首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Various methods have been used to study cytoplasmic streaming in giant algal cells during the past three decades. Simple techniques can be used with characean internodal cells to modify the cell constitution in various ways to gain insight into the mechanism of cytoplasmic streaming. Another method involves isolatingin vitro a huge drop of uninjured endoplasm, to examine its physical and dynamic properties. The motive force responsible for streaming has been measured by three different techniques with similar results. Subcortical fibrils consisting of bundles of F-actin with the same polarity are indispensable for streaming. Differential treatment of the endoplasm and ectoplasm has shown that putative characean myosin is localized in the endoplasm. Studies of the roles of ATP, Mg2+, Ca2+, H+ etc. in the streaming have been conducted by cellular perfusion, which allows removal of the tonoplast, or by techniques permeabilizing the protoplasmic membrane. A slow version of the movement can even be artificially reproduced by combining characean actinin situ and exogenous myosin in the presence of Mg-ATP. The findings thus far obtained support the hypothesis that cytoplasmic streaming in characean cells is caused by an active shearing force produced by interaction of the actin filament bundles on the cortex with myosin in the endoplasm.  相似文献   

2.
T. Shimmen  M. Yano 《Protoplasma》1986,132(3):129-136
Summary Native tropomyosin from rabbit skeletal muscle introduced by intracellular perfusion intoChara cells inhibited the cytoplasmic streaming irrespective of the Ca2+ concentration. To find the action site of native tropomyosin inChara, the cytoplasmic streaming was reconstituted by introducing isolated endoplasm into actin donorChara cells from which native endoplasm had been removed. The reconstituted streaming was inhibited by pretreatment of the actin donor cells with native tropomyosin but not by that of the endoplasm, suggesting that the native tropomyosin inhibited the cytoplasmic streaming by binding toChara actin bundles. Staining of the actin bundles with FITC-labeled native tropomyosin also showed that the native tropomyosin could bind to the actin bundles. Streaming reconstituted fromChara actin bundles and skeletal muscle myosin was insensitive to Ca2+, but became sensitive on application of the native tropomyosin.Abbrevations APW artificial pond water - ATP adenosine 5-triphosphoric acid - BSA bovine serum albumin - EDTA ethylene diamine tetraacetic acid - EGTA ethyleneglycol-bis-(-aminoethylether) N,N,N,N-tetraacetic acid - FITC fluorescein isothiocyanate - FITC-NTM fluorescein isothiocyanate-labeled native tropomyosin - NTM native tropomyosin  相似文献   

3.
T. Shimmen  M. Yano 《Protoplasma》1984,121(1-2):132-137
Summary Latex beads coated with rabbit skeletal muscle myosin were introduced by intracellular perfusion intoChara cells from which the tonoplasts had been removed. Mg · ATP dependent movement of the beads along files ofChara chloroplast layers was observed. The movement was in opposite directions on the two sides of the indifferent line, indicating that the movement was dependent on the polarity of the actin bundles. This suggests that the unknown factor responsible for generating the motive force for cytoplasmic streaming inChara endoplasm is myosin. The advantages of the present experimental system for studying the sliding mechanism of actomyosin are discussed.Abbreviations APW artificial pond water - ATP adenosine 5-triphosphoric acid - DTT dithiothreitol - EDTA ethylenediamine tetraacetic acid - EGTA ethyleneglycol-bis(-aminoethyl ether)N, N, N, N-tetraacetic acid - HMM heavy meromyosin - LMM light meromyosin - NEM N-ethylmaleimide - PIPES piperazine-N, N- bis(2-ethanesulfonic acid)  相似文献   

4.
Cytoplasmic streaming in characean algae is thought to be driven by interaction between stationary subcortical actin bundles and motile endoplasmic myosin. Implicit in this mechanism is a requirement for some form of coupling to transfer motive force from the moving myosin to the endoplasm. Three models of viscous coupling between myosin and endoplasm are presented here, and the hydrodynamic feasibility of each model is analyzed. The results show that individual myosinlike molecules moving along the actin bundles at reasonable velocities cannot exert enough viscous pull on the endoplasm to account for the observed streaming. Attachment of myosin to small spherical organelles improves viscous coupling to the endoplasm, but results for this model show that streaming can be generated only if the myosin-spheres move along the actin bundles in a virtual solid line at about twice the streaming velocity. In the third model, myosin is incorporated into a fibrous or membranous network or gel extending into the endoplasm. This network is pulled forward as the attached myosin slides along the actin bundles. Using network dimensions estimated from published micrographs of characean endoplasm, the results show that this system can easily generate the observed cytoplasmic streaming.  相似文献   

5.
Summary The mechanism of the cessation of cytoplasmic streaming upon membrane excitation inCharaceae internodal cells was investigated.Cell fragments containing only cytoplasm were prepared by collecting the endoplasm at one cell end by centrifugation. In such cell fragments lacking the tonoplast, an action potential induced streaming cessation, indicating that an action potential at the plasmalemma alone is enough to stop the streaming.The active rotation of chloroplasts passively flowing together with the endoplasm also stopped simultaneously with the streaming cessation upon excitation. The time lag or interval between the rotation cessation and the electrical stimulation for inducing the action potential increased with the distance of the chloroplasts from the cortex. The time lag was about 1 second/15 m, suggesting that an agent causing the rotation cessation is diffused throughout the endoplasm.Using internodes whose tonoplast was removed by replacing the cell sap with EGTA-containing solution (tonoplast-free cells,Tazawa et al. 1976), we investigated the streaming rate with respect to the internal Ca2+ concentration. The rate was roughly identical to that of normal cells at a Ca2+ concentration of less than 10–7 M. It decreased with an increase in the internal Ca2+ concentration and was zero at 1 mM Ca2+.The above results, together with the two facts that Ca2+ reversibly inhibits chloroplast rotation (Hayama andTazawa, unpublished) and the streaming in tonoplast-free cells does not stop upon excitation (Tazawa et al. 1976), lead us to conclude that a transient increase in the Ca2+ concentration in the cytoplasm directly stops the cytoplasmic streaming. Both Ca influxes across the resting and active membranes were roughly proportional to the external Ca2+ concentration, which did not affect the rate of streaming recovery. Based on these results, several possibilities for the increase in Ca2+ concentration in the cytoplasm causing streaming cessation were discussed.  相似文献   

6.
A. Kadota  M. Wada 《Protoplasma》1995,188(3-4):170-179
Summary In the tip-growing protonemal cell, the nucleus migrates with the tip as it grows, keeping a constant distance between them. Cytoskeletal control of this nuclear migration was analyzed inAdiantum capillus-veneris. Using rhodamine-phalloidin (Rh-Phal), tubulin antibodies and confocal laser scanning microscopy, we found the presence of microtubule (MT) and microfilament (MF) strands connecting the cell nucleus to the cortex of the growing apex. The strands come from the apical end of the spindle-shaped nucleus and run through the endoplasm, arriving at the apical cortex, where a circular arrangement of MTs and MFs is present. Strands of MFs and MTs were also found to emanate from the proximal end of the nucleus and extend towards the cortex of the basal part of the cell. Double staining of MTs and MFs revealed a co-localization of these cytoskeletal elements. When MF strands were disrupted by cytochalasin B (CB), tip-growth ceased and nuclear movement stopped. After the application of colchicine, MT structures disappeared, tip-growth was largely inhibited, and the nucleus moved towards the basal part of the cell. When both CB and colchicine were applied to the cell, no basipetal migration of cell nucleus was observed. These results suggest that the MT strands between the apex and the nucleus may have a role in the anchorage of the cell nucleus to the tip during tip-growth, and that the MF strands may be important for basipetal movement of the nucleus. When the nucleus was dislocated basipetally by centrifugation, cytoskeletal strands between the cell apex and the nucleus were still observed, and by acropetal movement the nucleus resumed its previous position. The acropetal movement of the nucleus was inhibited by the application of both CB and colchicine but not by CB alone nor by colchicine alone, indicating that both cytoskeletal elements are involved in the forward movement of cell nucleus.Abbreviations CB cytochalasin B - DAPI4 6-diamino-2-phenylin-dole - DMSO dimethylsulfoxide - PIPES piperazine-N,N-bis(2-ethane-sulfonic acid) - EGTA ethyleneglycol-bis-(-aminoethyl-ether)-N,N,N,N-tetraacetic acid - MBS m-maleimidobenzoic acid N-hydroxysuccinimide ester - MF microfilament - MT microtubule - PMSF phenylmethylsulfonyl fluoride - PSM polyoxyethylene sorbitan monolaurate - Rh-Phal rhodamine-labeled phalloidin  相似文献   

7.
Summary When K+ of high concentration (50 mM) was applied toNitella cells, the cytoplasmic streaming stopped instantly as in the case of electrical stimulation. Recovery of the streaming after chemical stimulation was much slower than after electrical stimulation. When the endoplasm content was modified by centrifugation, streaming recovery was accelerated in the centrifugal cell fragments rich in endoplasm and deccelerated in those poor in it. The recovery was also accelerated either by permeabilizing the plasmalemma in the presence of EGTA in the external solution or by removing the tonoplast by vacuolar perfusion with the EGTA-containing medium. We concluded that the streaming was recovered due to decrease of the cytoplasmic Ca2+ concentration, which seems to be accelerated by sequestering of Ca2+ by endoplasmic components. The slow recovery of the streaming after KCl-stimulated cessation is assumed to be caused by continuous influx of Ca2 + during the prolonged membrane depolarization.Abbreviations ATP adenosine 5-triphosphoric acid - EGTA ethyleneglycol-bis-(-aminoethyl ether)N,N-tetraacetic acid - PIPES piperazine-N,N-bis(2-ethanesulfonic acid)  相似文献   

8.
T. Shimmen  M. Tazawa 《Protoplasma》1982,112(1-2):101-106
Summary The plasmalemma ofNitella internode was made freely permeable to solutes by treating the cell with detergent and EGTA under plasmolysis. After the treatment, the cytoplasmic streaming was stopped by bathing the cell in a medium lacking ATP. The streaming was reactivated by perfusing the exterior of the permeabilized cell with a medium containing both Mg2+ and ATP. The reactivated streaming could be reversibly stopped by depletion of ATP. However, depletion of Mg2+ irreversibly inhibited the streaming.Cytochalasin B at 5 g/ml irreversibly inhibited the reactivated streaming within a minute, showing that microfilaments are involved in the streaming.Abbreviations ATP adenosine-5-triphosphoric acid - CB cytochalasin B - CyDTA cyclohexanediamine-N,N-tetraacetic acid - DMSO dimethylsulfooxide - DTT dithiothreitol - EGTA ethyleneglycol-bis(-aminoethylether)-N,N tetraacetic acid - PIPES piperazine-N,N-bis(2-ethanesulfonic acid) - PMSF phenylmethyl-sulfonylfluoride  相似文献   

9.
A monoclonal antibody to the heavy chain of myosin from mouse 3T3 cells was used to detect and localize related proteins in the green alga Chara. Proteins of 200,000 and 110,000 Mr reacted on immunoblots of proteins precipitated rapidly with trichloroacetic acid to minimize proteolysis. Immunofluorescence of whole cells localized these proteins to organelles of the streaming endoplasm, to a system of endoplasmic strands and to the subcortical actin bundles. Except that fewer endoplasmic strands and organelles were found and the strands were tangled, the localization pattern was similar in cells rapidly perfused to remove the bulk of the streaming endoplasm. Actin was confined almost entirely to the system of subcortical actin bundles in both whole and perfused cells. Myosin that was associated with the tangled endoplasmic strands but not that associated with the organelles or actin bundles was removed by concentrations of Ca2+ inhibiting ATP-dependent streaming in perfused cells. ATP extracted both organelles and endoplasmic strands but left a continuous pattern of myosin immunostaining along the actin bundles. The findings are discussed in relation to the possible existence of two forms of myosin and of separate mechanisms moving the bulk endoplasm and individual organelles.  相似文献   

10.
David W. McCurdy 《Protoplasma》1999,209(3-4):120-125
Summary The effectiveness of 2,3-butanedione monoxime (BDM) as an inhibitor of plant myosins has been investigated. Three myosin-dependent motility phenomena in plants, namely cytoplasmic streaming inChara corallina, light-dependent chloroplast repositioning inElodea sp., and brefeldin A(BFA)-induced Golgi membrane dynamics in wheat (Triticum aestivum L. cv. Kite) roottip cells were investigated. All three processes were inhibited by the sulfhydryl-modifying agent N-ethylmalemide (NEM), indicating the probable involvement of myosin as the motor protein in each case. However, none of these myosin-dependent processes were inhibited by BDM at concentrations as high as 20 mM in some instances. These results therefore question the general usefulness of BDM as an inhibitor of myosin-based activities in plant cells.  相似文献   

11.
A. Grębecki 《Protoplasma》1985,127(1-2):31-45
Summary The whole ectoplasmic layer of polytactic and heterotactic forms ofA. proteus behaves as self-contractile structure. Depending on the configuration of cell body and on the cell-to-substrate attachment conditions it continuously retracts from each distal cell projection toward its centre and/or from each free body end toward the actual adhesion sites. As in the monotactic forms, it leads to the withdrawal of the tail region behind the retraction center and may result in the fountain movement in front of it. In the long unattached pseudopodia of heterotactic forms the ectoplasm is retracted in the fountain form, with the velocity linearly increasing from the basis of pseudopodium up to its tip. In polytactic cells the fountain is often absent, if the advancing fronts immediately adhere to the substrate. When they develop in unattached condition, or are experimentally obliged to detach, the ectoplasmic cylinders of frontal pseudopodia are retracted backwards. On the substrates which do not offer firm points of support the cell periphery moves back as a whole,i.e., the principal ectoplasmic cylinder retracts together with the cylinders of lateral pseudopodia, and the direction and speed of movement in any spot is the resultant of forces produced by all other segments. The retraction of ectoplasmic gel layer is independent of the endoplasmic flow in such extent that a pseudopodium may be withdrawn as a whole in spite of the endoplasm streaming directed forwards in its interior. On the cell surface the particles attached by adhesion (glass rods) strictly follow the movements of the internal ectoplasmic structures, whereas the unattached particles flow forward in the direction of endoplasm streaming.Study supported by Research Project II. 1 of the Polish Academy of Science.  相似文献   

12.
M. Braun 《Protoplasma》1996,191(1-2):1-8
Summary Myosin-related proteins have been localized immunocytochemically in gravity-sensing rhizoids of the green algaChara globularis using a monoclonal antibody against the heavy chain of myosin from mouse 3T3 cells and a polyclonal antibody to bovine skeletal and smooth muscle myosin. In the basal zone of the rhizoids which contain a large vacuole, streaming endoplasm and stationary cortical cytoplasm, the monoclonal antibody stained myosin-related proteins as diffusely fluorescing endoplasmic strands. This pattern is similar to the arrangement of subcortical actin filament bundles. In the apical zone which contains an aggregation of ER membranes and secretory vesicles for tip growth, diffuse immunofluorescence was detected; the intensity of the signal increasing towards the apical cell wall. The most prominent myosin-staining was associated with the surface of statoliths in the apical zone. The polyclonal antibody produced a punctate staining pattern in the basal zone, caused by myosin-related proteins associated with the surface of drganelles in the streaming endoplasm and the periphery of the nucleus. In the apical zone, this antibody revealed myosin-immunofluorescence on the surface of statoliths in methacrylate-embedded rhizoids. Neither antibody revealed myosin-immunofluorescence on the surface of organelles and vesicles in the relatively stationary cytoplasm of the subapical zone. These results indicate (i) that different classes of myosin are involved in the various transport processes inChara rhizoids; (ii) that cytoplasmic streaming in rhizoids is driven by actomyosin, corresponding to the findings onChara internodal cells; (iii) that actindependent control of statolith position and active movement is mediated by myosin-related proteins associated with the statolith surfaces; and (iv) that myosin-related proteins are involved in the process of tip growth.  相似文献   

13.
Summary We constructed a new centrifuge microscope of the stroboscopic type, with which the cytoplasmic streaming inNitella internodal cells under centrifugal acceleration was studied. Under moderate centrifugal acceleration (ca. 50–100×g), the direction of cytoplasmic streaming in an internodal cell ofNitella is parallel to the direction of the subcortical fibrils. The speed of endoplasm flowing contiguous to the subcortical fibrils is neither accelerated nor retarded by moderate centrifugal acceleration. The endoplasmic flow, however, stops suddenly following an electrical stimulus. The endoplasm contiguous to the subcortical fibrils is immobilized transiently at the time of streaming cessation induced by an electrical stimulus under centrifugal acceleration at 50–100×g, even at 900×g. It is suggested that transitory cross bridges between the immobilized endoplasm and the subcortical fibrils are formed at the time of streaming cessation. The bulk endoplasm flows as a whole in the direction parallel to that of the subcortical fibrils and stops promptly upon electrical stimulation. Soon after the stoppage the bulk endoplasm starts to flow passively in the direction parallel to that of the centrifugal acceleration as a result of the centrifugal force.Abbreviations APW artificial pond water - CMS centrifuge microscope  相似文献   

14.
Summary The thickness of ectoplasmic walls decreases at the contraction phase and increases at the expansion phase of each pulsation cycle. In average, 29% of material forming the walls of expanded veins is evacuated during contraction with the endoplasm streaming.  相似文献   

15.
Lucyna Grębecka 《Protoplasma》1981,106(3-4):343-349
Summary Perforation of peripheral cell layers ofA. proteus in any place provokes immediate endoplasm efflux, what supports the view that the hydrostatic pressure is higher in the cell interior than outside. The local effusion of endoplasm results in the reversal of flow in formerly advancing pseudopodia, in agreement with the pressure gradient theories of protoplasmic streaming. Amoebae with destroyed frontal zones squeeze all their endoplasm out through the breach, what disproves the frontal contraction hypothesis of amoeboid movement, but supports the concept of a general contraction of cell cortex.Study supported by the Research Project II.1 of the Polish Academy of Science.  相似文献   

16.
A. Salitz  K. Schmitz 《Protoplasma》1989,153(1-2):37-45
Summary Reaction of cytoplasmic streaming inTradescantia staminal hairs to microfilament and microtubule specific inhibitors, applied either by conventional immersion or by microinjection, indicates that both the actin-myosin and the microtubule system may be involved in driving the particle stream. Cytoplasmic streaming was stopped at relatively high drug concentrations when the cells were immersed in the inhibitor solution. Microinjection of defined concentrations of inhibitor into single, selected cells were effective at concentrations at least two orders of magnitude lower. Further reduction of inhibitor concentrations, however, enhanced streaming up to 100%. When a mixture of cytochalasin D and oryzalin were injected at concentrations that had previously been shown to enhance particle movement, very efficient inhibition occurred and streaming rapidly stopped. Adjacent cells on both sides of the injected cell were also affected: within a few minutes of the injection of microfilament inhibitors the basal cell reacted, followed slightly later by the apical one; microtubule inhibitors caused a reaction in the apical cell earlier than in the basal cell. The results are discussed with respect to the involvement of actin and myosin microfilaments, as well as microtubules, as force generating systems of particle movement.Abbreviations CB cytochalasin B - CD cytochalasin D - Cys cysteine - DMSO dimethylsulfoxid - DTT dithiothreitol - MI microinjection - NBD 7-nitrobenz-2-oxa-1,3-diazole - NEM N-ethylmaleimide Nocodazole methyl [5-(2-thienylcarbonyl)-1 H-benzimidazol-2-yl]carbamate  相似文献   

17.
18.
T. Kohno  S. Chaen  T. Shimmen 《Protoplasma》1990,154(2-3):179-183
Summary In pollen tubes, the motive force of cytoplasmic streaming is assumed to be generated by the sliding of the translocator associated with cell organelles along actin filaments. In the present study, the characteristics of the translocator were studied by reconstituting the movement of pollen tube organelles along characean actin bundles. Movement of pollen tube organelles proceeded from the pointed end to the barbed end of the actin filaments of the characean cells. The reconstituted movement was not inhibited by vanadate. KCL at higher concentrations inhibited the movement. Furthermore, heavy meromyosin (HMM) prepared from rabbit skeletal muscle myosin partially inhibited the reconstituted movement and pCMB-modified HMM inhibited it completely. The present results strongly support our previous conclusion that the translocator which generates the motive force of cytoplasmic streaming in pollen tube is myosin.Abbreviations AMP-PNP adenylyl-imidodiphosphate - ATP adenosine-5-triphosphate - ATP--S adenosine-5-0-(3-thiotriphosphate) - BSA bovine serum albumin - CCCP carbonylcyanide m-chlorophenylhydrazone - DTT dithiothreitol - EDTA ethylenediamine tetraacetic acid - EGTA ethyleneglycol-bis-(-aminoethyl ether)N,N,N,N-tetraacetic acid - HB homogenization buffer - HMM heavy meromyosin - NEM N-ethylmaleimide - pCMB p-chloromercuribenzoic acid - PIPES piperazine-N,N-bis-(2-ethanesulfonic acid) - PPi pyrophosphate  相似文献   

19.
Summary Gravity induces a polarity of cytoplasmic streaming in vertically-oriented internodal cells of characean algae. The motive force that powers cytoplasmic streaming is generated at the ectoplasmic/endoplasmic interface. The velocity of streaming, which is about 100 m/s at this interface, decreases with distance from the interface on either side of the cell to 0 m/s near the middle. Therefore, when discussing streaming velocity it is necessary to specify the tangential plane through the cell in which streaming is being measured. This is easily done with a moderate resolution light microscope (which has a lateral resolution of 0.6 m and a depth of field of 1.4 m), but is obscured when using any low resolution technique, such as low magnification light microscopy or laser Doppler spectroscopy. In addition, the effect of gravity on the polarity of cytoplasmic streaming declines with increasing physiological age of isolated cells. Using a classical mechanical analysis, we show that the effect of gravity on the polarity of cytoplasmic streaming cannot result from the effect of gravity acting directly on individual cytoplasmic particles. We suggest that gravity may best be perceived by the entire cell at the plasma membrane-extracellular matrix junction.  相似文献   

20.
Summary Hydrodynamic equations were derived which relate the velocity profile of endoplasmic streaming with the motive force generated by active sliding of endoplasmic organelles in Characean internodal cells, under two implicit assumptions that (1) the sliding velocity of putative organelles is comparable to the streaming velocity of endoplasm, and (2) subcortical endoplasm is far less viscous than bulk endoplasm.The equations were extended so as to calculate the velocity profile in flattened or perfused internodal cells. Calculated profiles were basically consistent with reported patterns of streaming under these conditions.Utilizing published data, we deduce some hydrodynamic parameters of streaming, and predict the dimensions of putative organelles expected to drive entire cytoplasm. A revision for published values of the motive force of streaming is proposed.Hydrodynamic analyses made earlier on the spherical organelles are repeated. The results show that the organelles may generate streaming, depending on the configurationin vivo of fine filaments protruding from the body of the organelles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号