanding of the response of plants to water insufficiency, and particularly, to identify tolerant genotypes of major crop species including wheat and rice and plants that are important in agroforestry. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

17.
Most of the symplastic water transport in plants occurs via aquaporins, but the extent to which aquaporins contribute to plant water status under favorable growth conditions and abiotic stress is not clear. To address this issue, we constitutively overexpressed the Arabidopsis plasma membrane aquaporin, PIP1b, in transgenic tobacco plants. Under favorable growth conditions, PIP1b overexpression significantly increased plant growth rate, transpiration rate, stomatal density, and photosynthetic efficiency. By contrast, PIP1b overexpression had no beneficial effect under salt stress, whereas during drought stress it had a negative effect, causing faster wilting. Our results suggest that symplastic water transport via plasma membrane aquaporins represents a limiting factor for plant growth and vigor under favorable conditions and that even fully irrigated plants face limited water transportation. By contrast, enhanced symplastic water transport via plasma membrane aquaporins may not have any beneficial effect under salt stress, and it has a deleterious effect during drought stress.  相似文献   

18.
Plant aquaporins: Roles in plant physiology   总被引:2,自引:0,他引:2  

Background

Aquaporins are membrane channels that facilitate the transport of water and small neutral molecules across biological membranes of most living organisms.

Scope of review

Here, we present comprehensive insights made on plant aquaporins in recent years, pointing to their molecular and physiological specificities with respect to animal or microbial counterparts.

Major conclusions

In plants, aquaporins occur as multiple isoforms reflecting a high diversity of cellular localizations and various physiological substrates in addition to water. Of particular relevance for plants is the transport by aquaporins of dissolved gases such as carbon dioxide or metalloids such as boric or silicic acid. The mechanisms that determine the gating and subcellular localization of plant aquaporins are extensively studied. They allow aquaporin regulation in response to multiple environmental and hormonal stimuli. Thus, aquaporins play key roles in hydraulic regulation and nutrient transport in roots and leaves. They contribute to several plant growth and developmental processes such as seed germination or emergence of lateral roots.

General significance

Plants with genetically altered aquaporin functions are now tested for their ability to improve plant resistance to stresses. This article is part of a Special Issue entitled Aquaporins.  相似文献   

19.
Background Mangroves are a group of highly salt-tolerant woody plants. The high water use efficiency of mangroves under saline conditions suggests that regulation of water transport is a crucial component of their salinity tolerance.Scope This review focuses on the processes that contribute to the ability of mangroves to maintain water uptake and limit water loss to the soil and the atmosphere under saline conditions, from micro to macro scales. These processes include: (1) efficient filtering of the incoming water to exclude salt; (2) maintenance of internal osmotic potentials lower than that of the rhizosphere; (3) water-saving properties; and (4) efficient exploitation of less-saline water sources when these become available.Conclusions Mangroves are inherently plastic and can change their structure at the root, leaf and stand levels in response to salinity in order to exclude salt from the xylem stream, maintain leaf hydraulic conductance, avoid cavitation and regulate water loss (e.g. suberization of roots and alterations of leaf size, succulence and angle, hydraulic anatomy and biomass partitioning). However, much is still unknown about the regulation of water uptake in mangroves, such as how they sense and respond to heterogeneity in root zone salinity, the extent to which they utilize non-stomatally derived CO2 as a water-saving measure and whether they can exploit atmospheric water sources.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号